ATLAS Offline Software
Loading...
Searching...
No Matches
Analysis::CalibrationDataInterfaceROOT Class Reference

This tool provides an interface to flavour tagging performance estimates. More...

#include <CalibrationDataInterfaceROOT.h>

Inheritance diagram for Analysis::CalibrationDataInterfaceROOT:

Classes

class  HadronisationReferenceHelper

Public Types

enum  variableType { kEta , kAbsEta , kPt }
 known variable types that can be used as function arguments More...

Public Member Functions

 CalibrationDataInterfaceROOT (const std::string &taggerName, const std::string &configname="BTagCalibration.env", const std::string &pathname="")
 main constructor for "stand-alone" use (with information fed in from a .env configuration file read by TEnv)
 CalibrationDataInterfaceROOT (const std::string &taggerName, const char *fileSF, const char *fileEff, const std::vector< std::string > &jetAliases, const std::map< std::string, std::string > &SFNames, const std::map< std::string, std::vector< std::string > > &EffNames, const std::map< std::string, std::vector< std::string > > &excludeFromEV, const std::map< std::string, Analysis::EVReductionStrategy > &EVReductions, bool useEV=true, Uncertainty strat=SFEigen, bool useMCMCSF=true, bool useTopologyRescaling=false, bool useRecommendedEVExclusions=false, bool verbose=true, std::vector< std::string > flavours={"B", "C", "Light", "T"})
 alternative constructor passing configuration information explicitly (so that no .env file is needed)
 CalibrationDataInterfaceROOT ()
 default constructor for PROOF object retrieval
 CalibrationDataInterfaceROOT (const CalibrationDataInterfaceROOT &other)
 copy constructor
virtual ~CalibrationDataInterfaceROOT ()
 default destructor
CalibResult getScaleFactor (const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
 efficiency scale factor retrieval by name.
CalibResult getEfficiency (const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0, unsigned int mapIndex=0)
 efficiency retrieval by name
CalibResult getInefficiencyScaleFactor (const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
 "MC" inefficiency scale factor retrieval by name
CalibResult getInefficiency (const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
 inefficiency retrieval by name
CalibResult getMCEfficiency (const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
 "MC" efficiency retrieval by name
CalibResult getMCInefficiency (const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
 "MC" inefficiency retrieval by name
std::vector< std::string > listScaleFactorUncertainties (const std::string &author, const std::string &label, const std::string &OP, bool named=false)
 retrieve the list of "uncertainties" relevant to the calibration object.
unsigned int getNumVariations (const std::string &author, const std::string &label, const std::string &OP, Uncertainty unc)
 retrieve the number of variations relevant to the calibration object.
bool retrieveCalibrationIndex (const std::string &label, const std::string &OP, const std::string &author, bool isSF, unsigned int &index, unsigned int mapIndex=0)
 Retrieve the index of the calibration object (container) starting from the label and operating point.
std::string nameFromIndex (unsigned int index) const
 Retrieve the name of the calibration object (container) given its index.
CalibResult getScaleFactor (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0)
 efficiency scale factor retrieval by index #2
CalibResult getEfficiency (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0)
 efficiency retrieval by index
CalibResult getInefficiencyScaleFactor (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0)
 "MC" inefficiency scale factor retrieval by index
CalibResult getInefficiency (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0)
 inefficiency retrieval by index
CalibResult getMCEfficiency (const CalibrationDataVariables &variables, unsigned int index, Uncertainty unc=None)
 "MC" efficiency retrieval by index
CalibResult getMCInefficiency (const CalibrationDataVariables &variables, unsigned int index, Uncertainty unc=None)
 "MC" inefficiency retrieval by index
double getMCMCScaleFactor (const CalibrationDataVariables &variables, unsigned indexSF, unsigned int indexEff) const
 MC/MC scale factor retrieval.
std::vector< std::string > listScaleFactorUncertainties (unsigned int index, const std::string &flavour, bool named=false)
 retrieve the list of "uncertainties" relevant to the calibration object.
unsigned int getNumVariations (unsigned int index, Uncertainty unc, const std::string &flavour)
 retrieve the number of variations relevant to the calibration object.
std::string fullName (const std::string &author, const std::string &OP, const std::string &label, bool isSF, unsigned mapIndex=0) const
 @ brief construct the full object pathname from its individual components
CalibrationStatus getScaleFactor (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, unsigned int numVariation, CalibResult &result, const std::string &flavour)
 efficiency scale factor retrieval by index #3
CalibrationStatus getEfficiency (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, unsigned int numVariation, CalibResult &result, const std::string &flavour)
 efficiency retrieval by index
CalibrationStatus getInefficiencyScaleFactor (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, unsigned int numVariation, CalibResult &result, const std::string &flavour)
 "MC" inefficiency scale factor retrieval by index
CalibrationStatus getInefficiency (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, unsigned int numVariation, CalibResult &result, const std::string &flavour)
 inefficiency retrieval by index
CalibrationStatus getMCEfficiency (const CalibrationDataVariables &variables, unsigned int index, Uncertainty unc, CalibResult &result)
 "MC" efficiency retrieval by index
CalibResult getWeightScaleFactor (const CalibrationDataVariables &variables, const std::string &label, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
 efficiency scale factor retrieval by name
CalibResult getWeightScaleFactor (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, unsigned int numVariation=0)
 efficiency scale factor retrieval by index
CalibrationStatus getWeightScaleFactor (const CalibrationDataVariables &variables, unsigned int indexSF, unsigned int indexEff, Uncertainty unc, unsigned int numVariation, CalibResult &result)
 efficiency scale factor retrieval by index, with different signature
CalibrationStatus runEigenVectorRecomposition (const std::string &author, const std::string &label, const std::string &OP, unsigned int mapindex=0)
 run EigenVector Recomposition method
CalibrationStatus runEigenVectorRecomposition (const std::string &label, unsigned int mapindex=0)
std::map< std::string, std::map< std::string, float > > getEigenVectorRecompositionCoefficientMap ()
 Get Eigenvector recomposition map after running runEigenVectorRecomposition()
const TObject * getMCEfficiencyObject (const std::string &author, const std::string &label, const std::string &OP, unsigned int mapIndex=0)
 retrieve the MC efficiency (central values) object for the given flavour label and operating point.
const TH1 * getBinnedScaleFactors (const std::string &author, const std::string &label, const std::string &OP)
 retrieve the binned calibration object for the given flavour label and operating point.
const TH1 * getShiftedScaleFactors (const std::string &author, const std::string &label, const std::string &OP, const std::string &unc, double sigmas)
 retrieve the binned calibration object for the given flavour label and operating point, with the result shifted by the given number of standard deviations for the given systematic uncertainty.
TMatrixDSym getScaleFactorCovarianceMatrix (const std::string &author, const std::string &label, const std::string &OP, const std::string &unc="all")
 retrieve the named covariance matrix element corresponding to the binned calibration object.
void initialize (const std::string &jetauthor, const std::string &OP, Uncertainty unc)
 initialization for PROOF usage
CalibrationDataContainerretrieveContainer (const std::string &label, const std::string &OP, const std::string &author, const std::string &cntname, bool isSF, bool doPrint=true)
 utility function taking care of object retrieval
const std::string & EffCalibrationName (const std::string &flavour, unsigned int mapIndex=0) const
 Main interface methods accessing the flavour tagging performance information.
void setEffCalibrationNames (const std::map< std::string, std::vector< std::string > > &names)
const std::string & SFCalibrationName (const std::string &flavour) const
void setSFCalibrationNames (const std::map< std::string, std::string > &names)

Protected Member Functions

std::string getContainername (const std::string &flavour, bool SF, unsigned int mapIndex=0) const
 auxiliary function for string concatenation
std::string getBasename (const std::string &name) const
 auxiliary function for retrieval of name within the directory
double combinedUncertainty (double stat, const std::pair< double, double > &syst) const
 utility function for combination of statistical and (a priori asymmetric) systematic uncertainty.

Protected Attributes

std::string m_taggerName
 tagging algorithm name

Private Member Functions

std::string getAlias (const std::string &author) const
 associated alias retrieval method
bool checkAbsEta (const CalibrationDataVariables &variables, unsigned int index)
void increaseCounter (unsigned int index, OutOfBoundsType oob=Main)
void checkWeightScaleFactors (unsigned int indexSF, unsigned int indexEff)

Private Attributes

TFile * m_fileEff {}
 pointer to the TFile object providing access to the calibrations
TFile * m_fileSF {}
 Do not attempt to persistify (PROOF)
std::map< std::string, std::string > m_aliases
 Do not attempt to persistify (PROOF)
std::vector< CalibrationDataContainer * > m_objects
 cache the objects themselves (so that the user will not have to delete them after each call etc.).
std::map< std::string, unsigned int > m_objectIndices
std::string m_filenameSF
 in addition, store also the filenames themselves (needed for the copy constructor)
std::string m_filenameEff
std::vector< std::string > m_flavours
std::map< const CalibrationDataContainer *, std::shared_ptr< CalibrationDataEigenVariations > > m_eigenVariationsMap
 store the eigenvector class and associate to its CalibrationDataContainer
bool m_runEigenVectorMethod {}
 decide whether to run the eigenvector method or not
Uncertainty m_EVStrategy {}
std::map< std::string, Analysis::EVReductionStrategym_EVReductions
 Eigenvector reduction strategy (per flavour)
std::map< std::string, std::vector< std::string > > m_excludeFromCovMatrix
 store the uncertainties which should be excluded from building the full covariance matrix
bool m_useRecommendedEVExclusions {}
 if true, exclude pre-recommended lists of uncertainties from the covariance matrix building, in addition to the above user specified lists
bool m_verbose {}
 if true, allow also for some informational (and not only error/warning) messages
bool m_useMCMCSF {}
 specify whether or not to use MC/MC (hadronisation) scale factors (the fact that this is steerable is intended to be temporary only)
bool m_useTopologyRescaling {}
 specify whether or not to use MC/MC (topology) scale factors (also this steering option may be removed)
std::map< std::string, HadronisationReferenceHelper * > m_refMap
 the following maps (one for each directory) specify the name of the container serving as the 'hadronisation' reference for each object
std::vector< int > m_hadronisationReference
 store the 'hadronisation' reference for each object (-1 means no reference found)
std::map< std::string, std::map< std::string, float > > m_coefficientMap
double m_maxAbsEta {}
 |eta| bounds and strategy for dealing with out-of-bounds conditions
OutOfBoundsStrategy m_absEtaStrategy {}
OutOfBoundsStrategy m_otherStrategy {}
std::vector< unsigned int > m_etaCounters
 counters for flagging out-of-bound cases
std::vector< unsigned int > m_mainCounters
std::vector< unsigned int > m_extrapolatedCounters
std::vector< std::pair< unsigned int, unsigned int > > m_checkedWeightScaleFactors
double m_maxTagWeight {}
std::map< std::string, std::vector< std::string > > m_calibrationEffNames
 this simply collects the per-flavour properties.
std::map< std::string, std::string > m_calibrationSFNames

Detailed Description

This tool provides an interface to flavour tagging performance estimates.

A separate instance should be used for each different tagging algorithm. For each instance, all appropriate jet collections and tagger operating points need to be specified.

The model:

  • b-jets: data-MC scale factor (factorised 2D function of eta, pt) MC reference the product is the data efficiency; alternatively, the scale factor may be used
  • c-jets: as for b-jets, but with a different MC reference
  • light-flavour jets: data-MC scale factor (factorised 2D function of eta, pt) MC reference Besides the results, it is also possible to retrieve associated uncertainties. This need not be configured, and a choice as to the uncertainty component can be made on a case-by-case basis.

The idea is to use the same physical ROOT file that is also accessed through COOL, but to do so in a stand-alone fashion, so that there is no COOL or Athena dependence. Apart from this, the same infrastructure and limitations as with COOL access (

Definition at line 87 of file CalibrationDataInterfaceROOT.h.

Member Enumeration Documentation

◆ variableType

Constructor & Destructor Documentation

◆ CalibrationDataInterfaceROOT() [1/4]

Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ( const std::string & taggerName,
const std::string & configname = "BTagCalibration.env",
const std::string & pathname = "" )

main constructor for "stand-alone" use (with information fed in from a .env configuration file read by TEnv)

◆ CalibrationDataInterfaceROOT() [2/4]

Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ( const std::string & taggerName,
const char * fileSF,
const char * fileEff,
const std::vector< std::string > & jetAliases,
const std::map< std::string, std::string > & SFNames,
const std::map< std::string, std::vector< std::string > > & EffNames,
const std::map< std::string, std::vector< std::string > > & excludeFromEV,
const std::map< std::string, Analysis::EVReductionStrategy > & EVReductions,
bool useEV = true,
Uncertainty strat = SFEigen,
bool useMCMCSF = true,
bool useTopologyRescaling = false,
bool useRecommendedEVExclusions = false,
bool verbose = true,
std::vector< std::string > flavours = {"B", "C", "Light", "T"} )

alternative constructor passing configuration information explicitly (so that no .env file is needed)

Definition at line 481 of file CalibrationDataInterfaceROOT.cxx.

490 :
491 m_filenameSF(fileSF), m_filenameEff(""), m_flavours(std::move(flavours)),
492 m_runEigenVectorMethod(useEV), m_EVStrategy(strat), m_EVReductions(EVReductions),
493 m_useRecommendedEVExclusions(useRecommendedEEVExclusions), m_verbose(verbose),
494 m_useMCMCSF(useMCMCSF), m_useTopologyRescaling(useTopologyRescaling),
497{
498 // Normal constructor avoiding the need for a .env file.
499 //
500 // taggerName: this should correspond to the tagger name as used in the calibration ROOT file
501 // fileSF: full path of the calibration ROOT file containing the calibration scale factors
502 // fileEff: optional full path name of a ROOT file containing additional MC efficiency maps
503 // (use a null pointer to disable the use of such additional file)
504 // flavours; This should correspond to the list of flavour labels that's used by a tagger, and
505 // which corresponds to the labels used in internal maps
506 // jetAliases: this can be used to convert jet collection names to the corresponding names in the
507 // calibration ROOT file (this may be useful as e.g. the collection names in the
508 // calibration ROOT file have the JVF criterion attached as a suffix).
509 // Each alias is specified as
510 // nameOrig->nameTarget,
511 // where nameOrig and nameTarget are the names of the input jet collection and the
512 // jet collection name as used in the calibration ROOT file, respectively.
513 // SFNames: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
514 // name of the scale factor calibration object
515 // EffNames: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
516 // names of the possibly relevant efficiency calibration objects
517 // excludeFromEV: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
518 // systematic uncertainties to be excluded from the Eigenvector variation treatment
519 // (this is used only if Eigenvector variations are used to begin with)
520 // EVReductions: Eigenvector variation reduction strategies for "B", "C", "Light" jets (again,
521 // this is only relevant if Eigenvector variations are used to begin with)
522 // useEV: switch specifying if Eigenvector variations will be used or not
523 // useMCMCSF: switch specifying if generator-dependent scale factors are to be applied or not
524
525 // Note: at present, the means to change the strategies and maximum values initialized above do not exist
526 // when using this constructor
527
528 if (m_verbose) {
529 cout << "=== CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ===" << endl;
530 cout << " taggerName : " << taggerName.c_str() << endl;
531 cout << " Systematic strategy : ";
532 if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
533 cout << "SFEigen" << endl;
534 } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen){
535 cout << "SFGlobalEigen" << endl;
536 } else {
537 cout << " Other" << endl;
538 }
539 if (fileEff) cout << " Efficiency file name : " << fileEff << endl;
540 cout << " SF file name : " << fileSF << endl
541 << endl;
542 }
543
544 m_taggerName = taggerName;
545
546 m_fileSF = TFile::Open(fileSF, "READ");
547 if (fileEff && strcmp(fileSF, fileEff) != 0) {
548 m_filenameEff = string(fileEff);
549 m_fileEff = TFile::Open(fileEff, "READ");
550 } else
552
553 if (m_verbose) {
554 TObjString* s;
555 m_fileSF->GetObject("VersionInfo/BuildNumber", s);
556 if (s) cout << " CDI file build number: " << s->GetName() << endl;
557 cout << endl;
558 }
559
560 for (unsigned int i = 0; i < jetAliases.size(); ++i) {
561 // Each alias specification uses an arrow ("->"). Forget about entries
562 // not properly following this specification.
563 string::size_type arrow = jetAliases[i].find("->");
564 if (arrow == string::npos) continue;
565 m_aliases[jetAliases[i].substr(0,arrow)] = jetAliases[i].substr(arrow+2);
566 }
567
568 setEffCalibrationNames(EffNames);
569 setSFCalibrationNames(SFNames);
570
572 // if we want to run EV, then decide which one
573 // The following should hold for both eigenvector decomposition methods (SFEigen and SFGlobalEigen)
574 // The global one simply adapts itself to using the m_excludeFromCovMatrix to perform the same task
575
576 m_excludeFromCovMatrix = excludeFromEV;
577 unsigned int n_excluded = 0;
578 for (auto const& flavour : m_flavours) {
579 n_excluded += m_excludeFromCovMatrix[flavour].size();
580 }
581 if (m_verbose) {
582 cout << " List of uncertainties to exclude:";
583 if (n_excluded == 0) cout << " none";
584 for (auto const& flavour : m_flavours) {
585 if (m_excludeFromCovMatrix[flavour].size() > 0) {
586 cout << "\n\t" << flavour << ":\t";
587 for (unsigned int i = 0; i < m_excludeFromCovMatrix[flavour].size(); ++i) {
588 cout << m_excludeFromCovMatrix[flavour].at(i);
589 if (i+1 == m_excludeFromCovMatrix[flavour].size()) cout << "; ";
590 }
591 cout << endl;
592 }
593 }
594 cout << endl;
595 }
596
597 }
598
599 if (m_verbose) cout << "======= end of CalibrationDataInterfaceROOT instantiation ========" << endl;
600}
std::string m_taggerName
tagging algorithm name
void setEffCalibrationNames(const std::map< std::string, std::vector< std::string > > &names)
void setSFCalibrationNames(const std::map< std::string, std::string > &names)
bool m_verbose
if true, allow also for some informational (and not only error/warning) messages
bool m_useTopologyRescaling
specify whether or not to use MC/MC (topology) scale factors (also this steering option may be remove...
std::map< std::string, std::string > m_aliases
Do not attempt to persistify (PROOF)
TFile * m_fileSF
Do not attempt to persistify (PROOF)
bool m_useRecommendedEVExclusions
if true, exclude pre-recommended lists of uncertainties from the covariance matrix building,...
TFile * m_fileEff
pointer to the TFile object providing access to the calibrations
bool m_runEigenVectorMethod
decide whether to run the eigenvector method or not
std::map< std::string, Analysis::EVReductionStrategy > m_EVReductions
Eigenvector reduction strategy (per flavour)
bool m_useMCMCSF
specify whether or not to use MC/MC (hadronisation) scale factors (the fact that this is steerable is...
std::map< std::string, std::vector< std::string > > m_excludeFromCovMatrix
store the uncertainties which should be excluded from building the full covariance matrix
double m_maxAbsEta
|eta| bounds and strategy for dealing with out-of-bounds conditions
std::string m_filenameSF
in addition, store also the filenames themselves (needed for the copy constructor)
bool verbose
Definition hcg.cxx:73

