ATLAS Offline Software
CalibrationDataEigenVariations.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2023 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 // CalibrationDataEigenVariations.cxx, (c) ATLAS Detector software
8 
12 
13 #include <iomanip>
14 #include <iostream>
15 #include <limits>
16 #include <set>
17 #include <algorithm>
18 #include <string>
19 #include <cmath>
20 #include <vector>
21 
22 #include "TH1.h"
23 #include "TH2.h"
24 #include "TVectorT.h"
25 #include "TDecompSVD.h"
26 #include "TMatrixDSymEigen.h"
27 #include "TMatrixT.h"
28 #include "TROOT.h"
29 #include "TFile.h"
30 
31 #include <memory.h>
32 
36 using std::string;
37 using std::map;
38 using std::vector;
39 using std::set;
40 using std::pair;
41 using std::setw;
42 using std::setprecision;
43 
44 namespace {
45 
46  // Utility functions...
47  void validate_reduction(int matrixsize, TMatrixDSym& corr, std::vector<std::pair<TH1*, TH1*>>& eigenvars, TH1* result, const std::string& scheme, const std::string& tagger, const std::string& wp, const std::string& jetauthor){
48  // Validating the reduction schemes - you can compare the correlation matrix constructed before and after eigenvector decomposition
49  // using whatever eigenvectors are available at either stage. The less difference, the better.
50 
51  // This function simply constructs the relevant matrix relative percentage difference comparison, and saves to file of your choosing.
52  // Saving to EOS is recommended - this can then be accessed, downloaded, and plotted with whatever plotting script you prefer.
53 
54  // Each systematic strategy scheme has a different way to construct the approximate covariance matrix
55  TMatrixDSym approx_cov(matrixsize); // matrix with zeros
56 
57  if (scheme == "SFEigen"){
58  for (const std::pair<TH1*,TH1*>& var : eigenvars){
59  // we want to make the tensor product of (purely) the variation with itself, and store it in a TMatrix
60  // ---> get the pure variations by subtracting the result from the up_variation combined eigenvariation histogram
61  TH1* pure_var = static_cast<TH1*>(var.first->Clone()); pure_var->SetDirectory(0);
62  pure_var->Add(result, -1.0); // do the subtraction, get variation value histogram
63  // ---> convert the pure variation into a vector of doubles
64  std::vector<double> pure_var_vec;
65  for (int binz = 1 ; binz <= pure_var->GetNbinsZ() ; ++binz){
66  for (int biny = 1 ; biny <= pure_var->GetNbinsY() ; ++biny){
67  for (int binx = 1 ; binx <= pure_var->GetNbinsX() ; ++binx){
68  pure_var_vec.push_back(pure_var->GetBinContent(pure_var->GetBin(binx,biny,binz)));
69  }
70  }
71  }
72  // then compute the covariance matrix, and sum into the total (approximate) covariance matrix
73  for(int i = 0 ; i < corr.GetNrows() ; i++){
74  for(int j = 0 ; j < corr.GetNcols() ; j++){
75  approx_cov(i,j) += (pure_var_vec[i])*(pure_var_vec[j]); // do the tensor product
76  }
77  }
78  } // end of (reduced set of) eigenvariations loop
79 
80  } else if (scheme == "SFGlobalEigen"){
81  TH1* comb_result = result; // renaming to match the intended usage...
82 
83  for (const std::pair<TH1*,TH1*>& var : eigenvars){
84  // we want to make the tensor product of (purely) the variation with itself, and store it in a TMatrix
85  // get the pure variations by subtracting the comb_result from the up_variation combined eigenvariation histogram
86  TH1* pure_var = static_cast<TH1*>(var.first->Clone()); pure_var->SetDirectory(0);
87  pure_var->Add(comb_result, -1.0); // do the subtraction, get variation value histogram
88  for(int i = 0 ; i < approx_cov.GetNrows() ; i++){
89  for(int j = 0 ; j < approx_cov.GetNcols() ; j++){
90  approx_cov(i,j) += (pure_var->GetBinContent(i))*(pure_var->GetBinContent(j)); // do the tensor product
91  }
92  }
93  } // end of (reduced set of) eigenvariations loop
94 
95  } else {
96  std::cout << " Error: The scheme " << scheme << " didn't match SFEigen or SFGlobalEigen." << std::endl;
97  return;
98  }
99 
100  // make the total correlation matrix from the (approximate) total covariance matrix
101  TMatrixDSym approx_corr(approx_cov);
102  for(int row = 0 ; row < approx_cov.GetNrows() ; row++){
103  for(int col = 0 ; col < approx_cov.GetNcols() ; col++){
104  double rowvar = sqrt(approx_cov(row,row));
105  double colvar = sqrt(approx_cov(col,col));
106  approx_corr(row,col) = approx_cov(row,col)/(rowvar * colvar); // divide each element by the variance
107  }
108  }
109  // subtract the approximate correlation matrix from the true correlation matrix, and save to file
110  TMatrixDSym numerator = (approx_corr - corr);
111  TMatrixDSym denominator = corr;
112  TMatrixDSym correlation_comparison(matrixsize);
113  for(int row = 0 ; row < approx_corr.GetNrows() ; row++){
114  for(int col = 0 ; col < approx_corr.GetNcols() ; col++){
115  if (denominator(row,col)==0.0){
116  correlation_comparison(row,col) = 0.0;
117  } else {
118  correlation_comparison(row,col) = 100*std::abs(numerator(row,col)/denominator(row,col)); // store relative percent errors
119  }
120  }
121  }
122 
123  string outputname = "Validate_" + scheme + "_" + tagger + "_" + wp + "_" + jetauthor + "_" + std::to_string(eigenvars.size()) + "vars" ;
124  string eospath = "/your/path/here/plotting/"; // <------ Place you want to store plots. Obviously, change this
125  string outputfilename = eospath + outputname + ".root";
126  std::cout << "ATTEMPTING TO WRITE " << outputfilename << " TO FILE..." << std::endl;
127  TFile fout(outputfilename.c_str(), "recreate");
128  fout.cd();
129  std::unique_ptr<TH2D> hout(new TH2D(correlation_comparison));
130 
131  // Note: you can also look at the other matrices involved - save them to file and plot them if you wish
132  hout->SetTitle("Correlation Matrix Comparison");
133  hout->Write();
134  fout.Close();
135 
136  }
137 
138 
139 
140 
141  // The covariance matrices constructed by the following two functions adhere to the TH1 binning conventions.
142  // But in order to avoid unnecessary overhead, the actual dimensionality of the histograms is accounted for.
143 
144  // Construct the (diagonal) covariance matrix for the statistical uncertainties on the "ref" results
145  // Note that when statistical uncertainties are stored as variations, they are already accounted for and hence should not be duplicated; hence they are dummy here
146  // (this is not very nice, in that the result of this function will technically be wrong,
147  // but the statistical uncertainty covariance matrix is anyway not separately visible to the outside world)
148  TMatrixDSym getStatCovarianceMatrix(const TH1* hist, bool zero) {
149  Int_t nbinx = hist->GetNbinsX()+2, nbiny = hist->GetNbinsY()+2, nbinz = hist->GetNbinsZ()+2;
150  Int_t rows = nbinx;
151  if (hist->GetDimension() > 1) rows *= nbiny;
152  if (hist->GetDimension() > 2) rows *= nbinz;
153 
154  // // the "2" below doesn't actually imply that two bins are used...
155  // // this is just to make the loops below work
156  // if (ref->GetDimension() <= 1) nbiny = 2;
157  // if (ref->GetDimension() <= 2) nbinz = 2;
158 
159  TMatrixDSym stat(rows);
160  for (Int_t binx = 1; binx < nbinx-1; ++binx)
161  for (Int_t biny = 1; biny < nbiny-1; ++biny)
162  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
163  Int_t bin = hist->GetBin(binx, biny, binz);
164  double err = zero ? 0 : hist->GetBinError(bin);
165  stat(bin, bin) = err*err;
166  }
167  return stat;
168  }
169 
170  // Construct the covariance matrix assuming that histogram "unc" contains systematic uncertainties
171  // pertaining to the "ref" results, and that the uncertainties are fully correlated from bin to bin
172  // (unless option "doCorrelated" is false, in which bins are assumed uncorrelated).
173  // One exception is made for the uncorrelated case: if we are dealing with a "continuous" calibration
174  // object, then a full correlation is still assumed between different tag weight bins.
175  TMatrixDSym getSystCovarianceMatrix(const TH1* ref, const TH1* unc, bool doCorrelated, int tagWeightAxis) {
176  Int_t nbinx = ref->GetNbinsX()+2, nbiny = ref->GetNbinsY()+2, nbinz = ref->GetNbinsZ()+2;
177  Int_t rows = nbinx;
178  if (ref->GetDimension() > 1) rows *= nbiny;
179  if (ref->GetDimension() > 2) rows *= nbinz;
180 
181  TMatrixDSym cov(rows);
182 
183  // Carry out a minimal consistency check
184  if (unc->GetNbinsX()+2 != nbinx || unc->GetNbinsY()+2 != nbiny || unc->GetNbinsZ()+2 != nbinz || unc->GetDimension() != ref->GetDimension()) {
185  std::cout << "getSystCovarianceMatrix: inconsistency found in histograms " << ref->GetName() << " and " << unc->GetName() << std::endl;
186  return cov;
187  }
188 
189  // // the "2" below doesn't actually imply that two bins are used...
190  // // this is just to make the loops below work
191  // if (ref->GetDimension() <= 1) nbiny = 2;
192  // if (ref->GetDimension() <= 2) nbinz = 2;
193 
194  // Special case: uncertainties not correlated from bin to bin.