◆ CalibrationDataInterfaceROOT() [3/4]

Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ( )

default constructor for PROOF object retrieval

Definition at line 603 of file CalibrationDataInterfaceROOT.cxx.

604{
605 // Default constructor for PROOF purposes
606
607 m_fileEff=0;
608 m_fileSF=0;
609}

◆ CalibrationDataInterfaceROOT() [4/4]

Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ( const CalibrationDataInterfaceROOT & other)

copy constructor

Definition at line 612 of file CalibrationDataInterfaceROOT.cxx.

612 :
613 Analysis::CalibrationDataInterfaceBase(other), m_aliases(other.m_aliases), m_objects(), m_objectIndices(),
614 m_filenameSF(other.m_filenameSF), m_filenameEff(other.m_filenameEff),
615 m_eigenVariationsMap(), m_runEigenVectorMethod(other.m_runEigenVectorMethod), m_EVStrategy(other.m_EVStrategy),
616 m_excludeFromCovMatrix(other.m_excludeFromCovMatrix), m_useMCMCSF(other.m_useMCMCSF), m_useTopologyRescaling(other.m_useTopologyRescaling),
618 m_maxAbsEta(other.m_maxAbsEta), m_absEtaStrategy(other.m_absEtaStrategy), m_otherStrategy(other.m_otherStrategy),
619 m_etaCounters(other.m_etaCounters), m_mainCounters(other.m_mainCounters), m_extrapolatedCounters(other.m_extrapolatedCounters),
620 m_checkedWeightScaleFactors(other.m_checkedWeightScaleFactors), m_maxTagWeight(other.m_maxTagWeight)
621{
622 // Copy constructor. Note that the "cacheable" items aren't copied (they will be re-created if needed)
623
624 // The TFile objects cannot be copied. Therefore, create duplicate objects starting from the filenames
625 m_fileSF = TFile::Open(m_filenameSF.c_str(), "READ");
628 else
629 m_fileEff = TFile::Open(m_filenameEff.c_str(), "READ");
630}
std::vector< std::pair< unsigned int, unsigned int > > m_checkedWeightScaleFactors
std::map< std::string, unsigned int > m_objectIndices
std::map< std::string, HadronisationReferenceHelper * > m_refMap
the following maps (one for each directory) specify the name of the container serving as the 'hadroni...
std::vector< int > m_hadronisationReference
store the 'hadronisation' reference for each object (-1 means no reference found)
std::vector< CalibrationDataContainer * > m_objects
cache the objects themselves (so that the user will not have to delete them after each call etc....
std::vector< unsigned int > m_etaCounters
counters for flagging out-of-bound cases
std::map< const CalibrationDataContainer *, std::shared_ptr< CalibrationDataEigenVariations > > m_eigenVariationsMap
store the eigenvector class and associate to its CalibrationDataContainer

◆ ~CalibrationDataInterfaceROOT()

Analysis::CalibrationDataInterfaceROOT::~CalibrationDataInterfaceROOT ( )
virtual

default destructor

Definition at line 633 of file CalibrationDataInterfaceROOT.cxx.

634{
635 // Destructor
636 if ((m_fileEff!=0) && (m_fileSF!=0)) {
637 if (m_fileEff == m_fileSF) {
638 m_fileEff->Close();
639 delete m_fileEff; m_fileEff = 0;
640 } else {
641 m_fileEff->Close();
642 m_fileSF->Close();
643 delete m_fileEff; m_fileEff = 0;
644 delete m_fileSF; m_fileSF = 0;
645 }
646 }
647 // delete also the stored objects (these are owned by us)
648 for (std::vector<CalibrationDataContainer*>::iterator it = m_objects.begin(); it != m_objects.end(); ++it) {
649 if (*it) {
650 delete *it; *it = 0;
651 }
652 }
653
654 for (std::map<std::string, HadronisationReferenceHelper*>::iterator it = m_refMap.begin();
655 it != m_refMap.end(); ++it) {
656 if(it->second)
657 { delete it->second; it->second=nullptr; }
658 }
659
660 // Print summary output on out-of-bounds issues
661 if (m_absEtaStrategy == Flag && m_verbose) {
662 bool found = false;
663 cout << "\t\tCalibrationDataInterfaceROOT |eta| out-of-bounds summary:" << endl;
664 for (unsigned int index = 0; index < m_mainCounters.size(); ++index)
665 if (m_etaCounters[index] > 0) {
666 found = true;
667 cout << "\t\t\t" << nameFromIndex(index) << ": " << m_etaCounters[index] << endl;
668 }
669 if (!found) cout << "\t\t\tNo issues found" << endl;
670 }
671 if (m_otherStrategy == Flag && m_verbose) {
672 bool found = false;
673 cout << "\t\tCalibrationDataInterfaceROOT object out-of-bounds summary:" << endl;
674 for (unsigned int index = 0; index < m_mainCounters.size(); ++index)
675 if (m_mainCounters[index] + m_extrapolatedCounters[index] > 0) {
676 found = true;
677 cout << "\t\t\t" << nameFromIndex(index)
678 << " general: " << m_mainCounters[index]
679 << ", extrapolated: " << m_extrapolatedCounters[index]
680 << endl;
681 }
682 if (!found) cout << "\t\t\tNo issues found" << endl;
683 }
684}
std::string nameFromIndex(unsigned int index) const
Retrieve the name of the calibration object (container) given its index.
str index
Definition DeMoScan.py:362

Member Function Documentation

◆ checkAbsEta()

bool Analysis::CalibrationDataInterfaceROOT::checkAbsEta ( const CalibrationDataVariables & variables,
unsigned int index )
nodiscardprivate

Definition at line 1916 of file CalibrationDataInterfaceROOT.cxx.

1918{
1919 // Check whether the jet eta value is outside the range of validity, subject to the strategy
1920 // specified in the configuration file.
1921 bool pass = true;
1922 if (m_absEtaStrategy == Ignore) return pass;
1923
1924 switch (m_absEtaStrategy) {
1925 case GiveUp:
1926 if (std::fabs(variables.jetEta) > m_maxAbsEta) {
1927 pass = false;
1928 }
1929 break;
1930 case Flag:
1931 default:
1932 if (std::fabs(variables.jetEta) > m_maxAbsEta) {
1933 increaseCounter(index, Eta);
1934 }
1935
1936 }
1937 return pass;
1938}
void increaseCounter(unsigned int index, OutOfBoundsType oob=Main)

◆ checkWeightScaleFactors()

void Analysis::CalibrationDataInterfaceROOT::checkWeightScaleFactors ( unsigned int indexSF,
unsigned int indexEff )
private

Definition at line 1763 of file CalibrationDataInterfaceROOT.cxx.

1765{
1766 // Check the tag weight scale factors that would result from the combination of
1767 // the provided scale factor and MC tag weight objects.
1768 // The way this is done is by determining the binning that would apply to the
1769 // combination of the two individual inputs, and then by explicitly computing
1770 // the scale factors in each of these resulting bins.
1771
1772 std::vector<std::pair<unsigned int, unsigned int> >::const_iterator it = std::find(m_checkedWeightScaleFactors.begin(), m_checkedWeightScaleFactors.end(), std::make_pair(indexSF, indexEff));
1773 if (it != m_checkedWeightScaleFactors.end()) return;
1774
1775
1776 // Assume that only histogram containers are involved here (this should be the case
1777 // as at least a strict tag weight binning should be applied).
1778 CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[indexSF]);
1779 if (! container) {
1780 cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: container for object " << nameFromIndex(indexSF) << " not found!" << endl;
1781 return;
1782 } else if (! container->GetValue("MCreference")) {
1783 cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: no MCreference histogram for object " << nameFromIndex(indexSF) << "!" << endl;
1784 return;
1785 }
1786 CalibrationDataHistogramContainer* effContainer = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[indexEff]);
1787 if (! effContainer) {
1788 cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: container for object " << nameFromIndex(indexEff) << " not found!" << endl;
1789 return;
1790 }
1791
1792 // Retrieve the variable types and corresponding bin boundaries
1793 std::vector<unsigned int> vars = container->getVariableTypes();
1794 std::vector<unsigned int> effVars = effContainer->getVariableTypes();
1795 // Retrieve the corresponding bin boundaries
1796 std::map<unsigned int, std::vector<double> > boundaries, effBoundaries, mergedBoundaries;
1797 for (unsigned int t = 0; t < vars.size(); ++t)
1798 boundaries[vars[t]] = container->getBinBoundaries(vars[t]);
1799 for (unsigned int t = 0; t < effVars.size(); ++t)
1800 effBoundaries[effVars[t]] = effContainer->getBinBoundaries(effVars[t]);
1801
1802 // Special case: handle |eta| versus eta differences, by transforming to the latter
1803 if (boundaries.find(CalibrationDataContainer::kEta) == boundaries.end() && boundaries.find(CalibrationDataContainer::kAbsEta) != boundaries.end()) {
1805 boundaries.erase(CalibrationDataContainer::kAbsEta);
1806 }
1807 if (effBoundaries.find(CalibrationDataContainer::kEta) == effBoundaries.end() && effBoundaries.find(CalibrationDataContainer::kAbsEta) != effBoundaries.end()) {
1809 effBoundaries.erase(CalibrationDataContainer::kAbsEta);
1810 }
1811 if (boundaries.find(CalibrationDataContainer::kEta) != boundaries.end() && effBoundaries.find(CalibrationDataContainer::kEta) != effBoundaries.end()) {
1812 std::vector<double>& v = boundaries[CalibrationDataContainer::kEta];
1813 std::vector<double>& vEff = effBoundaries[CalibrationDataContainer::kEta];
1814 if (v[0] < 0 && vEff[0] >= 0) {
1815 // in this case, supplement the positive entries in vEff with their negative analogues
1816 std::vector<double> vtmp(vEff);
1817 for (std::vector<double>::iterator it = vtmp.begin(); it != vtmp.end(); ++it)
1818 if (*it > 0) vEff.insert(vEff.begin(), -(*it));
1819 } else if (v[0] >= 0 && vEff[0] < 0) {
1820 // in this case, supplement the positive entries in v with their negative analogues
1821 std::vector<double> vtmp(v);
1822 for (std::vector<double>::iterator it = vtmp.begin(); it != vtmp.end(); ++it)
1823 if (*it > 0) v.insert(v.begin(), -(*it));
1824 }
1825 }
1826
1827 // Now that the individual sets of boundaries have been determined, merge these
1828 for (unsigned int t = 0; t < vars.size(); ++t) {
1829 if (effBoundaries.find(vars[t]) == effBoundaries.end())
1830 // Variables not present in the efficiency object can go in unmodified
1831 mergedBoundaries[vars[t]] = boundaries[vars[t]];
1832 else {
1833 // Merge the boundaries for variables existing in both objects.
1834 // Take the MC array as a starting point, as it's likely to be the longest.
1835 mergedBoundaries[vars[t]] = effBoundaries[vars[t]];
1836
1837 for (std::vector<double>::iterator it = boundaries[vars[t]].begin(); it != boundaries[vars[t]].end(); ++it) {
1838 std::vector<double>::iterator itcmp = mergedBoundaries[vars[t]].begin();
1839 // Iterate until we've found a value in the target array equal to
1840 // or larger than the given element
1841 while (itcmp != mergedBoundaries[vars[t]].end() &&
1842 (! CalibrationDataContainer::isNearlyEqual(*itcmp, *it)) &&
1843 *itcmp < *it) ++itcmp;
1844 // Nothing needs to be done if the values are "nearly identical"
1845 // (or if we don't find such an element).
1846 if (itcmp == mergedBoundaries[vars[t]].end() || CalibrationDataContainer::isNearlyEqual(*itcmp, *it)) continue;
1847 // Otherwise insert the given element (this can mean adding to the end)
1848 mergedBoundaries[vars[t]].insert(itcmp, *it);
1849 }
1850 }
1851 }
1852 // Variables not present in the scale factor object still need to go in
1853 for (unsigned int t = 0; t < effVars.size(); ++t)
1854 if (boundaries.find(effVars[t]) == boundaries.end())
1855 mergedBoundaries[effVars[t]] = effBoundaries[effVars[t]];
1856
1857 // Carry out a rudimentary cross-check of the tag weight bin
1858 // (the binning used for the scale factor and MC objects should be identical).
1859 if (boundaries.find(CalibrationDataContainer::kTagWeight) == boundaries.end()) {
1860 cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "no tag weight axis found for object " << nameFromIndex(indexSF) << endl;
1861 } else if (effBoundaries.find(CalibrationDataContainer::kTagWeight) == effBoundaries.end()) {
1862 cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "no tag weight axis found for object " << nameFromIndex(indexEff) << endl;
1863 } else if (boundaries[CalibrationDataContainer::kTagWeight].size() != effBoundaries[CalibrationDataContainer::kTagWeight].size()) {
1864 cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "different tag weight binning for objects " << nameFromIndex(indexSF) << " (";
1865 std::vector<double>& v = boundaries[CalibrationDataContainer::kTagWeight];
1866 for (unsigned int ib = 0; ib < v.size()-1; ++ib) cerr << v[ib] << ",";
1867 cerr << v[v.size()-1] << ") and " << nameFromIndex(indexEff) << " (";
1868 v = effBoundaries[CalibrationDataContainer::kTagWeight];
1869 for (unsigned int ib = 0; ib < v.size()-1; ++ib) cerr << v[ib] << ",";
1870 cerr << v[v.size()-1] << ") do not match!" << endl;
1871 } else {
1872 // Make sure that (possibly) dummy vectors exist for _all_ known variables
1873 // (this is a mere technicality allowing to loop over all variables explicitly).
1874 mergedBoundaries.try_emplace(CalibrationDataContainer::kPt, std::vector<double>{20.,300.});
1875 mergedBoundaries.try_emplace(CalibrationDataContainer::kEta, std::vector<double>{-2.5, 2.5});
1876
1877 // Finally, carry out the cross-check that all this is about: recompute the scale factor
1878 // in each pseudo-bin
1879 if (m_verbose){
1880 cout << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: cross-checking scale factors for objects " << nameFromIndex(indexSF) << " and " << nameFromIndex(indexEff) << "\n" << std::setfill('-') << std::setw(100) << "-" << endl;
1881 cout << std::setfill(' ');
1882 }
1883 CalibrationDataVariables x;
1884 std::vector<double>& vPt = mergedBoundaries[CalibrationDataContainer::kPt], vEta = mergedBoundaries[CalibrationDataContainer::kEta], vTagWeight = mergedBoundaries[CalibrationDataContainer::kTagWeight];
1885 for (unsigned int ipt = 0; ipt < vPt.size()-1; ++ipt) {
1886 x.jetPt = (vPt[ipt] + vPt[ipt+1]) * 500.; // account for MeV -> GeV conversion
1887 for (unsigned int ieta = 0; ieta < vEta.size()-1; ++ieta) {
1888 x.jetEta = (vEta[ieta] + vEta[ieta+1]) / 2.;
1889 for (unsigned int iwt = 0; iwt < vTagWeight.size()-1; ++iwt) {
1890 x.jetTagWeight = (vTagWeight[iwt] + vTagWeight[iwt+1]) / 2.;
1891 // Retrieve the central scale factor value and the old and new MC tag weight fractions
1892 double value;
1893 container->getResult(x, value);
1894 Analysis::UncertaintyResult uncertaintyResult(0,0);
1895 container->getUncertainty("MCreference", x, uncertaintyResult);
1896 double fracMCref = uncertaintyResult.first;
1897 double fracMCnew;
1898 effContainer->getResult(x, fracMCnew);
1899 // Compute the new scale factor value
1900 if (!(fracMCnew > 0.)) {
1901 cout << "\tfor (pt=" << x.jetPt << ",eta=" << x.jetEta << ",tagweight=" << x.jetTagWeight << "): invalid new MC fraction: " << fracMCnew << endl;
1902 } else {
1903 double newvalue = 1.0 + (value - 1.0) * fracMCref/fracMCnew;
1904 if (newvalue <= 0 || newvalue > m_maxTagWeight) cout << "\tfor (pt=" << x.jetPt << ",eta=" << x.jetEta << ",tagweight=" << x.jetTagWeight << "): old (value=" << value << ",MC=" << fracMCref << "), new (value=" << newvalue << ",MC=" << fracMCnew << ")" << endl;
1905 }
1906 }
1907 }
1908 }
1909 }
1910
1911 m_checkedWeightScaleFactors.push_back(std::make_pair(indexSF, indexEff));
1912}
#define x
static bool isNearlyEqual(double a, double b)
utility for comparison of doubles
virtual CalibrationStatus getUncertainty(const std::string &unc, const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)
retrieve the calibration uncertainty due to the given source.
virtual std::vector< double > getBinBoundaries(unsigned int vartype)
Retrieve the bin boundaries for the specified variable type (which should be a CalibrationParametriza...
virtual CalibrationStatus getResult(const CalibrationDataVariables &x, double &result, TObject *obj=0, bool extrapolate=false)
retrieve the calibration result.
std::pair< double, double > UncertaintyResult
The following typedef is for convenience: most uncertainties can be asymmetric.