195  // The exception here is for tag weight bins, which are always assumed to be fully correlated.
196  if (! doCorrelated) {
197  if (tagWeightAxis < 0) {
198  // truly uncorrelated uncertainties
199  for (Int_t binx = 1; binx < nbinx-1; ++binx)
200  for (Int_t biny = 1; biny < nbiny-1; ++biny)
201  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
202  Int_t bin = ref->GetBin(binx, biny, binz);
203  double err = unc->GetBinContent(bin);
204  cov(bin,bin) = err*err;
205  }
206  return cov;
207  } else if (tagWeightAxis == 0) {
208  // continuous histogram with tag weight X axis
209  for (Int_t biny = 1; biny < nbiny-1; ++biny)
210  for (Int_t binz = 1; binz < nbinz-1; ++binz)
211  for (Int_t binx = 1; binx < nbinx-1; ++binx) {
212  Int_t bin = ref->GetBin(binx, biny, binz);
213  double err = unc->GetBinContent(bin);
214  for (Int_t binx2 = 1; binx2 < nbinx-1; ++binx2) {
215  Int_t bin2 = ref->GetBin(binx2, biny, binz);
216  double err2 = unc->GetBinContent(bin2);
217  cov(bin,bin2) = err*err2;
218  }
219  }
220  return cov;
221  } else if (tagWeightAxis == 1) {
222  // continuous histogram with tag weight Y axis
223  for (Int_t binx = 1; binx < nbinx-1; ++binx)
224  for (Int_t binz = 1; binz < nbinz-1; ++binz)
225  for (Int_t biny = 1; biny < nbiny-1; ++biny) {
226  Int_t bin = ref->GetBin(binx, biny, binz);
227  double err = unc->GetBinContent(bin);
228  for (Int_t biny2 = 1; biny2 < nbiny-1; ++biny2) {
229  Int_t bin2 = ref->GetBin(binx, biny2, binz);
230  double err2 = unc->GetBinContent(bin2);
231  cov(bin,bin2) = err*err2;
232  }
233  }
234  return cov;
235  } else if (tagWeightAxis == 2) {
236  // continuous histogram with tag weight Z axis
237  for (Int_t binx = 1; binx < nbinx-1; ++binx)
238  for (Int_t biny = 1; biny < nbiny-1; ++biny)
239  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
240  Int_t bin = ref->GetBin(binx, biny, binz);
241  double err = unc->GetBinContent(bin);
242  for (Int_t binz2 = 1; binz2 < nbinz-1; ++binz2) {
243  Int_t bin2 = ref->GetBin(binx, biny, binz2);
244  double err2 = unc->GetBinContent(bin2);
245  cov(bin,bin2) = err*err2;
246  }
247  }
248  return cov;
249  }
250  }
251 
252  for (Int_t binx = 1; binx < nbinx-1; ++binx)
253  for (Int_t biny = 1; biny < nbiny-1; ++biny)
254  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
255  Int_t bin = ref->GetBin(binx, biny, binz);
256  double err = unc->GetBinContent(bin); // <------------- For every bin in the "ref" ("result") TH1*, GetBinContents of the corresponding uncertainty bin
257  for (Int_t binx2 = 1; binx2 < nbinx-1; ++binx2)
258  for (Int_t biny2 = 1; biny2 < nbiny-1; ++biny2)
259  for (Int_t binz2 = 1; binz2 < nbinz-1; ++binz2) {
260  Int_t bin2 = ref->GetBin(binx2, biny2, binz2);
261  double err2 = unc->GetBinContent(bin2); // <------- Grab the unc contents of every bin, and compute the covariance matrix element
262  cov(bin, bin2) = err*err2; // <------- err1 and err2 are the uncertainty content of the bins, so "cov" is real, symmetric
263  } // <------- "cov" would imply that the "hunc" histogram stores "x - E[x]" differences from the mean. So in the end, it computes the covariance (as a sum of these)
264  }
265  return cov;
266  }
267 
268 
269  // <---------------- Custom covariance matrix method - W.L.
270  TMatrixDSym getSystCovarianceMatrix(const vector<double>& unc){
271  int rows = unc.size();
272  TMatrixDSym cov(rows);
273 
274  for(int i = 0 ; i < rows ; i++){
275  for(int j = 0 ; j < rows ; j++){
276  double err1 = unc[i];
277  double err2 = unc[j];
278  cov(i,j) = err1*err2;
279  }
280  }
281  return cov;
282  }
283 
284  // <---------------- Custom covariance matrix method - W.L.
285  TMatrixDSym getStatCovarianceMatrix(const std::vector<double>& unc, bool zero) {
286  // This is only a stop-gap solution, need to better consider how to do this for 1D,2D,3D binning...
287  int rows = unc.size();
288  TMatrixDSym stat(rows);
289  for (int i = 0; i < rows; i++) {
290  double err = zero ? 0 : unc[i];
291  stat(i,i) = err*err;
292  }
293  return stat;
294  }
295 
296 
297 }
298 
300 // //
301 // CalibrationDataEigenVariations //
302 // //
303 // This class is intended to provide a more proper way to deal with correlations between //
304 // calibration bins than would be possible using directly the calibration containers' //
305 // methods (the general issue is with the fact that the interface methods are intended to //
306 // be use on a jet by jet basis; in this context it is not straightforward to account for //
307 // correlations). //
308 // // <-------- Many CDIHistogramContainers in one CDI File
309 // A CalibrationDataEigenVariations object is associated with a specific // <-------- one CDEigenVariations object per CDHistogramContainer
310 // CalibrationDataHistogramContainer. It starts by constructing the covariance matrix from //
311 // the information provided by the container. Subsequently it diagonalises this covariance // <-------- Each CDHistogramContainer stores hists of central values + systematic variations
312 // matrix (this is a standard eigenvalue problem, hence the name of the class), and stores //
313 // the result as 'variation' histograms (representing the eigenvectors multiplied by the //
314 // square root of the corresponding eigenvalues). //
315 // Since it is possible for systematic uncertainty contributions to be correlated with //
316 // corresponding uncertainties in physics analyses, it is possible to exclude such sources //
317 // of uncertainty from being used in the construction of the covariance matrix (this is //
318 // since effects from the original sources of uncertainty cannot be traced anymore after //
319 // application of the eigenvalue decomposition). It is still possible to evaluate correctly //
320 // these uncertainties in the form of so-called 'named variations' (see class //
321 // CalibrationDataInterfaceROOT); however this will always treat uncertainties as being //
322 // fully correlated (or anti-correlated) between calibration bins, so it is recommended not //
323 // to exclude uncertainties that are not correlated between bins from the eigenvector //
324 // decomposition. //
326 
327 #ifndef __CINT__
329 #endif
330 //________________________________________________________________________________
331 CalibrationDataEigenVariations::CalibrationDataEigenVariations(const std::string& cdipath, const std::string& tagger, const std::string& wp, const std::string& jetcollection, CalibrationDataHistogramContainer* cnt, bool excludeRecommendedUncertaintySet, bool base) :
332 m_cnt(cnt), m_initialized(false), m_validate(false), m_namedExtrapolation(-1), m_statVariations(false), m_cdipath(cdipath), m_taggername(tagger), m_wp(wp), m_jetauthor(jetcollection), m_totalvariance(0), m_capturedvariance(0), m_verbose(false)
333 {
334 
335  if (m_verbose) std::cout << " CDEV Constructor : info " << cdipath << " " << tagger << " " << wp << " " << jetcollection << std::endl;
336  // if specified, add items recommended for exclusion from EV decomposition by the calibration group to the 'named uncertainties' list
337  if (excludeRecommendedUncertaintySet && base) {
338  std::vector<std::string> to_exclude = split(m_cnt->getExcludedUncertainties());
339  for (const auto& name : to_exclude) {
340  excludeNamedUncertainty(name, const_cast<CalibrationDataHistogramContainer*>(cnt));
341  }
342  if (to_exclude.size() == 0) {
343  std::cerr << "CalibrationDataEigenVariations warning: exclusion of pre-set uncertainties list requested but no (or empty) list found" <<std::endl;
344  }
345  }
346  // also flag if statistical uncertainties stored as variations (this typically happens as a result of smoothing / pruning of SF results)
347  vector<string> uncs = m_cnt->listUncertainties(); // <-------- The "listUncertainties" method retrieves the list of "information" in the CDIHistogramContainer, basically the "list" output from "showCalibration"
348  for (const auto& name : uncs) {
349  if (name.find("stat_np") != string::npos) m_statVariations = true;
350  }
351 
352 }
353 
354 //________________________________________________________________________________
355 CalibrationDataEigenVariations::~CalibrationDataEigenVariations()
356 {
357  // delete all variation histograms owned by us
358  for (vector<pair<TH1*, TH1*> >::iterator it = m_eigen.begin(); it != m_eigen.end(); ++it) {
359  delete it->first;
360  delete it->second;
361  }
362 
363  for (vector<pair<TH1*, TH1*> >::iterator it = m_named.begin(); it != m_named.end(); ++it) {
364  delete it->first;
365  delete it->second;
366  }
367 }
368 
369 //________________________________________________________________________________
370 void
372 {
373  // Exclude the source of uncertainty identified by the given name from being used
374  // in the construction of the covariance matrix to be diagonalised.
375  // Notes:
376  // - Some names returned by CalibrationDataContainer::listUncertainties() are not
377  // meaningful in this context, and specifying them is not allowed.
378  // - Once the eigenvector diagonalisation has been carried out, this method may
379  // not be used anymore.
380 
381  if (m_initialized) {
382  std::cerr << "CalibrationDataEigenVariations::excludeNamedUncertainty error:" << " initialization already done" << std::endl;
383  } else if (name == "comment" || name == "result" || name == "systematics" ||
384  name == "statistics" || name == "combined" || name == "extrapolation" ||
385  name == "MCreference" || name == "MChadronisation" || name == "ReducedSets" ||
386  name == "excluded_set" || name == "" || name == " ") // <--- these last two handle some cases that may turn up
387  {
388  std::cerr << "CalibrationDataEigenVariations::excludeNamedUncertainty error:" << " name " << name << " not allowed" << std::endl;
389  }
390  // in case multiple uncertainties should be discarded
391  else if (name.back() == '*'){
392  std::string temp_name = name.substr(0, name.size()-1); //remove "*"
393  std::vector<std::string> uncs = m_cnt->listUncertainties();
394  std::vector<std::string> unc_subgroup;
395  std::copy_if(uncs.begin(), uncs.end(), back_inserter(unc_subgroup),
396  [&temp_name](const std::string& el) {
397  return el.compare(0, temp_name.size(), temp_name) == 0;
398  });
399  if (m_verbose) std::cout <<"Found a group of uncertainties to exclude: " <<name <<" found " <<unc_subgroup.size() <<" uncertainties corresponding to the query" <<std::endl;
400  for (const auto& single_name : unc_subgroup){
401  // only really add if the entry is not yet in the list
402  if (m_namedIndices.find(single_name) == m_namedIndices.end()) {
403  if (m_verbose) std::cout << "Name : " << single_name << std::endl;
404  m_named.push_back(std::pair<TH1*, TH1*>(0, 0));
405  m_namedIndices[single_name] = m_named.size()-1;
406  }
407  }
408  }
409  else if (! cnt->GetValue(name.c_str())){
410  std::cerr << "CalibrationDataEigenVariations::excludeNamedUncertainty error:" << " uncertainty named " << name << " not found" << std::endl;
411  }
412 }
413 
414 //________________________________________________________________________________
415 TMatrixDSym
417 {
418  // Construct the covariance matrix that is to be diagonalised.
419  // Note that extrapolation uncertainties (identified by the keyword "extrapolation,
420  // this will pertain mostly to the extrapolation to high jet pt) are always excluded
421  // since by definition they will not apply to the normal calibration bins. Instead
422  // this uncertainty has to be dealt with as a named variation. In addition there are
423  // other items ("combined", "systematics") that will not be dealt with correctly
424  // either and hence are excluded as well).
425  //
426  // Note that if an explicit covariance matrix is supplied (at present this may be
427  // the case only for statistical uncertainties: in the case of "continuous tagging",
428  // multinomial statistics applies so bin-to-bin correlations exist) this will be
429  // used instead of constructing the statistical uncertainties' covariance matrix on
430  // the fly.
431 
432  // retrieve the central calibration
433  TH1* result = dynamic_cast<TH1*>(m_cnt->GetValue("result"));
434  if (not result){
435  std::cerr<<"CalibrationDataEigenVariations::getEigenCovarianceMatrix(): failed dynamic cast to TH1*\n";
436  return TMatrixDSym();
437  }
438 
439  // loop over the uncertainties to construct the covariance matrix for all uncertainties
440  // to be addressed using the eigenvector method.
441 
442  // First, treat the statistics separately.
443  // Account for the possibility that this is handled as a (non-trivial) covariance matrix
444  TMatrixDSym* sCov = dynamic_cast<TMatrixDSym*>(m_cnt->GetValue("statistics"));
445 
446  // Alternatively, statistical uncertainties may be accounted for as variations (i.e., much like systematic uncertainties).
447  // In that case, we create a null matrix here and add the statistical contributions along with the systematic ones.
448  TMatrixDSym cov = (sCov) ? *sCov : getStatCovarianceMatrix(result, m_statVariations);
449 
450  // Then loop through the list of (other) uncertainties
451  std::vector<string> uncs = m_cnt->listUncertainties();
452  for (unsigned int t = 0; t < uncs.size(); ++t) {
453  // entries that should never be included
454  if (uncs[t] == "comment" || uncs[t] == "result" || uncs[t] == "combined" ||
455  uncs[t] == "statistics" || uncs[t] == "systematics" || uncs[t] == "MCreference" ||
456  uncs[t] == "MChadronisation" || uncs[t] == "extrapolation" || uncs[t] == "ReducedSets" ||
457  uncs[t] == "excluded_set") continue;
458  // entries that can be excluded if desired
459  if (m_namedIndices.find(uncs[t]) != m_namedIndices.end()) continue;
460  TH1* hunc = dynamic_cast<TH1*>(m_cnt->GetValue(uncs[t].c_str()));
461  if (not hunc){
462  std::cerr<< "CalibrationDataEigenVariations::getEigenCovarianceMatrix(): dynamic cast failed\n";
463  continue;
464  }
465  cov += getSystCovarianceMatrix(result, hunc, m_cnt->isBinCorrelated(uncs[t]), m_cnt->getTagWeightAxis()); // <-------- This is where we add the covariance matrices together to form the "total covariance"
466  }
467 
468  return cov;
469 }
470 
471 //________________________________________________________________________________
472 TMatrixDSym
474 {
475  // Construct the (Eigen-variation part of the) covariance matrix from the individual variations.
476  // This must be called _after_ initialize()!
477 
478  // retrieve the central calibration
479  TH1 *result = dynamic_cast<TH1*>(m_cnt->GetValue("result"));
480  TMatrixD jac = getJacobianReductionMatrix();
481  int nbins = jac.GetNcols();
482  TMatrixDSym cov(nbins);
483  auto variation = std::make_unique<double[]>(nbins);
484 
485  for (const std::pair<TH1*, TH1*>& it : m_eigen){ // m_eigen is vector of pairs of TH1* which point to TH1's representing the upVariation and downVariation respectively
486  TH1* resultVariedUp = it.first; // <--------------- This is the "result" but "varied" upwards - i.e. how the result would look like if the systematic "it" was imposed
487  for (unsigned int u = 0; u < (unsigned int) nbins; ++u) variation[u] = resultVariedUp->GetBinContent(u) - result->GetBinContent(u);
488  for (int u = 0; u < nbins; ++u){
489  for (int v = 0; v < nbins; ++v){
490  cov(u, v) += variation[u]*variation[v];
491  }
492  }
493  }
494 
495  return cov;
496 }
497 
498 //________________________________________________________________________________
499 TMatrixD
501 {
502  // Construct the matrix that removes the rows and columns that fail to influence
503  // the eigen-variations. To reduce the covariance matrix, do the following:
504  //
505  // TMatrixDSym cov = getEigenCovarianceMatrix();
506  // TMatrixDSym jac = getJacobianReductionMatrix(); // <------------ This is an upper triangular matrix of 1's. Similarity transformation will do...
507  // TMatrixDSym redSystematicCovMatrix = cov.Similarity(jac);
508 
509  // retrieve the central calibration
510  TH1* result = dynamic_cast<TH1*>(m_cnt->GetValue("result"));
511  if (not result){
512  std::cerr<<"CalibrationDataEigenVariations::getJacobianReductionMatrix(): dynamic cast failed\n";
513  return TMatrixD();
514  }
515 
516  // loop over the uncertainties to construct the covariance matrix for all uncertainties
517  // to be addressed using the eigenvector method.
518 
519  // Retrieve the un-compressed Eigenvector variation covariance matrix
520  // (only needed to check for unexpected singularities)
521  TMatrixDSym cov = getEigenCovarianceMatrix();
522 
523  // Compute the original number of bins
524  int nbins = result->GetNbinsX()+2;
525  int ndim = result->GetDimension();
526  if (ndim > 1) nbins*= (result->GetNbinsY()+2);
527  if (ndim > 2) nbins*= (result->GetNbinsZ()+2);
528 
529  // Start by "compressing" the covariance matrix (removing columns/rows containing zeros only)
530  int nZeros=0;
531  std::vector<int> zeroComponents;
532  if (cov.GetNrows() != nbins) {
533  std::cerr << " error: covariance matrix size (" << cov.GetNrows() << ") doesn't match histogram size (" << nbins << ")" << std::endl;
534  return TMatrixDSym();
535  }
536 
537  // First flag all the zeros
538  for (int i = 0; i < nbins; ++i) {
539  // Directly identify the under- and overflow bins
540  Int_t binx, biny, binz;
541  result->GetBinXYZ(i, binx, biny, binz);
542  if ((binx == 0 || binx == result->GetNbinsX()+1) ||
543  (ndim > 1 && (biny == 0 || biny == result->GetNbinsY()+1)) ||
544  (ndim > 2 && (binz == 0 || binz == result->GetNbinsZ()+1)))
545  {
546  ++nZeros;
547  zeroComponents.push_back(i);
548  }
549  // Try a first (quick) identification of rows/columns of zeros by the first element in each row
550  // If "successful", check the whole row in more detail
551  else if (fabs(cov(i,0)) < 1e-10) {
552  bool isThereANonZero(false);
553  for (int j = 0; j < nbins; ++j) {
554  if (fabs(cov(i,j)) > 1e-10) {
555  isThereANonZero=true; break;
556  }
557  }
558  if (! isThereANonZero) {
559  ++nZeros;
560  zeroComponents.push_back(i);
561  }
562  }
563  }
564 
565  // **** COMMENTED OUT FOR NOW.
566  // Leave it here in case the calibration method will change again in the future.