◆ combinedUncertainty()

double Analysis::CalibrationDataInterfaceBase::combinedUncertainty ( double stat,
const std::pair< double, double > & syst ) const
protectedinherited

utility function for combination of statistical and (a priori asymmetric) systematic uncertainty.

NB perhaps this should be in its own

Definition at line 147 of file CalibrationDataInterfaceBase.cxx.

149{
150 // Return the total (combined statistical and systematic) uncertainty started from
151 // its individual components. The result is symmetrised by using only the larger of
152 // the (a priori asymmetric) up- and downward systematic uncertainties.
153
154 // The systematic uncertainty is (a priori) asymmetric, but this interface doesn't
155 // at present allow for asymmetric uncertainties.
156 // Address this by taking the larger (absolute) value of the two.
157 double largest = syst.first;
158 if (TMath::Abs(syst.second) > TMath::Abs(largest)) largest = syst.second;
159
160 return TMath::Sqrt(stat*stat + largest*largest);
161}

◆ EffCalibrationName()

const std::string & Analysis::CalibrationDataInterfaceBase::EffCalibrationName ( const std::string & flavour,
unsigned int mapIndex = 0 ) const
inherited

Main interface methods accessing the flavour tagging performance information.

Note that for both of the following, the label is assumed to adhere to the TruthInfo conventions (see package PhysicsAnalysis/JetTagging/JetTagInfo).

Definition at line 47 of file CalibrationDataInterfaceBase.cxx.

49{
50 // Return the MC efficiency name for the given flavour.
51 // Note that no check is performed on the validity of the flavour.
52
53 try {
54 return m_calibrationEffNames.at(flavour)[mapIndex];
55 }
56 catch (const std::out_of_range& e) {
57 std::cerr << "EffCalibrationName: flavour '" << flavour << "' is not known." << std::endl;
58 throw e;
59 }
60}
std::map< std::string, std::vector< std::string > > m_calibrationEffNames
this simply collects the per-flavour properties.

◆ fullName()

string Analysis::CalibrationDataInterfaceROOT::fullName ( const std::string & author,
const std::string & OP,
const std::string & label,
bool isSF,
unsigned mapIndex = 0 ) const

@ brief construct the full object pathname from its individual components

Definition at line 2718 of file CalibrationDataInterfaceROOT.cxx.

2721{
2722 // Construct the full calibration object's pathname within the calibration ROOT file.
2723 //
2724 // author: jet collection name
2725 // OP: tagger working point
2726 // label: jet flavour label
2727 // isSF: set to true (false) for scale factors (MC efficiencies)
2728 // mapIndex: index in the list of MC efficiency calibration objects
2729
2730 string flavour = (label == "N/A") ? "Light" : label;
2731 string full(m_taggerName + "/" + getAlias(author) + "/" + OP + "/" + flavour + "/");
2732 full += getContainername(flavour, isSF, mapIndex);
2733 // full += getAlias(author); full += "/";
2734 // string name = (isSF) ?
2735 // getBasename(OP, label, "_SF", true) :
2736 // getBasename(OP, label, "_Eff", false, mapIndex);
2737 // full += name;
2738 return full;
2739}
std::string getContainername(const std::string &flavour, bool SF, unsigned int mapIndex=0) const
auxiliary function for string concatenation
std::string getAlias(const std::string &author) const
associated alias retrieval method
std::string label(const std::string &format, int i)
Definition label.h:19

◆ getAlias()

string Analysis::CalibrationDataInterfaceROOT::getAlias ( const std::string & author) const
private

associated alias retrieval method

Definition at line 2707 of file CalibrationDataInterfaceROOT.cxx.

2708{
2709 // Return the alias for the given jet collection name, if an alias exists.
2710 // If this is not the case, the return value will simply equal the input jet collection name.
2711
2712 std::map<string,string>::const_iterator it = m_aliases.find(author);
2713 return (it == m_aliases.end()) ? author : it->second;
2714}

◆ getBasename()

std::string Analysis::CalibrationDataInterfaceBase::getBasename ( const std::string & name) const
protectedinherited

auxiliary function for retrieval of name within the directory

Definition at line 138 of file CalibrationDataInterfaceBase.cxx.

139{
140 // Retrieve the name within the directory starting from the full name
141
142 return name.substr(name.find_last_of('/')+1, std::string::npos);
143}

◆ getBinnedScaleFactors()

const TH1 * Analysis::CalibrationDataInterfaceROOT::getBinnedScaleFactors ( const std::string & author,
const std::string & label,
const std::string & OP )

retrieve the binned calibration object for the given flavour label and operating point.

A null result will be returned in case of error (e.g. if the calibration object isn't binned to begin with).

Definition at line 2105 of file CalibrationDataInterfaceROOT.cxx.

2108{
2109 // Retrieve the actual histogrammed calibration scale factors, identifying the object by name.
2110 //
2111 // author: jet collection name
2112 // label: jet flavour label
2113 // OP: tagger working point
2114
2115 unsigned int index;
2116 if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2117 // Return a dummy result if the object is not found
2118 cerr << "getBinnedScaleFactors: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2119 return 0;
2120 }
2121 CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2122 return (container) ? dynamic_cast<TH1*>(container->GetValue("result")) : 0;
2123}
bool retrieveCalibrationIndex(const std::string &label, const std::string &OP, const std::string &author, bool isSF, unsigned int &index, unsigned int mapIndex=0)
Retrieve the index of the calibration object (container) starting from the label and operating point.
std::string fullName(const std::string &author, const std::string &OP, const std::string &label, bool isSF, unsigned mapIndex=0) const
@ brief construct the full object pathname from its individual components

◆ getContainername()

std::string Analysis::CalibrationDataInterfaceBase::getContainername ( const std::string & flavour,
bool SF,
unsigned int mapIndex = 0 ) const
protectedinherited

auxiliary function for string concatenation

auxiliary function for retrieval of container name

Definition at line 118 of file CalibrationDataInterfaceBase.cxx.

120{
121 // Construct the full pathname corresponding to the container indicated by the combination
122 // of tagging operating point, jet flavour, and a possible extra extension. The calibration
123 // container name (stored internally) is also attached.
124
125 const std::vector<std::string>& effNames = m_calibrationEffNames.at(flavour);
126 if (!SF && mapIndex >= effNames.size()) {
127 std::cerr << "getContainername: given mapIndex=" << mapIndex << " incompatible with array size "
128 << effNames.size() << "; resetting to 0" << std::endl;
129 mapIndex = 0;
130 }
131 std::string name = SF ? m_calibrationSFNames.at(flavour) : effNames[mapIndex];
132 name += SF ? "_SF" : "_Eff";
133
134 return name;
135}
std::map< std::string, std::string > m_calibrationSFNames
const float SF[NF]
Cross sections for Fluor.

◆ getEfficiency() [1/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getEfficiency ( const CalibrationDataVariables & variables,
const std::string & label,
const std::string & OP,
Uncertainty unc,
const std::string & flavour,
unsigned int numVariation = 0,
unsigned int mapIndex = 0 )

efficiency retrieval by name

Definition at line 1071 of file CalibrationDataInterfaceROOT.cxx.

1075{
1076 // Data efficiency retrieval identifying the requested calibration objects by name.
1077 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor.
1078 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1079 // above, and will be a dummy value in case an error occurs.
1080 //
1081 // variables: object holding kinematic (and other) information needed to compute the result
1082 // label: jet flavour label
1083 // OP: tagger operating point
1084 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1085 // named variations are to be computed)
1086 // numVariation: variation index (in case of eigenvector or named variations)
1087 // mapIndex: index to the efficiency map to be used
1088
1089 unsigned int indexSF, indexEff;
1090 if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1091 retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1092 cerr << "getEfficiency: unable to find Eff calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << " or SF calibration for object " << fullName(variables.jetAuthor, OP, label, true) << endl;
1093 // Return a dummy result if the object is not found
1094 return Analysis::dummyResult;
1095 }
1096
1098 return (getEfficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ? Analysis::dummyResult : result;
1099}
CalibResult getEfficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency retrieval by name
const CalibResult dummyResult(dummyValue, dummyValue)
std::pair< double, double > CalibResult

◆ getEfficiency() [2/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getEfficiency ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
const std::string & flavour,
unsigned int numVariation = 0 )

efficiency retrieval by index

Definition at line 1103 of file CalibrationDataInterfaceROOT.cxx.

1106{
1107 // Data efficiency retrieval identifying the requested calibration objects by index.
1108 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor.
1109 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1110 // above, and will be a dummy value in case an error occurs.
1111 //
1112 // variables: object holding kinematic (and other) information needed to compute the result
1113 // indexSF: index to scale factor calibration object
1114 // indexEff: index to MC efficiency object
1115 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1116 // named variations are to be computed)
1117 // numVariation: variation index (in case of eigenvector or named variations)
1118
1120 return (getEfficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1122}

◆ getEfficiency() [3/3]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::getEfficiency ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
unsigned int numVariation,
Analysis::CalibResult & result,
const std::string & flavour )

efficiency retrieval by index

Definition at line 1126 of file CalibrationDataInterfaceROOT.cxx.

1130{
1131 // Data efficiency retrieval identifying the requested calibration objects by index.
1132 //
1133 // variables: object holding kinematic (and other) information needed to compute the result
1134 // indexSF: index to scale factor calibration object
1135 // indexEff: index to MC efficiency object
1136 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1137 // named variations are to be computed)
1138 // numVariation: variation index (in case of eigenvector or named variations)
1139 // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1140 // A dummy value will be returned in case of an error.
1141
1142 Analysis::CalibResult sfResult;
1143 Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1144 if (sfStatus == Analysis::kError) return sfStatus;
1145 Analysis::CalibResult effResult;
1146 Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1147 if (effStatus == Analysis::kError) return effStatus;
1148
1149 double relative = 0;
1150 double value = effResult.first;
1151 if (TMath::Abs(sfResult.first) > Analysis::CalibZERO) {
1152 value = std::min(effResult.first*sfResult.first, 1.);
1153
1154 // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1155 // (e.g. 'value' above contains the upward variation)
1156 if (unc == SFEigen || unc == SFNamed) {
1157 double valueDown = effResult.first*sfResult.second;
1158 result.first = value; // up/down variataions of data-efficiency
1159 result.second = valueDown;
1160 return sfStatus;
1161 }
1162 if (value > 0.) {
1163 relative = effResult.second/effResult.first;
1164 double sfRelative = sfResult.second/sfResult.first;
1165 /*
1166 cout << "sferr=" << sfResult.second
1167 << "btag Calib relative=" << relative << " sfRelative=" << sfRelative << endl;
1168 */
1169 relative = TMath::Sqrt(sfRelative*sfRelative + relative*relative);
1170 }
1171 } else {
1172 // now never happens due to protection of SF return value:
1173 cerr << "ERROR: CalibrationDataInterfaceROOT::getEfficiency: SF null result, SF=" << sfResult.first << " MC eff=" << effResult.first << "; setting SF=1." << endl;
1174 relative = Analysis::dummyValue;
1175 }
1176
1177 result.first = value;
1178 result.second = value*relative;
1179 // "Select" the status code for the actual calibration (it is subject to more constraints)
1180 return sfStatus;
1181}
CalibResult getScaleFactor(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency scale factor retrieval by name.
CalibResult getMCEfficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
"MC" efficiency retrieval by name

◆ getEigenVectorRecompositionCoefficientMap()

std::map< std::string, std::map< std::string, float > > Analysis::CalibrationDataInterfaceROOT::getEigenVectorRecompositionCoefficientMap ( )

Get Eigenvector recomposition map after running runEigenVectorRecomposition()

Definition at line 2264 of file CalibrationDataInterfaceROOT.cxx.

2264 {
2265 if(m_coefficientMap.empty())
2266 cerr << "getCoefficientMap: Call runEigenVectorRecomposition() before retrieving coefficient map! " <<endl;
2267 return m_coefficientMap;
2268}
std::map< std::string, std::map< std::string, float > > m_coefficientMap

◆ getInefficiency() [1/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getInefficiency ( const CalibrationDataVariables & variables,
const std::string & label,
const std::string & OP,
Uncertainty unc,
unsigned int numVariation = 0,
unsigned int mapIndex = 0 )

inefficiency retrieval by name

Definition at line 1307 of file CalibrationDataInterfaceROOT.cxx.

1311{
1312 // Data inefficiency retrieval identifying the requested calibration objects by name.
1313 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1314 // the inefficiency is then computed as the 1 minus the efficiency.
1315 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1316 // above, and will be a dummy value in case an error occurs.
1317 //
1318 // variables: object holding kinematic (and other) information needed to compute the result
1319 // label: jet flavour label
1320 // OP: tagger operating point
1321 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1322 // named variations are to be computed)
1323 // numVariation: variation index (in case of eigenvector or named variations)
1324 // mapIndex: index to the efficiency map to be used
1325
1326 unsigned int indexSF, indexEff;
1327 if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1328 retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1329 cerr << "getInefficiency: unable to find Eff calibration for object "
1330 << fullName(variables.jetAuthor, OP, label, false, mapIndex)
1331 << " or SF calibration for object "
1332 << fullName(variables.jetAuthor, OP, label, true) << endl;
1333 // Return a dummy result if the object is not found
1334 return Analysis::dummyResult;
1335 }
1336
1338 return (getInefficiency(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
1340}
CalibResult getInefficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
inefficiency retrieval by name

◆ getInefficiency() [2/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getInefficiency ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
const std::string & flavour,
unsigned int numVariation = 0 )

inefficiency retrieval by index

Definition at line 1344 of file CalibrationDataInterfaceROOT.cxx.

1347{
1348 // Data inefficiency retrieval identifying the requested calibration objects by index.
1349 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1350 // the inefficiency is then computed as the 1 minus the efficiency.
1351 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1352 // above, and will be a dummy value in case an error occurs.
1353 //
1354 // variables: object holding kinematic (and other) information needed to compute the result
1355 // indexSF: index to scale factor calibration object
1356 // indexEff: index to MC efficiency object
1357 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1358 // named variations are to be computed)
1359 // numVariation: variation index (in case of eigenvector or named variations)
1360
1362 return (getInefficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1364}

◆ getInefficiency() [3/3]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::getInefficiency ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
unsigned int numVariation,
Analysis::CalibResult & result,
const std::string & flavour )

inefficiency retrieval by index

Definition at line 1368 of file CalibrationDataInterfaceROOT.cxx.

1372{
1373 // Data inefficiency retrieval identifying the requested calibration objects by index.
1374 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1375 // the inefficiency is then computed as the 1 minus the efficiency.
1376 //
1377 // variables: object holding kinematic (and other) information needed to compute the result
1378 // indexSF: index to scale factor calibration object
1379 // indexEff: index to MC efficiency object
1380 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1381 // named variations are to be computed)
1382 // numVariation: variation index (in case of eigenvector or named variations)
1383 // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1384 // A dummy value will be returned in case of an error.
1385
1386 Analysis::CalibResult sfResult;
1387 Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1388 if (sfStatus == Analysis::kError) return sfStatus;
1389 Analysis::CalibResult effResult;
1390 Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1391 if (effStatus == Analysis::kError) return effStatus;
1392
1393 double val = std::max(0., 1. - effResult.first * sfResult.first);
1394 double err = 0.; // Analysis::dummyValue;
1395
1396 // Bail out here if not both results are strictly positive
1397 if (effResult.first <= 0. || sfResult.first <= 0.) return Analysis::kError;
1398
1399 // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1400 // (e.g. 'val' above contains the upward variation)
1401 if (unc == SFEigen || unc == SFNamed) {
1402 double valDown = std::max(0., 1. - effResult.first*sfResult.second);
1403
1404 result.first = val;
1405 result.second = valDown;
1406 } else {
1407 // safer than pow(x, 2):
1408 err = effResult.second/effResult.first*effResult.second/effResult.first
1409 + sfResult.second/sfResult.first*sfResult.second/sfResult.first;
1410 err = val*TMath::Sqrt(err);
1411
1412 result.first = std::max(0., std::min(1., val));
1413 result.second = err;
1414 }
1415
1416 // "Select" the status code for the actual calibration (it is subject to more constraints)
1417 return sfStatus;
1418}

◆ getInefficiencyScaleFactor() [1/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getInefficiencyScaleFactor ( const CalibrationDataVariables & variables,
const std::string & label,
const std::string & OP,
Uncertainty unc,
unsigned int numVariation = 0,
unsigned int mapIndex = 0 )

"MC" inefficiency scale factor retrieval by name

Definition at line 1186 of file CalibrationDataInterfaceROOT.cxx.

1190{
1191 // Inefficiency scale factor retrieval identifying the requested calibration objects by name.
1192 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1193 // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1194 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1195 // above, and will be a dummy value in case an error occurs.
1196 //
1197 // variables: object holding kinematic (and other) information needed to compute the result
1198 // label: jet flavour label
1199 // OP: tagger operating point
1200 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1201 // named variations are to be computed)
1202 // numVariation: variation index (in case of eigenvector or named variations)
1203 // mapIndex: index to the efficiency map to be used
1204
1205 unsigned int indexSF, indexEff;
1206 if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1207 retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1208 cerr << "getInefficiencyScaleFactor: unable to find Eff calibration for object "
1209 << fullName(variables.jetAuthor, OP, label, false, mapIndex)
1210 << " or SF calibration for object "
1211 << fullName(variables.jetAuthor, OP, label, true) << endl;
1212 // Return a dummy result if the object is not found
1213 return Analysis::dummyResult;
1214 }
1215
1217 return (getInefficiencyScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
1219}
CalibResult getInefficiencyScaleFactor(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
"MC" inefficiency scale factor retrieval by name

◆ getInefficiencyScaleFactor() [2/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getInefficiencyScaleFactor ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
const std::string & flavour,
unsigned int numVariation = 0 )

"MC" inefficiency scale factor retrieval by index

Definition at line 1223 of file CalibrationDataInterfaceROOT.cxx.

1226{
1227 // Inefficiency scale factor retrieval identifying the requested calibration objects by index.
1228 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1229 // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1230 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1231 // above, and will be a dummy value in case an error occurs.
1232 //
1233 // variables: object holding kinematic (and other) information needed to compute the result
1234 // indexSF: index to scale factor calibration object
1235 // indexEff: index to MC efficiency object
1236 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1237 // named variations are to be computed)
1238 // numVariation: variation index (in case of eigenvector or named variations)
1239
1241 return (getInefficiencyScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1243}

◆ getInefficiencyScaleFactor() [3/3]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::getInefficiencyScaleFactor ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
unsigned int numVariation,
Analysis::CalibResult & result,
const std::string & flavour )

"MC" inefficiency scale factor retrieval by index

Definition at line 1247 of file CalibrationDataInterfaceROOT.cxx.

1251{
1252 // Inefficiency scale factor retrieval identifying the requested calibration objects by index.
1253 // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1254 // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1255 //
1256 // variables: object holding kinematic (and other) information needed to compute the result
1257 // indexSF: index to scale factor calibration object
1258 // indexEff: index to MC efficiency object
1259 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1260 // named variations are to be computed)
1261 // numVariation: variation index (in case of eigenvector or named variations)
1262 // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1263 // A dummy value will be returned in case of an error.
1264
1265 Analysis::CalibResult sfResult;
1266 Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1267 if (sfStatus == Analysis::kError) return sfStatus;
1268 Analysis::CalibResult effResult;
1269 Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1270 if (effStatus == Analysis::kError) return effStatus;
1271
1272 double eff = std::min(effResult.first, 1.);
1273 // double efferr = effResult.second; // not needed as (per the code change indicated below) we are not doing anything with MC statistical uncertainties
1274 double sf = sfResult.first;
1275 double sferr = sfResult.second;
1276
1277 double val = 0.; // Analysis::dummyValue;
1278 double err = 0.; // Analysis::dummyValue;
1279 if (1. - eff > CalibZERO) {
1280 // Protect against negative scale factors
1281 val = std::max((1. - eff*sf), CalibZERO) / (1. - eff);
1282 // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1283 // ('sf' and 'sferr' above contain the upward and downward variations, respectively).
1284 if (unc == SFEigen || unc == SFNamed) {
1285 double valDown = std::max((1. - eff*sferr), CalibZERO) / (1. - eff);
1286 result.first = val;
1287 result.second = valDown;
1288 return sfStatus;
1289 }
1290 // When using eigenvector (or named) variations (as above), only scale factor variations are considered.
1291 // For the sake of consistency, it has been decided (see https://its.cern.ch/jira/browse/AFT-350) to remove them also when EV variations aren't used
1292 //err = pow((1. - sf) / (1. - eff) * efferr, 2) + pow(eff*sferr, 2);
1293 err = pow(eff*sferr, 2);
1294 if (err > 0.)
1295 err = 1./(1. - eff) * TMath::Sqrt(err);
1296 // cout << "btag Calib Ineff err=" << err << endl;
1297 }
1298
1299 result.first = std::max(CalibZERO, val);
1300 result.second = err;
1301 // "Select" the status code for the actual calibration (it is subject to more constraints)
1302 return sfStatus;
1303}
constexpr int pow(int base, int exp) noexcept

◆ getMCEfficiency() [1/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getMCEfficiency ( const CalibrationDataVariables & variables,
const std::string & label,
const std::string & OP,
Uncertainty unc = None,
unsigned int mapIndex = 0 )

"MC" efficiency retrieval by name

Definition at line 963 of file CalibrationDataInterfaceROOT.cxx.

966{
967 // MC efficiency retrieval identifying the requested calibration object by name.
968 // The return value is a (value, uncertainty) pair, as documented above, and will
969 // be a dummy value in case an error occurs.
970 //
971 // variables: object holding kinematic (and other) information needed to compute the result
972 // label: jet flavour label
973 // OP: tagger operating point
974 // unc: keyword indicating what uncertainties to evaluate
975 // mapIndex: index to the efficiency map to be used
976
977 unsigned int index;
978 if (! retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, index, mapIndex)) {
979 cerr << "getMCEfficiency: unable to find Eff calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << endl;
980 // Return a dummy result if the object is not found
982 }
983
985 return (getMCEfficiency(variables, index, unc, result) == Analysis::kError) ?
987}

◆ getMCEfficiency() [2/3]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::getMCEfficiency ( const CalibrationDataVariables & variables,
unsigned int index,
Uncertainty unc,
Analysis::CalibResult & result )

"MC" efficiency retrieval by index

Definition at line 1009 of file CalibrationDataInterfaceROOT.cxx.

1012{
1013 // MC efficiency retrieval identifying the requested calibration object by index.
1014 //
1015 // variables: object holding kinematic (and other) information needed to compute the result
1016 // index: index to calibration object
1017 // unc: keyword indicating what uncertainties to evaluate
1018 // result: (value, uncertainty) variation pair.
1019 // A dummy value will be returned in case of an error.
1020
1021 CalibrationDataContainer* container = m_objects[index];
1022 if (! container) return Analysis::kError;
1023
1024 // perform out-of-bound check of jet eta
1025 if (!checkAbsEta(variables, index)) {
1026 if (m_verbose)
1027 cerr << "Jet |eta| is outside of the boundary!" << endl;
1028 return Analysis::kRange;
1029 }
1030
1031
1032 // always retrieve the result itself
1033 double value;
1034 Analysis::CalibrationStatus status = container->getResult(variables, value);
1035 if (status == Analysis::kError) return status;
1036 if (m_otherStrategy == GiveUp)
1037 assert (status != Analysis::kRange); // no need to test also statDown
1038 else if (m_otherStrategy == Flag)
1039 if (status == Analysis::kRange)
1040 this->increaseCounter(index);
1041
1042 // retrieve the statistical uncertainty if desired
1043 double stat(0);
1044 if (unc == Total || unc == Statistical) {
1045 if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
1046 cerr << "getMCEfficiency: error retrieving MC efficiency parameter covariance matrix!" << endl;
1047 return Analysis::kError;
1048 }
1049 }
1050
1051 // Temporary(?) hack: comment this out since the present MC results don't have "systematics" contributions
1052 // Analysis::UncertaintyResult resSyst(0,0);
1053 // if (unc == Total || unc == Systematic) {
1054 // if (container->getSystUncertainty(variables, resSyst) == Analysis::kError)
1055 // cerr << "getScaleFactor: error retrieving Scale factor parameter covariance matrix!"
1056 // << endl;
1057 // }
1058
1059 // since there is no combination of stat/syst uncertainties to be made, comment this out too
1060 double uncertainty = stat; // combinedUncertainty(stat, resSyst);
1061 result.first = std::max(0., std::min(1., value));
1062 result.second = uncertainty;
1063
1064 return status;
1065}
virtual CalibrationStatus getStatUncertainty(const CalibrationDataVariables &x, double &result)=0
retrieve the calibration statistical uncertainty.
virtual CalibrationStatus getResult(const CalibrationDataVariables &x, double &result, TObject *obj=0, bool extrapolate=false)=0
retrieve the calibration result.
bool checkAbsEta(const CalibrationDataVariables &variables, unsigned int index)
status
Definition merge.py:16

◆ getMCEfficiency() [3/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getMCEfficiency ( const CalibrationDataVariables & variables,
unsigned int index,
Uncertainty unc = None )

"MC" efficiency retrieval by index

Definition at line 991 of file CalibrationDataInterfaceROOT.cxx.

993{
994 // MC efficiency retrieval identifying the requested calibration object by index.
995 // The return value is a (value, uncertainty) pair, as documented above, and will
996 // be a dummy value in case an error occurs.
997 //
998 // variables: object holding kinematic (and other) information needed to compute the result
999 // index: index to calibration object
1000 // unc: keyword indicating what uncertainties to evaluate
1001
1003 return (getMCEfficiency(variables, index, unc, result) == Analysis::kError) ?
1005}

◆ getMCEfficiencyObject()

const TObject * Analysis::CalibrationDataInterfaceROOT::getMCEfficiencyObject ( const std::string & author,
const std::string & label,
const std::string & OP,
unsigned int mapIndex = 0 )

retrieve the MC efficiency (central values) object for the given flavour label and operating point.

A null result will be returned in case of error (e.g. if the calibration object isn't binned to begin with). It is the user's responsibility to verify whether the object derives from a TH1 or a TF1.

Definition at line 2127 of file CalibrationDataInterfaceROOT.cxx.

2131{
2132 // Retrieve the actual central values object for the MC efficiences, identifying the object by name.
2133 // The object returned can be either a TH1 or a TF1; it is up to the user to determine which.
2134 //
2135 // author: jet collection name
2136 // label: jet flavour label
2137 // OP: tagger working point
2138 // mapIndex: index to the efficiency map to be used
2139
2140 unsigned int index;
2141 if (! retrieveCalibrationIndex (label, OP, author, false, index, mapIndex)) {
2142 // Return a dummy result if the object is not found
2143 cerr << "getMCEfficiencyObject: unable to find efficiency calibration for object "
2144 << fullName(author, OP, label, false, mapIndex) << endl;
2145 return 0;
2146 }
2147 CalibrationDataContainer* container = m_objects[index];
2148 return (container) ? container->GetValue("result") : 0;
2149}

◆ getMCInefficiency() [1/2]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getMCInefficiency ( const CalibrationDataVariables & variables,
const std::string & label,
const std::string & OP,
Uncertainty unc = None,
unsigned int mapIndex = 0 )

"MC" inefficiency retrieval by name

Definition at line 1422 of file CalibrationDataInterfaceROOT.cxx.

1425{
1426 // Data inefficiency retrieval identifying the requested calibration objects by name.
1427 // The inefficiency is computed as the 1 minus the efficiency.
1428 // The return value is a (value, uncertainty), as documented above, and will be a dummy value
1429 // in case an error occurs.
1430 //
1431 // variables: object holding kinematic (and other) information needed to compute the result
1432 // label: jet flavour label
1433 // OP: tagger operating point
1434 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1435 // named variations are to be computed)
1436 // numVariation: variation index (in case of eigenvector or named variations)
1437 // mapIndex: index to the efficiency map to be used
1438
1439 Analysis::CalibResult effResult = getMCEfficiency(variables, label, OP, unc, mapIndex);
1440 return std::make_pair(std::max(0., 1. - effResult.first), effResult.second);
1441}

◆ getMCInefficiency() [2/2]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getMCInefficiency ( const CalibrationDataVariables & variables,
unsigned int index,
Uncertainty unc = None )

"MC" inefficiency retrieval by index

Definition at line 1445 of file CalibrationDataInterfaceROOT.cxx.

1447{
1448 // MC inefficiency retrieval identifying the requested calibration object by index.
1449 // The inefficiency is computed as the 1 minus the efficiency.
1450 // The return value is a (value, uncertainty), as documented above, and will be a dummy value
1451 // in case an error occurs.
1452 //
1453 // variables: object holding kinematic (and other) information needed to compute the result
1454 // index: index to MC efficiency object
1455 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1456 // named variations are to be computed)
1457 // numVariation: variation index (in case of eigenvector or named variations)
1458
1459 Analysis::CalibResult effResult = getMCEfficiency(variables, index, unc);
1460 return std::make_pair(std::max(0., 1. - effResult.first), effResult.second);
1461}

◆ getMCMCScaleFactor()

double Analysis::CalibrationDataInterfaceROOT::getMCMCScaleFactor ( const CalibrationDataVariables & variables,
unsigned indexSF,
unsigned int indexEff ) const

MC/MC scale factor retrieval.

Normally this is to be used only internally; however, since this information may be of interest it is made public anyway.

Definition at line 1465 of file CalibrationDataInterfaceROOT.cxx.

1467{
1468 // Retrieve the MC/MC scale factor given the set of scale factor and efficiency indices.
1469 // variables: object holding kinematic (and other) information needed to compute the result
1470 // indexSF: index to scale factor calibration object
1471 // indexEff: index to MC efficiency object
1472
1473 // If either reference doesn't exist, or if they are the same, nothing can / needs to be done.
1474 int indexSFRef = m_hadronisationReference[indexSF], indexEffRef = m_hadronisationReference[indexEff];
1475 if (indexSFRef < 0 || indexEffRef < 0 || indexSFRef == indexEffRef) return 1;
1476
1477 // Verify also that the individual efficiencies are physically meaningful.
1478 double effSFRef; m_objects[indexSFRef]->getResult(variables, effSFRef);
1479 double effEffRef; m_objects[indexEffRef]->getResult(variables, effEffRef);
1480 return (effSFRef > 0 && effEffRef > 0) ? effSFRef/effEffRef : 1;
1481}

◆ getNumVariations() [1/2]

unsigned int Analysis::CalibrationDataInterfaceROOT::getNumVariations ( const std::string & author,
const std::string & label,
const std::string & OP,
Uncertainty unc )

retrieve the number of variations relevant to the calibration object.

The Uncertainty enum is used to specify the category.

Definition at line 2060 of file CalibrationDataInterfaceROOT.cxx.