567  // No need to reweight the SF by the efficiency of that bin (MCreference always = 0)
568 
569  // Determine whether the container is for "continuous" calibration.
570  // This is important since the number of independent scale factors (for each pt or eta bin)
571  // is reduced by 1 compared to the number of tag weight bins (related to the fact that the fractions
572  // of events in tag weight bins have to sum up to unity).
573  // int axis = m_cnt->getTagWeightAxis();
574  // bool doContinuous = false; unsigned int weightAxis = 0;
575 
576  // if (axis >= 0) {
577  // doContinuous = true;
578  // // weightAxis = (unsigned int) axis;
579  // // In this case, verify that the special "uncertainty" entry that is in fact the reference MC tag
580  // // weight fractions is present. These tag weight fractions are needed in order to carry out the
581  // // diagonalisation successfully.
582  // if (! dynamic_cast<TH1*>(m_cnt->GetValue("MCreference"))) {
583  // std::cerr << " Problem: continuous calibration object found without MC reference tag weight histogram " << std::endl;
584  // return TMatrixDSym();
585  // }
586  // }
587 
588  // Only relevant for continuous calibration containers, but in order to void re-computation we
589  // retrieve them here
590  // Int_t nbinx = result->GetNbinsX()+2, nbiny = result->GetNbinsY()+2, nbinz = result->GetNbinsZ()+2;
591 
592  // // If we are indeed dealing with a "continuous" calibration container, ignore one tag weight row
593  // const int skipTagWeightBin = 1; // NB this follows the histogram's bin numbering
594  // if (doContinuous) {
595  // for (Int_t binx = 1; binx < nbinx-1; ++binx)
596  // for (Int_t biny = 1; biny < nbiny-1; ++biny)
597  // for (Int_t binz = 1; binz < nbinz-1; ++binz) {
598  // if ((weightAxis == 0 && binx == skipTagWeightBin) ||
599  // (weightAxis == 1 && biny == skipTagWeightBin) ||
600  // (weightAxis == 2 && binz == skipTagWeightBin)) {
601  // // At this point we simply add these to the 'null' elements
602  // ++nZeros;
603  // zeroComponents.push_back(result->GetBin(binx, biny, binz));
604  // }
605  // }
606  // }
607 
608  if (nZeros >= nbins) {
609  std::cerr << " Problem. Found n. " << nZeros << " while size of matrix is " << nbins << std::endl;
610  return TMatrixDSym();
611  }
612 
613  int size = nbins - nZeros; // <--- Tis the size of the matrix removing zeros from the covariance matrix
614 
615  TMatrixT<double> matrixVariationJacobian(size,nbins);
616  int nMissed=0;
617  for (int i = 0; i < nbins; ++i) { //full size
618  bool missed=false;
619  for (unsigned int s = 0; s < zeroComponents.size(); ++s) { // <-------- Basically what this does is it flags "missed" for a given "i" of the full bin size
620  if (zeroComponents.at(s) == i) { // <-------- if "i" is in "zeroComponents". Breaks (because it found that it's to be missed)
621  missed = true;
622  break;
623  }
624  }
625  if (missed) { // <-------- Finally, if "i" is to be missed, increase "nMissed" by one, and....
626  ++nMissed;
627  continue;
628  }
629  matrixVariationJacobian(i-nMissed,i)=1; // <-------- ... this ALWAYS adds a one. If zero "nMissed", add to diagonal. otherwise off-diagonal
630  } // <-------- This matrix only add 1's on/off diagonal, upper triangular matrix
631 
632  return matrixVariationJacobian;
633 }
634 
635 //________________________________________________________________________________
636 void
638 {
639  // This is this class's most important method, in the sense that it does all the
640  // math and constructs all "variation" histograms (for both eigenvector and named
641  // named variations). This constitutes the full initialisation of the class.
642  // This method is meant to be called only after all calls (if any) to the
643  // CalibrationDataEigenVariations::excludeNamedUncertainty() method.
644 
645  // retrieve the central calibration
646  TH1* result = dynamic_cast<TH1*>(m_cnt->GetValue("result"));
647  if (not result){
648  std::cerr<<"CalibrationDataEigenVariations::initialize: dynamic cast failed\n";
649  return;
650  }
651  // First step: construct the original covariance matrix
652  TMatrixDSym cov = getEigenCovarianceMatrix();
653  TMatrixDSym corr(result->GetNbinsX()*result->GetNbinsY()*result->GetNbinsZ()); // We want to construct the correlation matrix in order to compare the final eigenvariations correlation matrix to it
654 
655  int rowc = 0;
656  for (int row = 0 ; row < cov.GetNrows() ; row++){
657  int colc = 0;
658  bool colb = false;
659  for (int col = 0 ; col < cov.GetNcols() ; col++){
660  if(!cov(row,col) || !cov(row,row) || !cov(col,col) || cov(row,row)<1.0e-6 || cov(col,col)<1.0e-6 ) continue; // really don't want to divide by zero...
661  colb=true;
662  long double rowvar = sqrt(cov(row,row));
663  long double colvar = sqrt(cov(col,col));
664  corr(rowc,colc) = cov(row,col)/(rowvar * colvar); // divide each element by the variance
665  colc++;
666  }
667  if (colb){
668  rowc++;
669  }
670  }
671 
672  // Second step: create the variations for the named sources of uncertainty (easy...)
674  pair<TH1*, TH1*>& p = m_named[it->second];
675  TH1* hunc = (TH1*) m_cnt->GetValue(it->first.c_str());
676  TString namedvar("namedVar");
677  namedvar += it->first.c_str();
678  TString namedvarUp(namedvar); namedvarUp += "_up";
679  TString namedvarDown(namedvar); namedvarDown += "_down";
680  TH1* resultVariedUp = (TH1*)result->Clone(namedvarUp); resultVariedUp->Add(hunc, 1.0); resultVariedUp->SetDirectory(0);
681  TH1* resultVariedDown = (TH1*)result->Clone(namedvarDown); resultVariedDown->Add(hunc, -1.0); resultVariedDown->SetDirectory(0);
682  p.first = resultVariedUp;
683  p.second = resultVariedDown;
684  }
685  // Refinement: add the "extrapolation" uncertainty as a named uncertainty, if the histogram is provided
686  // This is a bit special, since the extrapolation uncertainty histogram has a different size than other histograms
687  if (TH1* hunc = (TH1*) m_cnt->GetValue("extrapolation")) { // this is just saying "if it exists"...
688  TH1* resultVariedUp = (TH1*) hunc->Clone("extrapolation_up"); resultVariedUp->SetDirectory(0);
689  TH1* resultVariedDown = (TH1*) hunc->Clone("extrapolation_down"); resultVariedDown->SetDirectory(0);
690  Int_t nbinx = hunc->GetNbinsX()+2, nbiny = hunc->GetNbinsY()+2, nbinz = hunc->GetNbinsZ()+2;
691  Int_t firstbinx = hunc->GetXaxis()->FindFixBin(result->GetXaxis()->GetBinCenter(1));
692  Int_t firstbiny = result->GetDimension() > 1 ? hunc->GetYaxis()->FindFixBin(result->GetYaxis()->GetBinCenter(1)) : 1;
693  Int_t firstbinz = result->GetDimension() > 2 ? hunc->GetZaxis()->FindFixBin(result->GetZaxis()->GetBinCenter(1)) : 1;
694  for (Int_t binx = 1; binx < nbinx-1; ++binx) {
695  Int_t binxResult = binx - firstbinx + 1;
696  if (binxResult < 1) binxResult = 1;
697  if (binxResult > result->GetNbinsX()) binxResult = result->GetNbinsX();
698  for (Int_t biny = 1; biny < nbiny-1; ++biny) {
699  Int_t binyResult = biny - firstbiny + 1;
700  if (binyResult > result->GetNbinsY()) binyResult = result->GetNbinsY();
701  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
702  Int_t binzResult = binz - firstbinz + 1;
703  if (binzResult > result->GetNbinsZ()) binzResult = result->GetNbinsZ();
704  Int_t bin = hunc->GetBin(binx, biny, binz);
705  double contResult = result->GetBinContent(binxResult, binyResult, binzResult);
706  resultVariedUp->SetBinContent(bin, contResult + hunc->GetBinContent(bin));
707  resultVariedDown->SetBinContent(bin, contResult - hunc->GetBinError(bin));
708  }
709  }
710  }
711  m_named.push_back(std::make_pair(resultVariedUp, resultVariedDown));
712  m_namedExtrapolation = m_namedIndices["extrapolation"] = m_named.size()-1;
713  }
714 
715  // Third step: compute the eigenvector variations corresponding to the remaining sources of uncertainty
716  int nbins = result->GetNbinsX()+2;
717  int ndim = result->GetDimension();
718  if (ndim > 1) nbins*= (result->GetNbinsY()+2);
719  if (ndim > 2) nbins*= (result->GetNbinsZ()+2);
720 
721 
722  // // Determine whether the container is for "continuous" calibration.
723  // // This is important since the number of independent scale factors (for each pt or eta bin)
724  // // is reduced by 1 compared to the number of tag weight bins (related to the fact that the fractions
725  // // of events in tag weight bins have to sum up to unity).
726  // int axis = m_cnt->getTagWeightAxis();
727  // bool doContinuous = false; unsigned int weightAxis = 0;
728 
729  //if (axis >= 0) {
730  // doContinuous = true;
731  // weightAxis = (unsigned int) axis;
732  // // In this case, verify that the special "uncertainty" entry that is in fact the reference MC tag
733  // // weight fractions is present. These tag weight fractions are needed in order to carry out the
734  // // diagonalisation successfully.