2064{
2065 // Retrieve the number of eigenvector variations or named variations relevant for
2066 // the given scale factor calibration object, identifying the object by name.
2067 //
2068 // author: jet collection name
2069 // label: jet flavour label
2070 // OP: tagger working point
2071 // unc: should be set to SFEigen or SFNamed for the cases of
2072 // eigenvector variations or named variations, respectively
2073
2074 unsigned int index;
2075
2076 if (! retrieveCalibrationIndex (label, OP, author, true, index)) return 0;
2077 return getNumVariations(index, unc, label);
2078}
unsigned int getNumVariations(const std::string &author, const std::string &label, const std::string &OP, Uncertainty unc)
retrieve the number of variations relevant to the calibration object.

◆ getNumVariations() [2/2]

unsigned int Analysis::CalibrationDataInterfaceROOT::getNumVariations ( unsigned int index,
Uncertainty unc,
const std::string & flavour )

retrieve the number of variations relevant to the calibration object.

The Uncertainty enum is used to specify the category.

Definition at line 2082 of file CalibrationDataInterfaceROOT.cxx.

2084{
2085 // Retrieve the number of eigenvector variations or named variations relevant for
2086 // the given scale factor calibration object, identifying the object by index.
2087 //
2088 // index: index to calibration scale factor object
2089 // unc: should be set to SFEigen or SFNamed for the cases of
2090 // eigenvector variations or named variations, respectively
2091
2092 if (! (unc == SFEigen || unc == SFNamed || unc == SFGlobalEigen)) return 0;
2093 CalibrationDataContainer* container = m_objects[index];
2094 if (! container) return 0;
2095 std::shared_ptr<CalibrationDataEigenVariations> eigenVariation=m_eigenVariationsMap.at(container);
2096 if (unc == SFGlobalEigen){
2097 std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation);
2098 return GEV->getNumberOfEigenVariations(flavour);
2099 }
2100 return (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
2101}
#define GEV

◆ getScaleFactor() [1/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getScaleFactor ( const CalibrationDataVariables & variables,
const std::string & label,
const std::string & OP,
Uncertainty unc,
unsigned int numVariation = 0,
unsigned int mapIndex = 0 )

efficiency scale factor retrieval by name.

#1

Definition at line 736 of file CalibrationDataInterfaceROOT.cxx.

740{
741 // Scale factor retrieval identifying the requested calibration object by name.
742 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
743 // above, and will be a dummy value in case an error occurs.
744 //
745 // variables: object holding kinematic (and other) information needed to compute the result
746 // label: jet flavour label
747 // OP: tagger operating point
748 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
749 // named variations are to be computed)
750 // numVariation: variation index (in case of eigenvector or named variations)
751 // mapIndex: index to the efficiency map to be used (this is needed for MC/MC scale factor
752 // application)
753 unsigned int indexEff, indexSF;
754 if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) && retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
755 cerr << "getScaleFactor: unable to find SF calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << " or SF calibration for object " << fullName(variables.jetAuthor, OP, label, true) << endl;
756 // Return a dummy result if the object is not found
758 }
759
760 Analysis::CalibResult result; // the following is SF #3
761 return (getScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
763}

◆ getScaleFactor() [2/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getScaleFactor ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
const std::string & flavour,
unsigned int numVariation = 0 )

efficiency scale factor retrieval by index #2

Definition at line 767 of file CalibrationDataInterfaceROOT.cxx.

770{
771 // Scale factor retrieval identifying the requested calibration object by index.
772 // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
773 // above, and will be a dummy value in case an error occurs.
774 //
775 // variables: object holding kinematic (and other) information needed to compute the result
776 // indexSF: index to scale factor calibration object
777 // indexEff: index to MC efficiency object
778 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
779 // named variations are to be computed)
780 // numVariation: variation index (in case of eigenvector or named variations)
781 Analysis::CalibResult result; // the following is SF #3
782 return (getScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
784}

◆ getScaleFactor() [3/3]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::getScaleFactor ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
unsigned int numVariation,
Analysis::CalibResult & result,
const std::string & flavour )

efficiency scale factor retrieval by index #3

Definition at line 788 of file CalibrationDataInterfaceROOT.cxx.

792{
793 // Scale factor retrieval identifying the requested calibration object by index.
794 //
795 // variables: object holding kinematic (and other) information needed to compute the result
796 // indexSF: index to scale factor calibration object
797 // indexEff: index to MC efficiency object
798 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
799 // named variations are to be computed)
800 // numVariation: variation index (in case of eigenvector or named variations)
801 // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
802 // A dummy value will be returned in case of an error.
803
804 CalibrationDataContainer* container = m_objects[indexSF];
805 if (! container) {
806 cerr << "getScaleFactor: error retrieving container!" << endl;
807 return Analysis::kError;
808 }
809
810 // perform out-of-bound check of jet eta
811 if (!checkAbsEta(variables, indexSF)) {
812 if (m_verbose)
813 cerr << "Jet |eta| is outside of the boundary!" << endl;
814 return Analysis::kRange;
815 }
816
817 // retrieve the MC/MC scale factor
818 double MCMCSF = m_useMCMCSF ? getMCMCScaleFactor(variables, indexSF, indexEff) : 1; // if we don't want to switch generator, MCMCSF = 1, as it should be
819
820 if (!m_runEigenVectorMethod && (unc == SFEigen || unc == SFNamed || unc == SFGlobalEigen))
821 {
822 cerr << " ERROR. Trying to call eigenvector method but initialization not switched on in b-tagging configuration." << endl;
823 cerr << " Please correct your configuration first. Nominal uncertainties used. " << endl;
824 }
825
826 // Procede with eigenvariations methods i.e. return the SF variations
827 if (unc == SFEigen || unc == SFNamed || unc==SFGlobalEigen) {
828 std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
829 try {
830 eigenVariation=m_eigenVariationsMap.at(container);
831 } catch (const std::out_of_range&) {
832 cerr << " Could not retrieve eigenvector variation, while it should have been there." << endl;
833 return Analysis::kError;
834 }
835 TH1* up=0;
836 TH1* down=0;
837 bool extrapolate = false; // store if the numVariation is the extrapolation named uncertainty index
838 if (unc == SFEigen || unc==SFNamed){
839 unsigned int maxVariations = (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
840 if (numVariation > maxVariations-1) {
841 cerr << "Asked for " << ((unc == SFEigen) ? "eigenvariation" : "named variation") << " number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
842 return Analysis::kError;
843 }
844 bool isOK = eigenVariation->getEigenvectorVariation(numVariation,up,down);
845 if (!isOK) {
846 cerr << "Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
847 return Analysis::kError;
848 }
849 // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
850 extrapolate = (unc == SFNamed) ? eigenVariation->isExtrapolationVariation(numVariation) : false;
851
852 } else if (unc == SFGlobalEigen) {
853 std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation); //dynamic_cast<std::shared_ptr<CalibrationDataGlobalEigenVariations> >(eigenVariation);
854 if (not GEV){
855 cerr << "Analysis::CalibrationDataInterfaceROOT::getScaleFactor: dynamic cast failed\n";
856 return Analysis::kError;
857 }
858 unsigned int maxVariations = GEV->getNumberOfEigenVariations(flavour); // <----- This gets the number of variations of the flavour
859 if (numVariation > maxVariations-1) {
860 cerr << "Asked for global eigenvariation number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
861 return Analysis::kError;
862 }
863 bool isOK = GEV->getEigenvectorVariation(flavour, numVariation,up,down);
864 if (!isOK) {
865 cerr << "Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
866 return Analysis::kError;
867 }
868 // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
869 extrapolate = GEV->isExtrapolationVariation(numVariation, flavour);
870 } else {
871 std::cerr << "ERROR: you requested " << unc << " but that isn't in the set of (SFEigen, SFGlobalEigen, SFNamed) for eigenvariations. " << std::endl;
872 return Analysis::kError;
873 }
874
875 double valueUp;
876 double valueDown;
877 Analysis::CalibrationStatus statUp = container->getResult(variables, valueUp, up, extrapolate); // This is what actually retrieves results from the container
878 Analysis::CalibrationStatus statDown = container->getResult(variables, valueDown,down, extrapolate);
879
880 if (statUp == Analysis::kError || statDown == Analysis::kError)
881 return Analysis::kError;
882 if (m_otherStrategy == GiveUp)
883 assert (statUp != Analysis::kRange); // no need to test also statDown
885 assert (statUp != Analysis::kExtrapolatedRange); // no need to test also statDown
886 else if (m_otherStrategy == Flag) {
887 if (statUp == Analysis::kRange)
888 increaseCounter(indexSF);
889 else if (statUp == Analysis::kExtrapolatedRange)
891 }
892
893 result.first = MCMCSF*valueUp;
894 result.second = MCMCSF*valueDown;
895
896 // Prevent negative return values. Should the comparison be against a strict 0?
897 result.first = std::max(Analysis::CalibZERO, result.first);
898 result.second = std::max(Analysis::CalibZERO, result.second);
899
900 return statUp; // end of getScaleFactor if SFEigen, SFGlobalEigen, or SFNamed is set
901
902
903 } // The above returns the up/down varied scale factor
904 //Proceed with no-eigenvector result
905
906 // always retrieve the result itself
907 double value;
908 Analysis::CalibrationStatus status = container->getResult(variables, value);
909 if (status == Analysis::kError) {
910 cerr << "getScaleFactor: error retrieving result in non-EV context!" << endl;
911 return status;
912 }
913 if (m_otherStrategy == GiveUp){
914 assert (status != Analysis::kRange);
915 } else if (m_otherStrategy == GiveUpExtrapolated) {
916 assert (status != Analysis::kExtrapolatedRange);
917 } else if (m_otherStrategy == Flag) {
918 if (status == Analysis::kRange){
919 increaseCounter(indexSF);
920 } else if (status == Analysis::kExtrapolatedRange) {
922 }
923 }
924
925 // retrieve the statistical uncertainty if desired
926 double stat(0);
927 if (unc == Total || unc == Statistical) {
928 if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
929 cerr << "getScaleFactor: error retrieving Scale factor parameter covariance matrix!" << endl;
930 return Analysis::kError;
931 }
932 }
933
934 Analysis::UncertaintyResult resSyst(0,0);
935 if (unc == Total || unc == Systematic) {
936 if (container->getSystUncertainty(variables, resSyst) == Analysis::kError) {
937 cerr << "getScaleFactor: error retrieving Scale factor parameter systematic uncertainty!" << endl;
938 return Analysis::kError;
939 }
940 } else if (unc == Extrapolation) {
941 // this uncertainty is special, since it is not normally to be combined into the overall systematic uncertainty
942 if (container->getUncertainty("extrapolation", variables, resSyst) == Analysis::kError)
943 cerr << "getScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
944 } else if (unc == TauExtrapolation) {
945 // also this uncertainty is special, since it it singles out an uncertainty relevant only for tau "jets",
946 // and some care has to be taken not to duplicate or omit uncertainties
947 if (container->getUncertainty("extrapolation from charm", variables, resSyst) == Analysis::kError)
948 cerr << "getScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
949 }
950
951 double uncertainty = combinedUncertainty(stat, resSyst);
952 result.first = MCMCSF*value;
953 result.second = MCMCSF*uncertainty;
954
955 // Prevent negative return values. Should the comparison be against a strict 0?
956 result.first = std::max(Analysis::CalibZERO, result.first);
957 return status;
958
959}
virtual CalibrationStatus getUncertainty(const std::string &unc, const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)=0
retrieve the calibration uncertainty due to the given source.
CalibrationStatus getSystUncertainty(const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)
retrieve the calibration total systematic uncertainty
double combinedUncertainty(double stat, const std::pair< double, double > &syst) const
utility function for combination of statistical and (a priori asymmetric) systematic uncertainty.
double getMCMCScaleFactor(const CalibrationDataVariables &variables, unsigned indexSF, unsigned int indexEff) const
MC/MC scale factor retrieval.
float extrapolate(const MuonLayerHough::Maximum &ref, const MuonLayerHough::Maximum &ex, bool doparabolic=false)

◆ getScaleFactorCovarianceMatrix()

TMatrixDSym Analysis::CalibrationDataInterfaceROOT::getScaleFactorCovarianceMatrix ( const std::string & author,
const std::string & label,
const std::string & OP,
const std::string & unc = "all" )

retrieve the named covariance matrix element corresponding to the binned calibration object.

The unc argument should correspond to a given source of statistical or systematic uncertainty, or "all" (in case the full covariance matrix is required) For 2D and 3D histograms, the bin numbering follows the "global" bin number as defined by class TH1.

Definition at line 2412 of file CalibrationDataInterfaceROOT.cxx.

2416{
2417 // Return the scale factor covariance matrix for the given calibration object.
2418 // This function is deprecated since its functionality is duplicated in the
2419 // CalibrationDataEigenVariations class.
2420 //
2421 // author: jet collection name
2422 // label: jet flavour label
2423 // OP: tagger working point
2424 // unc: source of uncertainty to consider
2425 // Catch issues with the specified input as early as possible
2426 TMatrixDSym dummy;
2427 if (unc == "comment" || unc == "result" || unc == "combined") return dummy;
2428
2429 unsigned int index;
2430 if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2431 // Return a dummy result if the object is not found
2432 cerr << "getScaleFactorCovarianceMatrix: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2433 return dummy;
2434 }
2435 CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2436 if (!container) return dummy;
2437
2438 // retrieve the central calibration and its axes
2439 TH1* result = dynamic_cast<TH1*>(container->GetValue("result"));
2440 if (! result) return dummy;
2441 // "normal" case: single source of uncertainty
2442 if (unc != "all") {
2443 if (unc == "statistics") {
2444 return getStatCovarianceMatrix(result);
2445 } else {
2446 TH1* hunc = dynamic_cast<TH1*>(container->GetValue(unc.c_str()));
2447 if (! hunc) {
2448 cout << "getScaleFactorCovarianceMatrix: no uncertainty object found "
2449 << "corresponding to name " << unc << endl;
2450 return dummy;
2451 }
2452 return getSystCovarianceMatrix(result, hunc, container->isBinCorrelated(unc), unc, container->getTagWeightAxis());
2453 }
2454 }
2455
2456 // special case: complete covariance matrix. This is to be constructed
2457 // as the sum over all individual contributions.
2458 // First, treat the statistics separately (as above)
2459 TMatrixDSym cov = getStatCovarianceMatrix(result);
2460
2461 // Then loop through the list of (other) uncertainties
2462 std::vector<string> uncs = container->listUncertainties();
2463 for (unsigned int t = 0; t < uncs.size(); ++t) {
2464 if (uncs[t] == "comment" || uncs[t] == "result" || uncs[t] == "combined" ||
2465 uncs[t] == "statistics" || uncs[t]=="extrapolation" || uncs[t]=="MChadronisation" ||
2466 uncs[t]=="ReducedSets" || uncs[t]=="systematics") continue;
2467 TH1* hunc = dynamic_cast<TH1*>(container->GetValue(uncs[t].c_str()));
2468 if (not hunc) {
2469 std::cerr<<"Analysis::CalibrationDataInterfaceROOT::getScaleFactorCovarianceMatrix : dynamic cast failed\n";
2470 continue;
2471 }
2472 TMatrixDSym syst_cov = getSystCovarianceMatrix(result, hunc, container->isBinCorrelated(uncs[t]), uncs[t], container->getTagWeightAxis());
2473 cov += syst_cov;
2474 }
2475
2476 return cov;
2477}
virtual int getTagWeightAxis()
Test whether this calibration object is one for "continuous" calibration (this has some subtle conseq...
bool isBinCorrelated(const std::string &unc) const
Indicate whether the given uncertainty is correlated from bin to bin or not (note that this function ...

◆ getShiftedScaleFactors()

const TH1 * Analysis::CalibrationDataInterfaceROOT::getShiftedScaleFactors ( const std::string & author,
const std::string & label,
const std::string & OP,
const std::string & unc,
double sigmas )

retrieve the binned calibration object for the given flavour label and operating point, with the result shifted by the given number of standard deviations for the given systematic uncertainty.

A null result will be returned in case of error (e.g. if the calibration object isn't binned to begin with, or if the uncertainty asked for isn't fully correlated from bin to bin).

Definition at line 2155 of file CalibrationDataInterfaceROOT.cxx.