735  // NOTE: MCreference is not used at the moment (always 0 in the CDI). Comment it out.
736  // if (! dynamic_cast<TH1*>(m_cnt->GetValue("MCreference"))) {
737  // std::cerr << " Problem: continuous calibration object found without MC reference tag weight histogram " << std::endl;
738  // return;
739  // }
740  //}
741 
742  // Only relevant for continuous calibration containers, but in order to void re-computation we
743  // retrieve them here
744  // Int_t nbinx = result->GetNbinsX()+2, nbiny = result->GetNbinsY()+2, nbinz = result->GetNbinsZ()+2;
745 
746  TMatrixT<double> matrixVariationJacobian = getJacobianReductionMatrix();
747  int size = matrixVariationJacobian.GetNrows();
748 
749  // Reduce the matrix to one without the zeros, using a "similarity" transformation
750 
751  const TMatrixDSym matrixCovariance = cov.Similarity(matrixVariationJacobian);
752 
753  // Carry out the Eigenvector decomposition on this matrix
754  TMatrixDSymEigen eigenValueMaker (matrixCovariance);
755  TVectorT<double> eigenValues = eigenValueMaker.GetEigenValues();
756  TMatrixT<double> eigenVectors = eigenValueMaker.GetEigenVectors();
757  TMatrixT<double> matrixVariations (size,size);
758 
759  //compute the total variance by summing the eigenvalues
760  m_totalvariance = eigenValues.Sum(); //
761 
762  for (int i = 0; i < size; ++i) {
763  //now go back
764  for (int r = 0; r < size; ++r)
765  //first index is the variation number, second corresponds to the pT bin //<--------- The "eigenvariations" matrix is the "C" matrix which has CKC^T = I with "K" being the o.g. covariance matrix, and "I" is the identity
766  matrixVariations(i,r) = -1.0*eigenVectors[r][i]*sqrt(fabs(eigenValues[i])); // <--------- So the result is a matrix (eigenvariation) which is the eigenvector scaled by the sqrt(eigenvalue)
767  } // <------- matrixVariations: each row is one variation, each column is the pT bin.
768 
769  TMatrixT<double> matrixVariationsWithZeros = matrixVariations * matrixVariationJacobian;
770 
771  // Construct the initial set of variations from this
772  for (int i = 0; i < matrixVariationsWithZeros.GetNrows(); ++i) {
773  // TString superstring(result->GetName());
774  // superstring += "_eigenVar";
775  TString superstring("eigenVar");
776  superstring+=i;
777 
778  TString nameUp(superstring); nameUp += "_up";
779  TString nameDown(superstring); nameDown += "_down";
780  // TString nameUnc(superstring); nameUnc+= "_unc";
781 
782  TH1* resultVariedUp = (TH1*)result->Clone(nameUp); resultVariedUp->SetDirectory(0); // <------- clone "result" hist, call it "up", and SetDirectory(0) means histogram doesn't belong to any directory.
783  TH1* resultVariedDown = (TH1*)result->Clone(nameDown); resultVariedDown->SetDirectory(0);
784 
785  for (int u = 0; u < nbins; ++u) {
786  resultVariedUp->SetBinContent(u,result->GetBinContent(u) + matrixVariationsWithZeros(i,u)); // <----- This actually constructs the up-variation histogram!
787  resultVariedDown->SetBinContent(u,result->GetBinContent(u) - matrixVariationsWithZeros(i,u)); // <--- This likewise constructs the down-var., bin-by-bin.
788  }
789 
790  m_eigen.push_back(std::make_pair(resultVariedUp, resultVariedDown));
791 
792  } //end eigenvector size
793 
794  // Remove variations that are below the given tolerance (effectively meaning that they don't have any effect) // <--------- Here we prune systematics
795  IndexSet final_set; // <-------- What's IndexSet? It's a typedef of std::set<size_t>, where size_t = int
796  size_t current_set = 0;
797  for (size_t index = 0; index < m_eigen.size(); ++index) {
798  bool keep_variation = false;
799  TH1 *up = static_cast<TH1*>(m_eigen[index].first->Clone()); up->SetDirectory(0);
800 
801  up->Add(result, -1.0);
802 
803  for (int bin = 1; bin <= nbins; ++bin) {
804  if (fabs(up->GetBinContent(bin)) > min_variance) { // <----- If you find even ONE bin with big enough variance, we keep the whole systematic.
805  keep_variation = true;
806  break;
807  }
808  }
809  delete up;
810  if (!keep_variation){ // <------ At this stage, if we find no bins in the systematic with large enough variation, we insert it to "final_set" for removal/pruning
811  final_set.insert(current_set);
812  } else {
813  m_capturedvariance += eigenValues[index]; // let's add up the variance that the eigenvariation contributes to the total
814  }
815  ++current_set;
816  }
817  if (final_set.size() > 0)
818  if (m_verbose) std::cout << "CalibrationDataEigenVariations: Removing " << final_set.size() << " eigenvector variations leading to sub-tolerance effects, retaining " << m_eigen.size()-final_set.size() << " variations" << std::endl;
819 
820  removeVariations(final_set); // <----------------- This method actually performs the reduction. The above logic simply flags which variations to GET RID OF, inserting them into "final_set"
821 
822  if (m_verbose) std::cout << " The total variance is " << m_totalvariance << " and the reduction captured " << 100*(m_capturedvariance/m_totalvariance) << "% of this." << std::endl;
826  if (m_validate){ // <---- this flag can be set manually in a local checkout of this package (temporary fix)
827  validate_reduction(cov.GetNrows(), corr, m_eigen, result, "SFEigen", m_taggername, m_wp, m_jetauthor); // <------ This method is simply here to report the matrix comparison, for reduction scheme validation
828  }
829 
830  m_initialized = true;
831 }
832 
833 //________________________________________________________________________________
834 void
836 {
837  if (set.size() == 0) return;
838 
839  std::vector<std::pair<TH1*, TH1*> > new_eigen;
840  for (size_t index = 0; index < m_eigen.size(); ++index){
841  if (set.count(index) == 0) new_eigen.push_back(m_eigen[index]);
842  else { delete m_eigen[index].first; delete m_eigen[index].second; }
843  }
844  m_eigen = new_eigen;
845 }
846 
847 //________________________________________________________________________________
848 void
850 {
851  IndexSet simple_set;
852 
853  for (IndexSuperSet::iterator set_it = set.begin(); set_it != set.end(); ++set_it) {
854  for (IndexSet::iterator subset_it = set_it->begin(); subset_it != set_it->end(); ++subset_it)
855  simple_set.insert(*subset_it);
856  }
857 
858  removeVariations(simple_set);
859 }
860 
861 //________________________________________________________________________________
862 void
864 {
865  // Merge all systematic variation starting from the given index.
866  // The resulting merged variation replaces the first entry in the list
867  // (i.e., the entry specified by the index).
868  IndexSet simple_set;
869 
870  for (size_t it = index; it < m_eigen.size(); ++it)
871  simple_set.insert(it);
872  mergeVariations(simple_set);
873 }
874 
875 //________________________________________________________________________________
876 void
878 {
879  IndexSuperSet sset;
880  sset.insert(set);
881  mergeVariations(sset);
882 }
883 
884 //________________________________________________________________________________
885 void
887 {
888  // check for overlap
890  for (IndexSuperSet::iterator set_it = set.begin(); set_it != set.end(); ++set_it) {
891  for (IndexSet::iterator subset_it = set_it->begin(); subset_it != set_it->end(); ++subset_it){
892  if (checker.count(*subset_it) == 0 && *subset_it <= m_eigen.size())
893  checker.insert(*subset_it);
894  else {
895  std::cerr << "Error in CalibrationDataEigenVariations::mergeVariations: \
896  IndexSets must not overlap and must lie between 1 and " << m_eigen.size() << ". Aborting!" << std::endl;
897  return;
898  }
899  }
900  }
901 
902  // retrieve the central calibration
903  TH1 *result = static_cast<TH1*>(m_cnt->GetValue("result"));
904  IndexSet toDelete;
905  int nbins = result->GetNbinsX()+2;
906  int ndim = result->GetDimension();
907  if (ndim > 1) nbins *= (result->GetNbinsY()+2);
908  if (ndim > 2) nbins *= (result->GetNbinsZ()+2);
909 
910  // TH1 *var_up_final = static_cast<TH1*>(result->Clone()),
911  // *var_down_final = static_cast<TH1*>(result->Clone());
912 
913  // var_up_final->Reset();
914  // var_down_final->Reset();
915 
916  // complex sum
917  for (IndexSuperSet::iterator set_it = set.begin(); set_it != set.end(); ++set_it) {
918  if (set_it->empty()) continue;
919 
920  double sum_H_up = 0.0, sum_H_down = 0.0;
921  size_t lowest_index = *set_it->lower_bound(0);
922  TH1 *total_var_up = static_cast<TH1*>(m_eigen[lowest_index].first->Clone()),
923  *total_var_down = static_cast<TH1*>(m_eigen[lowest_index].second->Clone());
924  total_var_up->SetDirectory(0);
925  total_var_down->SetDirectory(0);
926 
927  total_var_up->Reset();
928  total_var_down->Reset();
929 
930  // sum all other variations
931  for (IndexSet::iterator subset_it = set_it->begin();
932  subset_it != set_it->end(); ++subset_it) {
933  size_t actual_index = *subset_it;
934 
935  if (actual_index != lowest_index) toDelete.insert(*subset_it);
936 
937  TH1 *partial_var_up = static_cast<TH1*>(m_eigen[actual_index].first->Clone()),
938  *partial_var_down = static_cast<TH1*>(m_eigen[actual_index].second->Clone());
939  partial_var_up->SetDirectory(0);
940  partial_var_down->SetDirectory(0);
941 
942  partial_var_up->Add(result, -1.0); // <----- Is this correct? Should it be +1?