2160{
2161 // Retrieve the actual histogrammed calibration scale factors, identifying the object by name
2162 // and with the scale factors shifted by the uncertainties due to the given source of uncertainty
2163 // (where bin-to-bin correlations are accounted for, i.e., shifts may be either positive or negative).
2164 //
2165 // author: jet collection name
2166 // label: jet flavour label
2167 // OP: tagger working point
2168 // unc: source of uncertainty to consider
2169 // sigmas: number of standard deviations by which to shift the scale factor central values
2170
2171 // quick sanity check
2172 if (unc == "comment" || unc == "result" || unc == "combined" || unc == "statistics") return 0;
2173
2174 unsigned int index;
2175 if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2176 // Return a null result if the object is not found
2177 cerr << "getShiftedScaleFactors: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2178 return nullptr;
2179 }
2180 CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2181 if (! container) return nullptr;
2182
2183 TH1* result = dynamic_cast<TH1*>(container->GetValue("result"));
2184 TH1* hunc = dynamic_cast<TH1*>(container->GetValue(unc.c_str()));
2185 // another sanity check...
2186 if ((! hunc) || (! result)) return nullptr;
2187 if (hunc->GetDimension() != result->GetDimension() || hunc->GetNbinsX() != result->GetNbinsX() ||
2188 hunc->GetNbinsX() != result->GetNbinsX() || hunc->GetNbinsX() != result->GetNbinsX())
2189 return nullptr;
2190 // also check that the uncertainty is to be treated as correlated from bin to bin
2191 // (for the variation is applied coherently, which isn't appropriate for uncertainties
2192 // that aren't correlated from bin to bin)
2193 if (! container->isBinCorrelated(unc)) return 0;
2194
2195 // if everything is consistent, the actual operation simply consists of adding histograms...
2196 std::string name(container->GetName()); name += "_"; name += unc; name += "_";
2197 TH1* shifted = dynamic_cast<TH1*>(result->Clone(name.c_str()));
2198 if (not shifted) return nullptr;
2199 shifted->Add(hunc, sigmas);
2200 return shifted;
2201}

◆ getWeightScaleFactor() [1/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getWeightScaleFactor ( const CalibrationDataVariables & variables,
const std::string & label,
Uncertainty unc,
unsigned int numVariation = 0,
unsigned int mapIndex = 0 )

efficiency scale factor retrieval by name

Definition at line 1485 of file CalibrationDataInterfaceROOT.cxx.

1488{
1489 // #1
1490 // Tag weight fraction scale factor retrieval identifying the requested calibration object by name.
1491 // The return value is either a (value, uncertainty) or (if eigenvector or named variations are specified)
1492 // an (up, down) variation pair, and will be a dummy value in case an error occurs.
1493 // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1494 // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1495 // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1496 // unity for each given kinematic bin.
1497 //
1498 // variables: object holding kinematic (and other) information needed to compute the result
1499 // label: jet flavour label
1500 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1501 // named variations are to be computed)
1502 // numVariation: variation index (in case of eigenvector or named variations)
1503 // mapIndex: index to the MC efficiency map to be used for scale factor rescaling
1504
1505 static const string cont("Continuous");
1506
1507 unsigned int indexSF, indexEff;
1508 if (! (retrieveCalibrationIndex (label, cont, variables.jetAuthor, false, indexEff, mapIndex) &&
1509 retrieveCalibrationIndex (label, cont, variables.jetAuthor, true, indexSF))) {
1510 cerr << "getWeightScaleFactor: unable to find Eff calibration for object "
1511 << fullName(variables.jetAuthor, cont, label, false, mapIndex)
1512 << " or SF calibration for object "
1513 << fullName(variables.jetAuthor, cont, label, true) << endl;
1514 return Analysis::dummyResult;
1515 }
1516
1518 return (getWeightScaleFactor(variables, indexSF, indexEff, unc, numVariation, result) == Analysis::kError) ? Analysis::dummyResult : result;
1519}
CalibResult getWeightScaleFactor(const CalibrationDataVariables &variables, const std::string &label, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency scale factor retrieval by name

◆ getWeightScaleFactor() [2/3]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::getWeightScaleFactor ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
unsigned int numVariation,
Analysis::CalibResult & result )

efficiency scale factor retrieval by index, with different signature

Definition at line 1550 of file CalibrationDataInterfaceROOT.cxx.

1554{
1555 // #3
1556 // Tag weight fraction scale factor retrieval identifying the requested calibration object by index.
1557 // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1558 // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1559 // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1560 // unity for each given kinematic bin.
1561 //
1562 // variables: object holding kinematic (and other) information needed to compute the result
1563 // indexSF: index to calibration object
1564 // indexEff: index to MC tag weight
1565 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1566 // named variations are to be computed)
1567 // numVariation: variation index (in case of eigenvector or named variations)
1568 // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1569 // A dummy value will be returned in case of an error.
1570 CalibrationDataContainer* container = m_objects[indexSF];
1571 if (! container) return Analysis::kError;
1572 CalibrationDataContainer* effContainer = m_objects[indexEff];
1573 if (! effContainer) return Analysis::kError;
1574
1575 // the first time this combination of scale factor and "efficiency" objects is given, check on the
1576 // scale factors that will result from their combination (where the computations reproduce those
1577 // shown below)
1578 checkWeightScaleFactors(indexSF, indexEff);
1579
1580 // perform out-of-bound check of jet eta
1581 if (!checkAbsEta(variables, indexSF)) {
1582 if (m_verbose)
1583 cerr << "Jet |eta| is outside of the boundary!" << endl;
1584 return Analysis::kRange;
1585 }
1586
1587 // Always retrieve the result itself
1588 double value;
1589 Analysis::CalibrationStatus status = container->getResult(variables, value);
1590 if (status == Analysis::kError) return status;
1591 if (m_otherStrategy == GiveUp) assert (status != Analysis::kRange);
1592 else if (m_otherStrategy == GiveUpExtrapolated) assert (status != Analysis::kExtrapolatedRange);
1593 else if (m_otherStrategy == Flag) {
1594 if (status == Analysis::kRange)
1595 increaseCounter(indexSF);
1596 else if (status == Analysis::kExtrapolatedRange)
1597 increaseCounter(indexSF, Extrapolated);
1598 }
1599
1600 // Retrieve the reference MC tag weight fraction (corresponding to the calibration scale factors)
1601 Analysis::UncertaintyResult refMCResult(0,0);
1602 if (container->getUncertainty("MCreference", variables, refMCResult) == Analysis::kError)
1603 return Analysis::kError;
1604 double fracMCref = refMCResult.first;
1605 // Retrieve the MC reference information, if requested (the initialisation below is to make sure
1606 // that no exceptions in the code will be needed)
1607 double fracSFref = fracMCref, fracEffref = fracMCref;
1608 if (m_useMCMCSF) {
1609 int indexSFref = m_hadronisationReference[indexSF], indexEffref = m_hadronisationReference[indexEff];
1610 if (indexSFref < 0 || indexEffref < 0) {
1611 cerr << "getWeightScaleFactor: error: generator-specific corrections requested but necessary reference containers lacking " << endl;
1612 return Analysis::kError;
1613 } else {
1614 m_objects[indexSFref]->getResult(variables, fracSFref);
1615 m_objects[indexEffref]->getResult(variables, fracEffref);
1616 if (! (fracSFref > 0. && fracEffref > 0.)) {
1617 cerr << "getWeightScaleFactor: error: invalid reference tag weight fraction " <<fracSFref <<" " <<fracEffref << std::endl;
1618 return Analysis::kError;
1619 }
1620 }
1621 }
1622
1623 // Retrieve the MC tag weight fraction for the sample we need to reweight to
1624 double fracMCnew;
1625 Analysis::CalibrationStatus effStatus = effContainer->getResult(variables, fracMCnew);
1626 if (effStatus == Analysis::kError) return effStatus;
1627 if (m_otherStrategy == GiveUp) assert (effStatus != Analysis::kRange);
1628 else if (m_otherStrategy == Flag)
1629 if (effStatus == Analysis::kRange) increaseCounter(indexEff);
1630 // since we need to divide by this quantity, check that it is well-defined
1631 if (!(fracMCnew > 0.) and m_useTopologyRescaling) {// but we only care if using topology rescaling
1632 cerr << "getWeightScaleFactor: error: null fracMCnew would lead to invalid operation" << endl;
1633 return Analysis::kError;
1634 }
1635
1636 if (!m_runEigenVectorMethod && (unc == SFEigen || unc == SFNamed)) {
1637 cerr << "getWeightScaleFactor: ERROR. Trying to call eigenvector method but initialization not switched on in b-tagging .env config file." << endl;
1638 cerr << " Please correct your .env config file first. Nominal uncertainties used. " << endl;
1639 }
1640
1641 if (unc == SFEigen || unc == SFNamed) {
1642 std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
1643 try {
1644 eigenVariation = m_eigenVariationsMap.at(container);
1645 } catch (const std::out_of_range&) {
1646 cerr << "getWeightScaleFactor: could not retrieve eigenvector variation, while it should have been there." << endl;
1647 return Analysis::kError;
1648 }
1649 unsigned int maxVariations = (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
1650 if (numVariation > maxVariations-1) {
1651 cerr << "getWeightScaleFactor: asked for " << ((unc == SFEigen) ? "eigenvariation" : "named variation") << " number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
1652 return Analysis::kError;
1653 }
1654 TH1* up=0;
1655 TH1* down=0;
1656 bool isOK = (unc == SFEigen) ? eigenVariation->getEigenvectorVariation(numVariation,up,down) : eigenVariation->getNamedVariation(numVariation,up,down);
1657 if (!isOK) {
1658 cerr << "getWeightScaleFactor: Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
1659 return Analysis::kError;
1660 }
1661 // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
1662 bool extrapolate = ( unc == SFNamed ) ? eigenVariation->isExtrapolationVariation(numVariation) : false;
1663
1664 double valueUp;
1665 double valueDown;
1666 Analysis::CalibrationStatus statusUp = container->getResult(variables, valueUp, up, extrapolate);
1667 Analysis::CalibrationStatus statusDown = container->getResult(variables, valueDown,down, extrapolate);
1668 if (statusUp == Analysis::kError || statusDown == Analysis::kError) return Analysis::kError;
1669
1670 // now carry out the rescaling. Protect against unphysical or suspiciously large scale factors
1671 double variationUp = valueUp - value;
1672 double variationDown = valueDown - value;
1673 // First step: from the calibration sample to its reference sample
1674 if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracMCref / fracSFref);
1675 // Second step: from the calibration reference sample to the MC object's reference sample
1676 if (m_useMCMCSF) value *= (fracSFref / fracEffref);
1677 // Third step: from the MC object's reference sample to the MC sample itself
1678 if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracEffref / fracMCnew);
1679 // Since all transformations of the scale factor itself are linear, the transformation of the variations is simpler.
1681 double f = (fracMCref / fracMCnew);
1682 variationUp *= f;
1683 variationDown *= f;
1684 } else if (m_useMCMCSF) {
1685 double f = (fracSFref / fracEffref);
1686 variationUp *= f;
1687 variationDown *= f;
1688 }
1689 valueUp = value + variationUp;
1690 valueDown = value + variationDown;
1691 if (valueUp < 0) {
1692 valueUp = 0; increaseCounter(indexSF, TagWeight);
1693 } else if (valueUp > m_maxTagWeight) {
1694 valueUp = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1695 }
1696 if (valueDown < 0) {
1697 valueDown = 0; increaseCounter(indexSF, TagWeight);
1698 } else if (valueDown > m_maxTagWeight) {
1699 valueDown = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1700 }
1701
1702 result.first = valueUp;
1703 result.second = valueDown;
1704 return statusUp;
1705 } //end eigenvector method
1706
1707 //Proceed with no-eigenvector result
1708
1709 // retrieve the statistical uncertainty if desired
1710 double stat(0);
1711 if (unc == Total || unc == Statistical) {
1712 if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
1713 cerr << "getWeightScaleFactor: error retrieving Scale factor parameter covariance matrix!" << endl;
1714 return Analysis::kError;
1715 }
1716 }
1717 Analysis::UncertaintyResult uncertaintyResult(0,0);
1718 if (unc == Total || unc == Systematic) {
1719 if (container->getSystUncertainty(variables, uncertaintyResult) == Analysis::kError) {
1720 cerr << "getWeightScaleFactor: error retrieving Scale factor parameter systematic uncertainty!" << endl;
1721 return Analysis::kError;
1722 }
1723 } else if (unc == Extrapolation) {
1724 // this uncertainty is special, since it is not normally to be combined into the overall systematic uncertainty
1725 if (container->getUncertainty("extrapolation", variables, uncertaintyResult) == Analysis::kError)
1726 cerr << "getWeightScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
1727 } else if (unc == TauExtrapolation) {
1728 // also this uncertainty is special, since it it singles out an uncertainty relevant only for tau "jets",
1729 // and some care has to be taken not to duplicate or omit uncertainties
1730 if (container->getUncertainty("extrapolation from charm", variables, uncertaintyResult) == Analysis::kError)
1731 cerr << "getWeightScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
1732 }
1733
1734 double uncertainty = combinedUncertainty(stat, uncertaintyResult);
1735
1736 // Now carry out the rescaling. Again protect against unphysical or suspiciously large scale factors
1737 // First step: from the calibration sample to its reference sample
1738 if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracMCref / fracSFref);
1739 // Second step: from the calibration reference sample to the MC object's reference sample
1740 if (m_useMCMCSF) value *= (fracSFref / fracEffref);
1741 // Third step: from the MC object's reference sample to the MC sample itself
1742 if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracEffref / fracMCnew);
1743 if (value < 0) {
1744 value = 0; increaseCounter(indexSF, TagWeight);
1745 } else if (value > m_maxTagWeight) {
1747 }
1748 // Since all transformations of the scale factor itself are linear, the transformation of the uncertainty is simpler.
1750 uncertainty *= (fracMCref / fracMCnew);
1751 } else if (m_useMCMCSF) {
1752 uncertainty *= (fracSFref / fracEffref);
1753 }
1754
1755 result.first = std::max(0., value);
1756 result.second = uncertainty;
1757 // "Select" the status code for the actual calibration object (it is subject to more constraints)
1758 return status;
1759}
void checkWeightScaleFactors(unsigned int indexSF, unsigned int indexEff)

◆ getWeightScaleFactor() [3/3]

Analysis::CalibResult Analysis::CalibrationDataInterfaceROOT::getWeightScaleFactor ( const CalibrationDataVariables & variables,
unsigned int indexSF,
unsigned int indexEff,
Uncertainty unc,
unsigned int numVariation = 0 )

efficiency scale factor retrieval by index

Definition at line 1523 of file CalibrationDataInterfaceROOT.cxx.

1526{
1527 // #2
1528 // Tag weight fraction scale factor retrieval identifying the requested calibration object by index.
1529 // The return value is either a (value, uncertainty) or (if eigenvector or named variations are specified)
1530 // an (up, down) variation pair, and will be a dummy value in case an error occurs.
1531 // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1532 // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1533 // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1534 // unity for each given kinematic bin.
1535 //
1536 // variables: object holding kinematic (and other) information needed to compute the result
1537 // indexSF: index to calibration object
1538 // indexEff: index to MC tag weight
1539 // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1540 // named variations are to be computed)
1541 // numVariation: variation index (in case of eigenvector or named variations)
1542
1544 return (getWeightScaleFactor(variables, indexSF, indexEff, unc, numVariation, result) == Analysis::kError) ?
1546}

◆ increaseCounter()

void Analysis::CalibrationDataInterfaceROOT::increaseCounter ( unsigned int index,
OutOfBoundsType oob = Main )
private

Definition at line 1956 of file CalibrationDataInterfaceROOT.cxx.

1958{
1959 // Internal method bumping the relevant counter out-of-bounds counter for the specified object.
1960 //
1961 // oob: further classification of out-of-bounds case
1962 // index: object index
1963
1964 // make sure the vectors are appropriately dimensioned
1965 if (index >= m_mainCounters.size()) {
1966 unsigned int minsize = (index == 0) ? 2 : 2*index;
1967 m_mainCounters.resize(minsize, 0);
1968 m_etaCounters.resize(minsize, 0);
1969 m_extrapolatedCounters.resize(minsize, 0);
1970 }
1971 switch (oob) {
1972 case Main:
1973 m_mainCounters[index]++; break;
1974 case Eta:
1975 m_etaCounters[index]++; break;
1976 case Extrapolated:
1977 default:
1979 }
1980}

◆ initialize()

void Analysis::CalibrationDataInterfaceROOT::initialize ( const std::string & jetauthor,
const std::string & OP,
Uncertainty unc )

initialization for PROOF usage

Definition at line 2481 of file CalibrationDataInterfaceROOT.cxx.