943  partial_var_down->Add(result, -1.0);
944  for (int i = 0; i < nbins; ++i) {
945  partial_var_down->SetBinContent(i, -1.0*partial_var_down->GetBinContent(i));
946  }
947 
948  for (int u = 0; u < nbins; ++u) {
949  double sum_up = total_var_up->GetBinContent(u),
950  sum_down = total_var_down->GetBinContent(u);
951  for (int v = 0; v < nbins; ++v) {
952  sum_up += partial_var_up->GetBinContent(u)*partial_var_up->GetBinContent(v);
953  sum_H_up += partial_var_up->GetBinContent(u)*partial_var_up->GetBinContent(v);
954  sum_down += partial_var_down->GetBinContent(u)*partial_var_down->GetBinContent(v);
955  sum_H_down += partial_var_down->GetBinContent(u)*partial_var_down->GetBinContent(v);
956  }
957  total_var_up->SetBinContent(u, sum_up);
958  total_var_down->SetBinContent(u, sum_down);
959  }
960  delete partial_var_up;
961  delete partial_var_down;
962  }
963 
964  // final part of complex summing
965  for (int i = 0; i < nbins; ++i) {
966  if (sum_H_up != 0.0)
967  total_var_up->SetBinContent(i, total_var_up->GetBinContent(i)/sqrt(sum_H_up));
968  else
969  total_var_up->SetBinContent(i, 0.0);
970  if (sum_H_down != 0.0)
971  total_var_down->SetBinContent(i, -1.0*total_var_down->GetBinContent(i)/sqrt(sum_H_down));
972  else
973  total_var_down->SetBinContent(i, 0.0);
974  }
975 
976  total_var_up->Add(result);
977  total_var_down->Add(result);
978 
979  m_eigen[lowest_index].first = total_var_up;
980  m_eigen[lowest_index].second = total_var_down;
981  }
982 
983  removeVariations(toDelete);
984 }
985 
986 //________________________________________________________________________________
987 unsigned int
988 CalibrationDataEigenVariations::getNumberOfNamedVariations() const // <---- I'll have to either report all flavours or something for SFGLobalEigen
989 {
990  // Returns the number of named variations
991 
992  return m_namedIndices.size();
993 }
994 
995 //________________________________________________________________________________
998 {
999  // Provides the list of named variations
1000 
1002  for (map<string, unsigned int>::const_iterator it = m_namedIndices.begin(); it != m_namedIndices.end(); ++it){
1003  names.push_back(it->first);
1004  }
1005  return names;
1006 }
1007 
1008 //________________________________________________________________________________
1009 unsigned int
1011 {
1012  if (! m_initialized) initialize();
1013  return m_eigen.size();
1014 }
1015 
1016 //________________________________________________________________________________
1017 bool
1019  TH1*& up, TH1*& down)
1020 {
1021  // Return the pointers to the up- and downward variation histogram for the specified
1022  // eigenvector variation. In case of an invalid variation number, null pointers will
1023  // be returned and the return value will be false.
1024  //
1025  // variation: eigenvector variation number
1026  // up: (reference to) pointer to upward variation histogram
1027  // down: (reference to) pointer to downward variation histogram
1028 
1029  if (! m_initialized) initialize();
1030 
1031  if (variation < m_eigen.size()) {
1032  up = m_eigen[variation].first;
1033  down = m_eigen[variation].second;
1034  return true;
1035  }
1036 
1037  up = down = 0;
1038  return false;
1039 }
1040 
1041 //________________________________________________________________________________
1042 bool
1044  TH1*& up, TH1*& down)
1045 {
1046  // Return the pointers to the up- and downward variation histogram for the specified
1047  // named variation. In case of an invalid named variation, null pointers will
1048  // be returned and the return value will be false.
1049  //
1050  // name: named variation
1051  // up: (reference to) pointer to upward variation histogram
1052  // down: (reference to) pointer to downward variation histogram
1053 
1054  map<string, unsigned int>::const_iterator it = m_namedIndices.find(name);
1055  if (it != m_namedIndices.end()) return getNamedVariation(it->second, up, down);
1056 
1057  up = down = 0;
1058  return false;
1059 }
1060 
1061 //________________________________________________________________________________
1062 bool
1064  TH1*& up, TH1*& down)
1065 {
1066  // Return the pointers to the up- and downward variation histogram for the specified
1067  // named variation. In case of an invalid named variation number, null pointers will
1068  // be returned and the return value will be false.
1069  //
1070  // nameIndex: named variation number
1071  // up: (reference to) pointer to upward variation histogram
1072  // down: (reference to) pointer to downward variation histogram
1073 
1074  if (! m_initialized) initialize();
1075 
1076  if (nameIndex < m_named.size()) {
1077  up = m_named[nameIndex].first;
1078  down = m_named[nameIndex].second;
1079  return true;
1080  }
1081 
1082  up = down = 0;
1083  return false;
1084 }
1085 
1086 //________________________________________________________________________________
1087 unsigned int
1089 {
1090  // Return the integer index corresponding to the named variation.
1091  // Note that no checks are made on the validity of the name provided.
1092 
1093  map<string, unsigned int>::const_iterator it = m_namedIndices.find(name);
1094  return it->second;
1095 }
1096 
1097 //________________________________________________________________________________
1098 bool
1100 {
1101  // Verifies whether the given named variation index corresponds to the extrapolation
1102  // uncertainty.
1103 
1104  return (m_namedExtrapolation == int(nameIndex));
1105 }
1106 
1107 //________________________________________________________________________________
1108 bool
1110  std::map<std::string, std::map<std::string, float>> &coefficientMap)
1111 {
1112  // Calculating eigen vector recomposition coefficient map and pass to
1113  // user by reference. Return true if method success. Return false and
1114  // will not modify coefficientMap if function failed.
1115  //
1116  // label: flavour label
1117  // coefficientMap: (reference to) coefficentMap which will be used as return value.
1118 
1119  if (! m_initialized) initialize();
1120 
1121  std::vector<TH1*> originSF_hvec;
1122  std::vector<TH1*> eigenSF_hvec;
1123 
1124  // Retrieving information for calculation
1125  std::vector<string>fullUncList = m_cnt->listUncertainties();
1126  std::vector<string> uncList;
1127  for (unsigned int t = 0; t < fullUncList.size(); ++t) {
1128  // entries that should never be included
1129  if (fullUncList[t] == "comment" || fullUncList[t] == "result" || fullUncList[t] == "combined" ||
1130  fullUncList[t] == "statistics" || fullUncList[t] == "systematics" || fullUncList[t] == "MCreference" ||
1131  fullUncList[t] == "MChadronisation" || fullUncList[t] == "extrapolation" || fullUncList[t] == "ReducedSets" ||
1132  fullUncList[t] == "excluded_set") continue;
1133 
1134  // entries that can be excluded if desired
1135  if (m_namedIndices.find(fullUncList[t]) != m_namedIndices.end()) continue;
1136 
1137  TH1* hunc = dynamic_cast<TH1*>(m_cnt->GetValue(fullUncList[t].c_str()));
1138  if (not hunc){
1139  std::cerr<<"CalibrationDataEigenVariations::EigenVectorRecomposition: dynamic cast failed\n";
1140  continue;
1141  }
1142 
1143  Int_t nx = hunc->GetNbinsX();
1144  Int_t ny = hunc->GetNbinsY();
1145  Int_t nz = hunc->GetNbinsZ();
1146  Int_t bin = 0;
1147  bool retain = false; // Retain the histogram?
1148 
1149  // discard empty histograms
1150  // Read all bins without underflow&overflow
1151  for(Int_t binx = 1; binx <= nx; binx++)
1152  for(Int_t biny = 1; biny <= ny; biny++)
1153  for(Int_t binz = 1; binz <= nz; binz++){
1154  bin = hunc->GetBin(binx, biny, binz);
1155  if (fabs(hunc->GetBinContent(bin)) > 1E-20){
1156  retain = true;
1157  break;
1158  }
1159  }// end hist bin for-loop
1160  if (!retain){
1161  if (m_verbose) std::cout<<"Eigenvector Recomposition: Empty uncertainty "<<fullUncList.at(t)<<" is discarded."<<std::endl;
1162  continue; // discard the vector
1163  }
1164 
1165  uncList.push_back(fullUncList.at(t));
1166  originSF_hvec.push_back(hunc);
1167  }
1168 
1169  TH1* nom = dynamic_cast<TH1*>(m_cnt->GetValue("result")); // Nominal SF hist
1170  if (not nom){
1171  if (m_verbose) std::cout<<"Eigenvector Recomposition: dynamic cast failed\n";
1172  return false;
1173  }
1174  int dim = nom->GetDimension();
1175  Int_t nx = nom->GetNbinsX();
1176  Int_t ny = nom->GetNbinsY();
1177  Int_t nz = nom->GetNbinsZ();
1178  Int_t nbins = nx;
1179  if(dim > 1) nbins *= ny;
1180  if(dim > 2) nbins *= nz;
1181  TMatrixD matSF(uncList.size(), nbins);
1182  Int_t col = 0; // mark the column number
1183  // Fill the Delta SF Matrix
1184  for(unsigned int i = 0; i < uncList.size(); i++){
1185  col = 0;
1186  // Loop all bins except underflow&overflow bin
1187  for(int binz = 1; binz <= nz; binz++)
1188  for(int biny = 1; biny <= ny; biny++)
1189  for(int binx = 1; binx <= nx; binx++){
1190  Int_t bin = originSF_hvec.at(i)->GetBin(binx, biny, binz);
1191  TMatrixDRow(matSF,i)[col] = originSF_hvec[i]->GetBinContent(bin);
1192  col++;
1193  }
1194  }
1195 
1196  // get eigen vectors of scale factors. Note that this is not the original eigen-vector.
1197  int nEigen = getNumberOfEigenVariations();
1198  TH1* up = nullptr;
1199  TH1* down = nullptr;
1200  for (int i = 0; i < nEigen; i++){
1201  if (!getEigenvectorVariation(i, up, down)){
1202  std::cerr<<"EigenVectorRecomposition: Error on retrieving eigenvector "<<i<<std::endl;
1203  return false;
1204  }
1205  //Need uncertainty value so subtract central calibration here.
1206  up->Add(nom, -1);
1207  eigenSF_hvec.push_back(up);
1208  }
1209  TMatrixD matEigen(nEigen, nbins);
1210 
1211  // Fill the Eigen Matrix
1212  for(int i = 0; i < nEigen; i++){
1213  col = 0;
1214  // Read 300 bins without underflow&overflow
1215  for(int binz = 1; binz <= nz; binz++)
1216  for(int biny = 1; biny <= ny; biny++)
1217  for(int binx = 1; binx <= nx; binx++){
1218  Int_t bin = eigenSF_hvec.at(i)->GetBin(binx, biny, binz);
1219  TMatrixDRow(matEigen,i)[col] = eigenSF_hvec[i]->GetBinContent(bin);
1220  col++;
1221  }
1222  }
1223 
1224  // Sanity check:
1225  TMatrixD matEigenOriginal = matEigen;
1226  TMatrixD matEigenTranspose = matEigen;
1227  matEigenTranspose = matEigenTranspose.T();
1228  TMatrixD matOriginalTimesTranspose = matEigenOriginal*matEigenTranspose;
1229  TMatrixD matEigenInvert = matEigenTranspose*matOriginalTimesTranspose.Invert();
1230  //(matEigenOriginal*matEigenInvert).DrawClone("colz"); // This should give us an identity matrix
1231 
1232  TMatrixD matCoeff = matSF*matEigenInvert;
1233  int nRows = matCoeff.GetNrows();
1234  int nCols = matCoeff.GetNcols();
1235  std::map<std::string, float> temp_map;
1236  for (int col = 0; col < nCols; col++){
1237  temp_map.clear();
1238  for(int row = 0; row < nRows; row++){
1239  temp_map[uncList[row]] = TMatrixDRow(matCoeff, row)[col];
1240  }
1241  coefficientMap["Eigen_"+label+"_"+std::to_string(col)] = temp_map;
1242  }
1243 
1244  return true;
1245 }
1246 
1248  m_verbose = verbose;
1249 }
1250 
1251 
1253 // //
1254 // CalibrationDataGlobalEigenVariations //
1255 // //
1256 // This class is intended to provide a more proper way to deal with correlations between //
1257 // calibration bins across all jet jet flavours of a tagger/author/wp combination. //
1258 // //
1259 // A CalibrationDataGlobalEigenVariations object is associated with a specific set of //
1260 // CalibrationDataHistogramContainer objects. It starts by constructing the covariance matrix from //
1261 // the information provided by the container. Subsequently it diagonalises this covariance //
1262 // matrix (this is a standard eigenvalue problem, hence the name of the class), and stores //
1263 // the result as 'variation' histograms (representing the eigenvectors multiplied by the //
1264 // square root of the corresponding eigenvalues). //
1265 // Since it is possible for systematic uncertainty contributions to be correlated with //
1266 // corresponding uncertainties in physics analyses, it is possible to exclude such sources //
1267 // of uncertainty from being used in the construction of the covariance matrix (this is //
1268 // since effects from the original sources of uncertainty cannot be traced anymore after //
1269 // application of the eigenvalue decomposition). It is still possible to evaluate correctly //
1270 // these uncertainties in the form of so-called 'named variations' (see class //
1271 // CalibrationDataInterfaceROOT); however this will always treat uncertainties as being //
1272 // fully correlated (or anti-correlated) between calibration bins, so it is recommended not //
1273 // to exclude uncertainties that are not correlated between bins from the eigenvector //
1274 // decomposition. //
1276 
1277 
1278 
1279 
1280 
1281 //________________________________________________________________________________
1282 CalibrationDataGlobalEigenVariations::CalibrationDataGlobalEigenVariations(const std::string& cdipath, const std::string& tagger, const std::string& wp, const std::string& jetcollection, const std::vector<std::string>& flavours, CalibrationDataHistogramContainer* cnt, bool excludeRecommendedUncertaintySet) :
1283 CalibrationDataEigenVariations(cdipath, tagger, wp, jetcollection, cnt, excludeRecommendedUncertaintySet, false), m_flav_eigen(), m_flavours(flavours)
1284 //m_blockmatrixsize(1200)
1285 {
1286  m_blockmatrixsize = 0; // <------- This needs to be computed based off of the dimensions of the result vectors (currently 4x1x5 for continuous WP, 1x300x1 for fixed cut WP, circa 2022)
1287  m_initialized = false;
1288  m_namedExtrapolation = -1;
1289  m_statVariations = false;
1290  // We want to retrieve all the containers that belong in the tagger/jetcollection/wp group
1291  // These are then stored, with all uncertainties extracted and stored as well, for later use in EV decomposition
1292 
1293  // For now we will open up the CDI file from within the constructor, to get at the data we need
1294  TString fileName(cdipath);
1295  TFile* f = TFile::Open(fileName.Data(), "READ");
1296  f->cd();
1297 
1298  // This loop extracts all the "flavour containers", i.e. all CalibrationDataHistogramContainers pertaining to the same path, but with different flavours
1299  // It also puts all the uncertainties for all containers into a set, which we can then later loop over, to construct the total covariance matrix
1300  for (const auto& flavour : m_flavours){
1301  std::string dir = m_taggername + "/" + m_jetauthor + "/" + m_wp + "/" + flavour + "/" + "default_SF" ;
1302  TString contName(dir);
1304  f->GetObject(contName.Data(), c);
1305  if (c) {
1306  if (m_verbose) std::cout << "Found " << contName.Data() << std::endl;
1307  m_histcontainers.insert({flavour, c}); // Build the mapping between flavour and the corresponding "flavour container", i.e. the CalibrationDataHistogramContainer
1308  std::vector<std::string> uncs = c->listUncertainties();
1309  TH1* result = dynamic_cast<TH1*>(c->GetValue("result")); // let's get the size of this for later
1310  if (not result){
1311  if (m_verbose) std::cout << "Dynamic cast failed at "<<__LINE__<<"\n";
1312  continue;
1313  }
1314  m_blockmatrixsize+=result->GetNbinsX()*result->GetNbinsY()*result->GetNbinsZ(); // should be ~300 for fixed cut, something else for continuous
1315  if (m_verbose) std::cout << "m_blockmatrixsize is now " << m_blockmatrixsize << std::endl;
1316  for (const std::string& unc : uncs){
1317  if (unc.find("stat_np") != string::npos) m_statVariations = true;
1318  if ((unc=="result")||(unc=="comment")||(unc=="ReducedSets")||(unc=="systematics")||(unc=="statistics")||(unc=="extrapolation")||(unc=="MChadronisation")||(unc=="combined")||(unc=="extrapolation from charm")) {
1319  continue;
1320  } else {
1321  m_all_shared_systematics.insert(unc); // Construct the set of uncertainties to get a full tally of everything in the container group
1322  }
1323  }
1324  // If specified, add items recommended for exclusion from EV decomposition by the calibration group to the 'named uncertainties' list
1325  // This used to work on only one container, but now we do it on all four containers
1326  if (excludeRecommendedUncertaintySet) {
1327  std::vector<std::string> to_exclude = split(c->getExcludedUncertainties());
1328  if (to_exclude.size() == 0) {
1329  std::cerr << "CalibrationDataEigenVariations warning: exclusion of pre-set uncertainties list requested but no (or empty) list found" << std::endl;
1330  }
1331  for (const auto& name : to_exclude) {
1332  if (name == "") continue;
1333  excludeNamedUncertainty(name, flavour);
1334  }
1335  }
1336  }
1337  }
1338 
1339  if (m_verbose) std::cout << "\n number of shared uncertainties is " << m_all_shared_systematics.size() << std::endl;
1340 
1342  if (it != m_all_shared_systematics.end()){
1343  if (m_verbose) std::cout << "Printing out all shared uncertainties for " << tagger << "/" << jetcollection << "/" << wp << std::endl;
1344  if (m_verbose) std::cout << "| " << std::endl;
1345  while (it != m_all_shared_systematics.end()){
1346  if (m_verbose) std::cout << "|-- " << (*it) << std::endl;
1347  ++it;
1348  }
1349  } else {
1350  if (m_verbose) std::cout << "| no shared systematics between ";
1351  for (const auto& f : m_flavours){
1352  if (m_verbose) std::cout << f << ", ";
1353  } if (m_verbose) std::cout << std::endl;
1354  }
1355  // End of constructor
1356 }
1357 
1358 //________________________________________________________________________________
1360 {
1361  // delete all variation histograms owned by us
1362  for (const auto& flavour : m_flavours){
1363  for (vector<pair<TH1*, TH1*> >::iterator it = m_flav_eigen[flavour].begin(); it != m_flav_eigen[flavour].end(); ++it) {
1364  delete it->first;
1365  delete it->second;
1366  }
1367 
1368  for (vector<pair<TH1*, TH1*> >::iterator it = m_flav_named[flavour].begin(); it != m_flav_named[flavour].end(); ++it) {
1369  delete it->first;
1370  delete it->second;
1371  }
1372  }
1373 }
1374 
1375 //________________________________________________________________________________
1376 TMatrixDSym
1378 {
1379  // Construct the block (global) covariance matrix that is to be diagonalised.