2482{
2483 // Preload objects necessary so that the input calibration file can be closed.
2484 // This functionality is only needed when using PROOF.
2485
2486 if((!m_fileEff)||(!m_fileSF)) {
2487 cerr << "initialize can only be called once per CalibrationDataInterfaceROOT object" << endl;
2488 return;
2489 } else {
2490 cout << "initializing BTagCalibrationDataInterfaceROOT for PROOF with jetAuthor = " << jetauthor << ", tagger = " << m_taggerName << ", operating point = " << OP << ", uncertainty = " << unc << endl;
2491 }
2492
2493 CalibrationDataVariables BTagVars;
2494 BTagVars.jetAuthor = jetauthor;
2495 BTagVars.jetPt = 100000.; //Irrelevant, just has to be valid to retrieve objects
2496 BTagVars.jetEta = 1.5; //Irrelevant, just has to be valid to retrieve objects
2497
2498 for(const auto& flavour : m_flavours){
2499 std::pair<double, double> BTagCalibResult;
2500 BTagCalibResult = getScaleFactor(BTagVars, flavour, OP, unc);
2501 std::cout << "CalibrationDataInterfaceROOT->initialize : BTagCalibResult " << std::endl;
2502
2503 std::pair<double, double> BTagCalibMCEff;
2504 BTagCalibMCEff = getMCEfficiency(BTagVars, flavour, OP, unc);
2505 std::cout << "CalibrationDataInterfaceROOT->initialize : BTagCalibMCEff " << std::endl;
2506 }
2507
2508 if (m_fileEff != m_fileSF) {
2509 m_fileEff->Close();
2510 delete m_fileEff;
2511 }
2512 m_fileSF->Close();
2513 delete m_fileSF;
2514 m_fileEff = 0; //prevents repeat deletion in destructor
2515 m_fileSF = 0; //prevents repeat deletion in destructor
2516}

◆ listScaleFactorUncertainties() [1/2]

std::vector< string > Analysis::CalibrationDataInterfaceROOT::listScaleFactorUncertainties ( const std::string & author,
const std::string & label,
const std::string & OP,
bool named = false )

retrieve the list of "uncertainties" relevant to the calibration object.

A few uncertainty names are predetermined: "result", "comment", "statistics", "systematics". Other sources of systematic uncertainty may be added. Note that the "systematics" source does not give access to correlations between bins. If the 'named' argument is true, the list does not include all uncertainties but only those excluded from the eigenvector construction (this option is only relevant if eigenvector use has been switched on to begin with). In this case the order of the uncertainties listed is important since it indicates the index by which the given named uncertainty is identified.

Definition at line 1984 of file CalibrationDataInterfaceROOT.cxx.

1988{
1989 // Retrieve the sources of uncertainty relevant for the given scale factor calibration object,
1990 // identifying the object by name.
1991 //
1992 // author: jet collection name
1993 // label: jet flavour label
1994 // OP: tagger working point
1995 // named: if false, an unsorted list of sources of uncertainties will be returned.
1996 // if true, only 'named' uncertainties will be returned, and the position in
1997 // the vector that is the return value determines the 'numVariation' index
1998 // that is to be used if named variations are to be retrieved.
1999
2000 unsigned int index;
2001 if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2002 // Return a dummy result if the object is not found
2003 cerr << "listScaleFactorUncertainties: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2004 std::vector<string> dummy;
2005 return dummy;
2006 }
2007 return listScaleFactorUncertainties(index, label, named);
2008}
std::vector< std::string > listScaleFactorUncertainties(const std::string &author, const std::string &label, const std::string &OP, bool named=false)
retrieve the list of "uncertainties" relevant to the calibration object.

◆ listScaleFactorUncertainties() [2/2]

std::vector< string > Analysis::CalibrationDataInterfaceROOT::listScaleFactorUncertainties ( unsigned int index,
const std::string & flavour,
bool named = false )

retrieve the list of "uncertainties" relevant to the calibration object.

A few uncertainty names are predetermined: "result", "comment", "statistics", "systematics". Other sources of systematic uncertainty may be added. Note that the "systematics" source does not give access to correlations between bins. If the 'named' argument is true, the list does not include all uncertainties but only those excluded from the eigenvector construction (this option is only relevant if eigenvector use has been switched on to begin with). In this case the order of the uncertainties listed is important since it indicates the index by which the given named uncertainty is identified.

Definition at line 2012 of file CalibrationDataInterfaceROOT.cxx.

2014{
2015 // Note: this method already works on a per-flavour basis, so passing flavour in is a simple addition
2016 // Method is called primarily from within the BTaggingEfficiencyTool - W.L.
2017 // Retrieve the sources of uncertainty relevant for the given scale factor calibration object,
2018 // identifying the object by index.
2019 //
2020 // index: index to scale factor calibration object
2021 // named: if false, an unsorted list of sources of uncertainties will be returned.
2022 // if true, only 'named' uncertainties will be returned, and the position in
2023 // the vector that is the return value determines the 'numVariation' index
2024 // that is to be used if named variations are to be retrieved.
2025
2026 std::vector<string> dummy;
2027 CalibrationDataContainer* container = m_objects[index];
2028
2029 if (container) {
2030 if (named) {
2031 // Find out which uncertainties are excluded from eigenvector construction
2032 if (! m_runEigenVectorMethod) return dummy;
2033 std::shared_ptr<CalibrationDataEigenVariations> eigenVariation=m_eigenVariationsMap.at(container);
2034 if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
2035 std::vector<string> unordered = eigenVariation->listNamedVariations(); // this is for the regular EV
2036 std::vector<string> ordered(unordered.size());
2037 for (unsigned int i = 0; i < unordered.size(); ++i) {
2038 ordered[eigenVariation->getNamedVariationIndex(unordered[i])] = unordered[i];
2039 }
2040 return ordered;
2041 } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen){
2042 // here we want to get the named uncertainties from the global eigenvariations flavour container specifically...
2043 std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation);
2044 std::vector<std::string> unordered = GEV->listNamedVariations(flavour);
2045 std::vector<std::string> ordered(unordered.size()); // ordered by the NAMED VARIATION (internal) ORDERING
2046 for (unsigned int i = 0; i < unordered.size(); ++i) {
2047 ordered[GEV->getNamedVariationIndex(unordered[i], flavour)] = unordered[i];
2048 }
2049 return ordered;
2050 }
2051 }
2052 return container->listUncertainties(); // return this if not named
2053 }
2054
2055 return dummy;
2056}
std::vector< std::string > listUncertainties() const
retrieve the list of "uncertainties" accessible to this object.

◆ nameFromIndex()

std::string Analysis::CalibrationDataInterfaceROOT::nameFromIndex ( unsigned int index) const

Retrieve the name of the calibration object (container) given its index.

Definition at line 1942 of file CalibrationDataInterfaceROOT.cxx.

1943{
1944 // Return the object name corresponding to the given index.
1945
1946 for (std::map<std::string, unsigned int>::const_iterator it = m_objectIndices.begin();
1947 it != m_objectIndices.end(); ++it)
1948 if (it->second == index) return it->first;
1949
1950 // This should never happen..
1951 return string("");
1952}

◆ retrieveCalibrationIndex()

bool Analysis::CalibrationDataInterfaceROOT::retrieveCalibrationIndex ( const std::string & label,
const std::string & OP,
const std::string & author,
bool isSF,
unsigned int & index,
unsigned int mapIndex = 0 )

Retrieve the index of the calibration object (container) starting from the label and operating point.

The return value will be false if the requested object cannot be found.

Definition at line 688 of file CalibrationDataInterfaceROOT.cxx.

693{
694 // Retrieve the integer index corresponding to a given combination of
695 // flavour label / tagger / working point / jet collection name, and separately
696 // for calibration scale factors and MC efficiencies (all these ingredients are needed
697 // to specify fully the calibration object).
698 // In fact this method will also trigger the retrieval of the object itself, if not already
699 // done, and will cache it internally. The absence of the requested calibration object will
700 // be flagged by a false return value.
701 // This method is used internally but should also be called by users in order to exploit the
702 // "code speed-up" features documented above.
703 //
704 // label: jet flavour label
705 // OP: tagger working point
706 // author: jet collection name
707 // isSF: set to true (false) for scale factors (MC efficiencies)
708 // index: resulting index (meaningful only for a 'true' function return value)
709 // mapIndex: index to the MC efficiency map to be used
710
711 index = 0;
712
713 // construct the full name from the label, operating point, SF/Eff choice;
714 // then look up this full name
715 string name = fullName(author, OP, label, isSF, mapIndex);
716 std::map<string, unsigned int>::const_iterator it = m_objectIndices.find(name);
717 if (it == m_objectIndices.end()) {
718 // If no container is found, attempt to retrieve it here (this is so that users won't
719 // have to call the named scale factor etc. methods once just to retrieve the container).
720 string flavour = (label == "N/A") ? "Light" : label;
721 string cntname = getContainername(flavour, isSF, mapIndex);
722 if (m_verbose) std::cout << "CalibrationDataInterfaceROOT->retrieveCalibrationIndex : container name is " << cntname << std::endl;
723 retrieveContainer(flavour, OP, author, cntname, isSF, m_verbose); // Only call this if you want to retrieve a currently not available container
724 it = m_objectIndices.find(name);
725 if (it == m_objectIndices.end()) return false;
726 } else {
727 if (m_verbose) std::cout << "CalibrationDataInterfaceROOT->retrieveCalibrationIndex : container " << name << " already cached! " << std::endl;
728 }
729
730 index = it->second;
731 return true;
732}
CalibrationDataContainer * retrieveContainer(const std::string &label, const std::string &OP, const std::string &author, const std::string &cntname, bool isSF, bool doPrint=true)
utility function taking care of object retrieval

◆ retrieveContainer()

CalibrationDataContainer * Analysis::CalibrationDataInterfaceROOT::retrieveContainer ( const std::string & label,
const std::string & OP,
const std::string & author,
const std::string & cntname,
bool isSF,
bool doPrint = true )

utility function taking care of object retrieval

Definition at line 2520 of file CalibrationDataInterfaceROOT.cxx.

2521{
2522 // Attempt to retrieve the given container from file. Note that also the corresponding
2523 // "hadronisation" reference is retrieved (if possible and not yet done).
2524 //
2525 // dir: name of the directory containing the requested container
2526 // cntname: name of the requested container itself (not including the full path)
2527 // isSF: set to false (true) if the object is to be retrieved from the MC efficiencies
2528 // file (the calibration scale factor file). Note that it is assumed that scale
2529 // factor objects will always be retrieved from the calibration scale factor file.
2530 // doPrint: if true, print out some basic information about the successfully retrieved container
2531 // (note that this is typically steered by the m_verbose setting;
2532 // only for the retrieval of the maps used for MC/MC SF calculations, this printout is always switched off)
2533
2534 string dir = m_taggerName + "/" + getAlias(author) + "/" + OP + "/" + label;
2535 // construct the full object name
2536 string name = dir + "/" + cntname;
2537
2538 // If the object cannot be found, then each call will result in a new attempt to
2539 // retrieve the object from the ROOT file. Hopefully this will not happen too often...
2540 unsigned int idx = m_objectIndices[name] = m_objects.size();
2541 // CalibrationDataContainer* cnt =
2542 // dynamic_cast<CalibrationDataContainer*>((isSF ? m_fileSF : m_fileEff) ->Get(name.c_str()));
2543 CalibrationDataContainer* cnt;
2544 (isSF ? m_fileSF : m_fileEff)->GetObject(name.c_str(), cnt);
2545 // If the requested object is a MC efficiency container and is not found, make a second attempt
2546 // to retrieve it from the calibration scale factor file. This will avoid the need to duplicate
2547 // efficiency containers so that the MC efficiency file needs to store only those containers
2548 // not already present in the calibration scale factor file. Of course this is meaningful only
2549 // if separate files are used to begin with.
2550 if (!isSF && !cnt && m_fileSF != m_fileEff) m_fileSF->GetObject(name.c_str(), cnt);
2551 m_objects.push_back(cnt);
2552 if (!cnt) {
2553 cerr << "btag Calib: retrieveContainer: failed to retrieve container named " << name.c_str() << " from file" << endl;
2554 return 0;
2555 }
2556
2557 // For successfully retrieved containers, also print some more information (implemented on user request)
2558 if (doPrint) {
2559 cout << "CalibrationDataInterface: retrieved container " << name << " (with comment: '" << cnt->getComment() << "' and hadronisation setting '" << cnt->getHadronisation() << "')" << endl;
2560 }
2561
2562
2563 // If the requested object is a MC efficiency container, make sure to retrieve the corresponding
2564 // calibration scale factor container first (a feature first thought to be necessary, erroneously,
2565 // but left in since this ordering should not hurt in any case).
2566 if (m_refMap.find(dir) == m_refMap.end()) {
2567 if (isSF) {
2568 // Retrieve the mapping objects from both files and merge their information using the 'helper' class.
2569 // The map resulting from this is used to retrieve the information required to compute MC/MC scale factors.
2570 string hadronisationRefs(dir + "/MChadronisation_ref");
2571 TMap* mapSF = 0; m_fileSF->GetObject(hadronisationRefs.c_str(), mapSF);
2572 TMap* mapEff = 0; if (m_fileEff != m_fileSF) m_fileEff->GetObject(hadronisationRefs.c_str(), mapEff);
2573 m_refMap[dir] = new HadronisationReferenceHelper(mapSF, mapEff);
2574 delete mapSF;
2575 delete mapEff;
2576 } else {
2577 string SFCalibName = getContainername(getBasename(dir), true);
2578 if (m_objectIndices.find(SFCalibName) == m_objectIndices.end()) retrieveContainer(label, OP, author, SFCalibName, true, doPrint);
2579 }
2580 }
2581
2582 // Attempt to find the corresponding hadronisation reference container needed for the application of
2583 // MC/MC scale factors.
2584 if (idx+1 > m_hadronisationReference.size()) m_hadronisationReference.resize(idx+1, -1);
2586 string spec = cnt->getHadronisation();
2587 if (spec != "") {
2588 std::map<string, HadronisationReferenceHelper*>::const_iterator mapit = m_refMap.find(dir);
2589 if (mapit != m_refMap.end()) {
2590 string ref;
2591 if (mapit->second->getReference(spec, ref)) {
2592 // Retrieve the hadronisation reference if not already done. Note that the "isSF" is left unchanged:
2593 // this allows to retrieve the reference from the same file as the scale factor object. An exception
2594 // is the reference for the calibration scale factor object, which should always be obtained from
2595 // the scale factor file.
2596 // An efficiency container can be its own hadronisation reference (this is not "protected" against).
2597 string refname(dir + "/" + ref);
2598 std::map<string, unsigned int>::const_iterator it = m_objectIndices.find(refname);
2599 // If the reference cannot be found, assume that it hasn't yet been retrieved so attempt it now.
2600 if (it == m_objectIndices.end()) {
2601 // Omit the printout of container information here (the idea being that showing MC/MC SF information would confuse rather than help)
2602 retrieveContainer(label, OP, author, ref, isSF, false); it = m_objectIndices.find(refname);
2603 }
2604 m_hadronisationReference[idx] = it->second;
2605 }
2606 } else if (m_useMCMCSF) {
2607 cerr << "btag Calib: retrieveContainer: MC hadronisation reference map not found -- this should not happen!" << endl;
2608 }
2609 }
2611 // Not being able to construct the MC/MC scale factors will lead to a potential bias.
2612 // However, this is not considered sufficiently severe that we will flag it as an error.
2613 if (m_useMCMCSF){
2614 cerr << "btag Calib: retrieveContainer: warning: unable to apply MC/MC scale factors for container " << name << " with hadronisation reference = '" << spec << "'" << endl;
2615 }
2616 }
2617
2618 // Initialize the Eigenvector variation object corresponding to this object, if applicable. Notes:
2619 // - the dual use of "isSF" (both referring to the file and to the object, see above) requires another protection here
2620 // - the constructor's second argument is used to determine whether to exclude a pre-determined set of uncertainties from the EV decomposition
2621 //
2622 // We also want to separate behavior between SFEigen and SFGlobalEigen systematic strategies
2623 // The former requires a CalibrationDataEigenVariations object to be made per flavour.
2624 // The latter combines all corresponding flavours, so once it's been made for a single flavour, it's cached under all the corresponding "flavour containers"
2625 // simulataneously in m_eigenVariationsMap, and is checked for on each subsequent call to this method.
2626 if (m_runEigenVectorMethod && isSF && name.find("_SF") != string::npos) {
2627 CalibrationDataHistogramContainer* histoContainer=dynamic_cast<CalibrationDataHistogramContainer*>(cnt);
2628 if (histoContainer==0) {
2629 cerr << "Could not cast Container to a HistogramContainer. " << endl;
2630 return 0;
2631 }
2632 if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
2634 std::shared_ptr<CalibrationDataEigenVariations> newEigenVariation(new CalibrationDataEigenVariations(m_filenameSF, m_taggerName, OP, author, histoContainer, m_useRecommendedEVExclusions));
2635 newEigenVariation->setVerbose(m_verbose);
2636
2637 // At this point we may also want to reduce the number of eigenvector variations.
2638 // The choices are stored with the container object; but first we need to know what flavour we are dealing with.
2639 string flavour = dir.substr(dir.find_last_of("/")+1);
2640
2641 for (const auto & entry : m_excludeFromCovMatrix[flavour]) {
2642 newEigenVariation->excludeNamedUncertainty(entry, cnt);
2643 }
2644 newEigenVariation->initialize();
2645 int to_retain = histoContainer->getEigenvectorReduction(m_EVReductions[flavour]); // returns the number of eigenvariations to retain as per the EV reduction strategy
2646 if (to_retain > -1) {
2647 if (m_verbose) cout << "btag Calib: reducing number of eigenvector variations for flavour " << flavour << " to " << to_retain << endl;
2648 // The merged variations will end up as the first entry in the specified list, i.e., as the last of the variations to be "retained"
2649 newEigenVariation->mergeVariationsFrom(size_t(to_retain-1)); // All variations stored with indices larger than this are merged
2650 } else if (m_EVReductions[flavour] != Loose) {
2651 cerr << "btag Calib: unable to retrieve eigenvector reduction information for flavour " << flavour << " and scheme " << m_EVReductions[flavour] << "; not applying any reduction" << endl;
2652 }
2653 m_eigenVariationsMap[cnt]=std::move(newEigenVariation);
2654
2656 } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen) {
2658 std::map<const CalibrationDataContainer*, std::shared_ptr<CalibrationDataEigenVariations> >::iterator evit = m_eigenVariationsMap.find(cnt);
2659 // The global implementation internally combines all the "flavour containers" (containers that correspond to each other, only with different flavours)
2660 // But the CalibrationDataInterfaceROOT object doesn't need to know that, so we want to get all the flavour containers in one go here
2661 // and map them (with m_eigenVariationsMap) to the same CalibrationDataGlobalEigenVariations pointer.
2662 // Then, in methods like getScaleFactor, we call the virtual methods which will give the proper result e.g. if you want the SF for a b-jet, it'll call the
2663
2664 if (evit == m_eigenVariationsMap.end()){
2665 // now to see if it's completely empty or not
2666 if (m_eigenVariationsMap.empty()){
2667 std::shared_ptr<CalibrationDataGlobalEigenVariations> newEigenVariation(new CalibrationDataGlobalEigenVariations(m_filenameSF, m_taggerName, OP, author, m_flavours, histoContainer, m_useRecommendedEVExclusions));
2668 for (const auto & entry : m_excludeFromCovMatrix[label]) {
2669 newEigenVariation->excludeNamedUncertainty(entry, label); // <---- custom exclude named uncertainties method for global variations
2670 }
2671
2672 newEigenVariation->initialize();
2673
2674 // flavour loop to get the flavour reduction schemes and apply them
2675 for (std::string& flavour : m_flavours){
2676 int to_retain = histoContainer->getEigenvectorReduction(m_EVReductions[flavour]); // returns the number of eigenvariations to retain as per the EV reduction strategy
2677 if (to_retain > -1) {
2678 if (m_verbose) cout << "btag Calib: reducing number of eigenvector variations for flavour " << flavour << " to " << to_retain << endl;
2679 // The merged variations will end up as the first entry in the specified list, i.e., as the last of the variations to be "retained"
2680 newEigenVariation->mergeVariationsFrom(size_t(to_retain-1), flavour); // All variations stored with indices larger than this are merged
2681 } else if (m_EVReductions[flavour] != Loose) {
2682 cerr << "btag Calib: unable to retrieve eigenvector reduction information for flavour " << flavour << " and scheme " << m_EVReductions[flavour] << "; not applying any reduction" << endl;
2683 }
2684 }
2685
2686 m_eigenVariationsMap.insert({cnt, newEigenVariation});
2687 } else {
2688 // Need to point to the CDGEV object four times in the m_eigenVariationsMap to appease the CDIROOT backend design...
2689 // Ok, turns out I can't retrieve the containers from CDGEV and insert them directly, because I'd have to use the containers directly instead..
2690 // So the strategy is to just take the CGEV objects that are already in the map, and mpa the present container to it
2691 std::shared_ptr<CalibrationDataEigenVariations> previous_eigenvariation = m_eigenVariationsMap.begin()->second;
2692 m_eigenVariationsMap.insert({cnt, previous_eigenvariation});
2693 }
2694
2695 } else {
2696 std::cout << "CalibrationDataInterfaceROOT->retrieveContainer : the CDGEV object for " << name << " already exists! " << std::endl;
2697 }
2699 }
2700 }
2701
2702 return cnt;
2703}
const boost::regex ref(r_ef)
static const std::string hadronisationRefs("MChadronisation_ref")
std::string getBasename(const std::string &name) const
auxiliary function for retrieval of name within the directory
virtual int getEigenvectorReduction(unsigned int choice) const
Retrieve the number of eigenvectors to be retained for the purpose of eigenvector variation reduction...