1380  // Note that extrapolation uncertainties (identified by the keyword "extrapolation,
1381  // this will pertain mostly to the extrapolation to high jet pt) are always excluded
1382  // since by definition they will not apply to the normal calibration bins. Instead
1383  // this uncertainty has to be dealt with as a named variation. In addition there are
1384  // other items ("combined", "systematics") that will not be dealt with correctly
1385  // either and hence are excluded as well).
1386  //
1387  // Note that if an explicit covariance matrix is supplied (at present this may be
1388  // the case only for statistical uncertainties: in the case of "continuous tagging",
1389  // multinomial statistics applies so bin-to-bin correlations exist) this will be
1390  // used instead of constructing the statistical uncertainties' covariance matrix on
1391  // the fly.
1392 
1393  std::map<std::string, TMatrixDSym> cov_matrices; // temporary store, just to aid in printing out the individual systematic covariance matrices
1394  TMatrixDSym global_covariance(m_blockmatrixsize);
1395  // Then loop through the list of (other) uncertainties
1396  for (const std::string& unc : m_all_shared_systematics){
1397  std::vector<int> flavs_in_common;
1398  TString tunc(unc);
1399  std::vector<double> comb_syst; // this vector combines the TH1 uncertainty bins for each flavour into one object -> stored in comb_systematics for now, but meant for covariance matrix method
1400  // For the fixed cut case, we want to bin by groups of flavour > pT (i.e. "blocks" of flavour)
1401  // For the continuous case, we want to bin by groups of flavour > tagweight > pT (i.e. "blocks" of flavour, containing tagweight blocks... more complicated, but works on same principle)
1402  for (const auto& flavour : m_flavours){
1403  Analysis::CalibrationDataHistogramContainer* c = m_histcontainers[flavour]; // pointer to the flavour container
1404  int flavour_size = 0; // Store the length of the uncertainty in the flavour, initialize to zero
1405  if (c) {
1406  // Now we want to get the histogram for this systematic, for this flavour
1407  TH1* hunc = dynamic_cast<TH1*>(c->GetValue(tunc.Data()));
1408  TH1* ref = dynamic_cast<TH1*>(c->GetValue("result")); // retrieving this just in case the uncertainty doesn't exist for this flavour, just need it to get dimensions right
1409  if (not ref){
1410  if (m_verbose) std::cout << " There was no uncertainty OR SF/EFF results... Are you sure you have the right CDIContainer path?" << std::endl;
1411  continue;
1412  }
1413  int tagweightax = c->getTagWeightAxis(); // for handling the continuous case(s)
1414  if (hunc){
1415  flavs_in_common.push_back(1); // report that we have this uncertainty in this flavour
1416  Int_t nbinx = hunc->GetNbinsX(), nbiny = hunc->GetNbinsY(), nbinz = hunc->GetNbinsZ();
1417  Int_t rows = nbinx;
1418  if (hunc->GetDimension() > 1) rows *= nbiny;
1419  if (hunc->GetDimension() > 2) rows *= nbinz;
1420  flavour_size = rows; // Record the number of bins in the uncertainty TH1
1421  } else {
1422  flavs_in_common.push_back(0); // If the uncertainty doesn't exist for that flavour, just report, we'll set to zero in the combined vector
1423  // Because the uncertainty doesn't exist for this flavour, we just get the dimensions we need
1424  Int_t nbinx = ref->GetNbinsX(), nbiny = ref->GetNbinsY(), nbinz = ref->GetNbinsZ();
1425  Int_t rows = nbinx;
1426  if (ref->GetDimension() > 1) rows *= nbiny;
1427  if (ref->GetDimension() > 2) rows *= nbinz;
1428  flavour_size = rows;
1429  }
1430 
1431  // Now we can loop through the bins of the flavour uncertainty, adding them onto the combined systematic
1432  if (tagweightax == -1){ //<--- i.e. NOT continuous, but is a fixed cut WP
1433  for (int i = 1 ; i <= flavour_size ; i++){
1434  if (hunc){
1435  Int_t bin = hunc->GetBin(1,i,1);
1436  double unc_val = hunc->GetBinContent(bin);
1437  comb_syst.push_back(unc_val); // if uncertainty, push uncertainty bin content to combined systematic vector
1438  } else {
1439  comb_syst.push_back(0.0); // if no uncertainty, push 0's
1440  }
1441  }
1442  } else if (tagweightax == 0){
1443  // X axis is the tagweight axis, meaning Y is pt, Z is abs(eta)
1444  for (Int_t xbins = 1 ; xbins <= ref->GetNbinsX() ; xbins++){
1445  for (Int_t zbins = 1 ; zbins <= ref->GetNbinsZ() ; zbins++){
1446  for (Int_t ybins = 1 ; ybins <= ref->GetNbinsY() ; ybins++){
1447  if (hunc){
1448  Int_t bin = hunc->GetBin(xbins,ybins,zbins);
1449  double unc_val = hunc->GetBinContent(bin);
1450  comb_syst.push_back(unc_val); // if uncertainty, push uncertainty bin content to combined systematic vector
1451  } else {
1452  comb_syst.push_back(0.0); // if no uncertainty, push 0's
1453  }
1454  // And now we should be constructing the initial covariance matrix for block continuous correctly
1455  }
1456  }
1457  }
1458  } else if (tagweightax == 1){
1459  // Y axis is the tagweight axis, meaning X is pt, Z is abs(eta)
1460  for (Int_t ybins = 1 ; ybins <= ref->GetNbinsY() ; ybins++){
1461  for (Int_t zbins = 1 ; zbins <= ref->GetNbinsZ() ; zbins++){
1462  for (Int_t xbins = 1 ; xbins <= ref->GetNbinsX() ; xbins++){
1463  if (hunc){
1464  Int_t bin = hunc->GetBin(xbins,ybins,zbins);
1465  double unc_val = hunc->GetBinContent(bin);
1466  comb_syst.push_back(unc_val); // if uncertainty, push uncertainty bin content to combined systematic vector
1467  } else {
1468  comb_syst.push_back(0.0); // if no uncertainty, push 0's
1469  }
1470  // And now we should be constructing the initial covariance matrix for block continuous correctly
1471  }
1472  }
1473  }
1474  } else if (tagweightax == 2){
1475  // Z axis is the tagweight axis, meaning X is pt, Y is abs(eta)
1476  for (Int_t zbins = 1 ; zbins <= ref->GetNbinsZ() ; zbins++){
1477  for (Int_t ybins = 1 ; ybins <= ref->GetNbinsY() ; ybins++){
1478  for (Int_t xbins = 1 ; xbins <= ref->GetNbinsX() ; xbins++){
1479  if (hunc){
1480  Int_t bin = hunc->GetBin(xbins,ybins,zbins);
1481  double unc_val = hunc->GetBinContent(bin);
1482  comb_syst.push_back(unc_val); // if uncertainty, push uncertainty bin content to combined systematic vector
1483  } else {
1484  comb_syst.push_back(0.0); // if no uncertainty, push 0's
1485  }
1486  // And now we should be constructing the initial covariance matrix for block continuous correctly
1487  }
1488  }
1489  }
1490  }
1491  }
1492  }
1493  //comb_systematics.insert({unc, comb_syst}); // after having looped through the bins for each flavour, the comb_syst vector should be completed and added (or rather, made into a covariance matrix)
1494  TMatrixDSym unc_cov(comb_syst.size());
1495  if (unc == "statistics"){
1496  unc_cov = getStatCovarianceMatrix(comb_syst, m_statVariations); // we want to handle the "statistics" uncertainty differently
1497  } else {
1498  unc_cov = getSystCovarianceMatrix(comb_syst);
1499  }
1500  cov_matrices.insert({unc, unc_cov}); // add the covariance matrix for the uncertainty to this map, this is temporary for testing/plotting purposes
1501 
1502  // To look only at uncertainties that pertain to more than one flavour (2, 3 or all 4) we can store the covariances separately for later saving and plotting
1503  if (flavs_in_common[0]+flavs_in_common[1]+flavs_in_common[2]+flavs_in_common[3] > 1){
1504  m_only_shared_systematics.insert(unc) ; // mark the shared systematics...
1505  }
1506 
1507  global_covariance += unc_cov;
1508  }
1509  return global_covariance;
1510 }
1511 
1512 
1513 //________________________________________________________________________________
1514 void
1515 CalibrationDataGlobalEigenVariations::excludeNamedUncertainty(const std::string& name, const std::string& flavour)//, CalibrationDataContainer* cnt)
1516 {
1517  // Exclude the source of uncertainty identified by the given name from being used
1518  // in the construction of the covariance matrix to be diagonalised.
1519  // Notes:
1520  // - Some names returned by CalibrationDataContainer::listUncertainties() are not
1521  // meaningful in this context, and specifying them is not allowed.
1522  // - Once the eigenvector diagonalisation has been carried out, this method may
1523  // not be used anymore.
1524 
1525  