◆ runEigenVectorRecomposition() [1/2]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::runEigenVectorRecomposition ( const std::string & author,
const std::string & label,
const std::string & OP,
unsigned int mapindex = 0 )

run EigenVector Recomposition method

Definition at line 2204 of file CalibrationDataInterfaceROOT.cxx.

2207 {
2208 // run eigen vector recomposition method. If success, stored the retrieved coefficient map
2209 // in m_coefficientMap and return success. Otherwise return error and keep m_coefficientMap
2210 // untouched.
2211 // author: jet collection name
2212 // label: jet flavour label
2213 // OP: tagger working point
2214 // mapIndex: index to the MC efficiency map to be used. Should be 0?
2215 // Todo: What is mapindex?
2216 // Todo: Check the way xAODBTaggingTool initialize CDI. Check if that is the as how we are initialize CDI.
2218 cerr << "runEigenVectorRecomposition: Recomposition need to be ran with CalibrationDataInterfaceRoot initialized in eigenvector mode" << endl;
2219 return Analysis::kError;
2220 }
2221
2222 unsigned int indexSF;
2223 if (! retrieveCalibrationIndex (label, OP, author, true, indexSF, mapIndex)) {
2224 cerr << "runEigenVectorRecomposition: unable to find SF calibration for object "
2225 << fullName(author, OP, label, true) << endl;
2226 return Analysis::kError;
2227 }
2228
2229 return runEigenVectorRecomposition (label, indexSF);
2230}
CalibrationStatus runEigenVectorRecomposition(const std::string &author, const std::string &label, const std::string &OP, unsigned int mapindex=0)
run EigenVector Recomposition method

◆ runEigenVectorRecomposition() [2/2]

Analysis::CalibrationStatus Analysis::CalibrationDataInterfaceROOT::runEigenVectorRecomposition ( const std::string & label,
unsigned int mapindex = 0 )

Definition at line 2233 of file CalibrationDataInterfaceROOT.cxx.

2234 {
2235 // run eigen vector recomposition method. If success, stored the retrieved coefficient map
2236 // in m_coefficientMap and return success. Otherwise return error and keep m_coefficientMap
2237 // untouched.
2238 // label: jet flavour label
2239 // indexSF: index to scale factor calibration object
2240 CalibrationDataContainer* container = m_objects[indexSF];
2241 if (! container) {
2242 cerr << "runEigenVectorRecomposition: error retrieving container!" << endl;
2243 return Analysis::kError;
2244 }
2245
2246 // Retrieve eigenvariation
2247 std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
2248 try {
2249 eigenVariation = m_eigenVariationsMap.at(container);
2250 } catch (const std::out_of_range&) {
2251 cerr << "runEigenVectorRecomposition: Could not retrieve eigenvector variation, while it should have been there." << endl;
2252 return Analysis::kError;
2253 }
2254 // Doing eigenvector recomposition
2255 std::map<std::string, std::map<std::string, float>> coefficientMap;
2256 if(!eigenVariation->EigenVectorRecomposition(label, coefficientMap))
2257 return Analysis::kError;
2258
2259 m_coefficientMap = std::move(coefficientMap);
2260 return Analysis::kSuccess;
2261}

◆ setEffCalibrationNames()

void Analysis::CalibrationDataInterfaceBase::setEffCalibrationNames ( const std::map< std::string, std::vector< std::string > > & names)
inherited

Definition at line 63 of file CalibrationDataInterfaceBase.cxx.

65{
66 // Set the MC efficiency names.
67
69}

◆ setSFCalibrationNames()

void Analysis::CalibrationDataInterfaceBase::setSFCalibrationNames ( const std::map< std::string, std::string > & names)
inherited

Definition at line 87 of file CalibrationDataInterfaceBase.cxx.

88{
89 // Set the efficiency scale factor calibration names.
90
92}

◆ SFCalibrationName()

const std::string & Analysis::CalibrationDataInterfaceBase::SFCalibrationName ( const std::string & flavour) const
inherited

Definition at line 72 of file CalibrationDataInterfaceBase.cxx.

73{
74 // Return the efficiency scale factor calibration name for the given flavour.
75 // Note that no check is performed on the validity of the flavour.
76
77 try {
78 return m_calibrationSFNames.at(flavour);
79 }
80 catch (const std::out_of_range& e) {
81 std::cerr << "SFCalibrationName: flavour '" << flavour << "' is not known." << std::endl;
82 throw e;
83 }
84}

Member Data Documentation

◆ m_absEtaStrategy

OutOfBoundsStrategy Analysis::CalibrationDataInterfaceROOT::m_absEtaStrategy {}
private

Definition at line 474 of file CalibrationDataInterfaceROOT.h.

474{};

◆ m_aliases

std::map<std::string, std::string> Analysis::CalibrationDataInterfaceROOT::m_aliases
private

Do not attempt to persistify (PROOF)

jet author aliases (there is no single CalibrationBroker object here to take care of this, so we do it in this class)

Definition at line 405 of file CalibrationDataInterfaceROOT.h.

◆ m_calibrationEffNames

std::map<std::string, std::vector<std::string> > Analysis::CalibrationDataInterfaceBase::m_calibrationEffNames
privateinherited

this simply collects the per-flavour properties.

Definition at line 72 of file CalibrationDataInterfaceBase.h.

◆ m_calibrationSFNames

std::map<std::string, std::string> Analysis::CalibrationDataInterfaceBase::m_calibrationSFNames
privateinherited

Definition at line 73 of file CalibrationDataInterfaceBase.h.

◆ m_checkedWeightScaleFactors

std::vector<std::pair<unsigned int, unsigned int> > Analysis::CalibrationDataInterfaceROOT::m_checkedWeightScaleFactors
private

Definition at line 488 of file CalibrationDataInterfaceROOT.h.

◆ m_coefficientMap

std::map<std::string, std::map<std::string, float> > Analysis::CalibrationDataInterfaceROOT::m_coefficientMap
private

Definition at line 466 of file CalibrationDataInterfaceROOT.h.

◆ m_eigenVariationsMap

std::map<const CalibrationDataContainer*, std::shared_ptr<CalibrationDataEigenVariations> > Analysis::CalibrationDataInterfaceROOT::m_eigenVariationsMap
private

store the eigenvector class and associate to its CalibrationDataContainer

Definition at line 426 of file CalibrationDataInterfaceROOT.h.

◆ m_etaCounters

std::vector<unsigned int> Analysis::CalibrationDataInterfaceROOT::m_etaCounters
private

counters for flagging out-of-bound cases

Definition at line 480 of file CalibrationDataInterfaceROOT.h.

◆ m_EVReductions

std::map<std::string, Analysis::EVReductionStrategy> Analysis::CalibrationDataInterfaceROOT::m_EVReductions
private

Eigenvector reduction strategy (per flavour)

Definition at line 433 of file CalibrationDataInterfaceROOT.h.

◆ m_EVStrategy

Uncertainty Analysis::CalibrationDataInterfaceROOT::m_EVStrategy {}
private

Definition at line 430 of file CalibrationDataInterfaceROOT.h.

430{}; // <--- In addition, specify whether to use the global eigenvariations method

◆ m_excludeFromCovMatrix

std::map<std::string, std::vector<std::string> > Analysis::CalibrationDataInterfaceROOT::m_excludeFromCovMatrix
private

store the uncertainties which should be excluded from building the full covariance matrix

Definition at line 436 of file CalibrationDataInterfaceROOT.h.

◆ m_extrapolatedCounters

std::vector<unsigned int> Analysis::CalibrationDataInterfaceROOT::m_extrapolatedCounters
private

Definition at line 482 of file CalibrationDataInterfaceROOT.h.

◆ m_fileEff

TFile* Analysis::CalibrationDataInterfaceROOT::m_fileEff {}
private

pointer to the TFile object providing access to the calibrations

Definition at line 400 of file CalibrationDataInterfaceROOT.h.

400{};

◆ m_filenameEff

std::string Analysis::CalibrationDataInterfaceROOT::m_filenameEff
private

Definition at line 418 of file CalibrationDataInterfaceROOT.h.

◆ m_filenameSF

std::string Analysis::CalibrationDataInterfaceROOT::m_filenameSF
private

in addition, store also the filenames themselves (needed for the copy constructor)

Definition at line 417 of file CalibrationDataInterfaceROOT.h.

◆ m_fileSF

TFile* Analysis::CalibrationDataInterfaceROOT::m_fileSF {}
private

Do not attempt to persistify (PROOF)

Definition at line 401 of file CalibrationDataInterfaceROOT.h.

401{};

◆ m_flavours

std::vector<std::string> Analysis::CalibrationDataInterfaceROOT::m_flavours
private

Definition at line 419 of file CalibrationDataInterfaceROOT.h.

◆ m_hadronisationReference

std::vector<int> Analysis::CalibrationDataInterfaceROOT::m_hadronisationReference
private

store the 'hadronisation' reference for each object (-1 means no reference found)

Definition at line 461 of file CalibrationDataInterfaceROOT.h.

◆ m_mainCounters

std::vector<unsigned int> Analysis::CalibrationDataInterfaceROOT::m_mainCounters
private

Definition at line 481 of file CalibrationDataInterfaceROOT.h.

◆ m_maxAbsEta

double Analysis::CalibrationDataInterfaceROOT::m_maxAbsEta {}
private

|eta| bounds and strategy for dealing with out-of-bounds conditions

Definition at line 473 of file CalibrationDataInterfaceROOT.h.

473{};

◆ m_maxTagWeight

double Analysis::CalibrationDataInterfaceROOT::m_maxTagWeight {}
private

Definition at line 489 of file CalibrationDataInterfaceROOT.h.

489{};

◆ m_objectIndices

std::map<std::string, unsigned int> Analysis::CalibrationDataInterfaceROOT::m_objectIndices
private

Definition at line 411 of file CalibrationDataInterfaceROOT.h.

◆ m_objects

std::vector<CalibrationDataContainer*> Analysis::CalibrationDataInterfaceROOT::m_objects
private

cache the objects themselves (so that the user will not have to delete them after each call etc.).

The caching is done so that objects can be retrieved by number as well as by (OP, flavour, calibration name) combination.

Definition at line 410 of file CalibrationDataInterfaceROOT.h.

◆ m_otherStrategy

OutOfBoundsStrategy Analysis::CalibrationDataInterfaceROOT::m_otherStrategy {}
private

Definition at line 475 of file CalibrationDataInterfaceROOT.h.

475{};

◆ m_refMap

std::map<std::string, HadronisationReferenceHelper*> Analysis::CalibrationDataInterfaceROOT::m_refMap
private

the following maps (one for each directory) specify the name of the container serving as the 'hadronisation' reference for each object

Definition at line 459 of file CalibrationDataInterfaceROOT.h.

◆ m_runEigenVectorMethod

bool Analysis::CalibrationDataInterfaceROOT::m_runEigenVectorMethod {}
private

decide whether to run the eigenvector method or not

Definition at line 429 of file CalibrationDataInterfaceROOT.h.

429{};

◆ m_taggerName

std::string Analysis::CalibrationDataInterfaceBase::m_taggerName
protectedinherited

tagging algorithm name

Definition at line 94 of file CalibrationDataInterfaceBase.h.

◆ m_useMCMCSF

bool Analysis::CalibrationDataInterfaceROOT::m_useMCMCSF {}
private

specify whether or not to use MC/MC (hadronisation) scale factors (the fact that this is steerable is intended to be temporary only)

Definition at line 452 of file CalibrationDataInterfaceROOT.h.

452{};

◆ m_useRecommendedEVExclusions

bool Analysis::CalibrationDataInterfaceROOT::m_useRecommendedEVExclusions {}
private

if true, exclude pre-recommended lists of uncertainties from the covariance matrix building, in addition to the above user specified lists

Definition at line 441 of file CalibrationDataInterfaceROOT.h.

441{};

◆ m_useTopologyRescaling

bool Analysis::CalibrationDataInterfaceROOT::m_useTopologyRescaling {}
private

specify whether or not to use MC/MC (topology) scale factors (also this steering option may be removed)

Definition at line 455 of file CalibrationDataInterfaceROOT.h.

455{};

◆ m_verbose

bool Analysis::CalibrationDataInterfaceROOT::m_verbose {}
private

if true, allow also for some informational (and not only error/warning) messages

Definition at line 444 of file CalibrationDataInterfaceROOT.h.

444{};

The documentation for this class was generated from the following files: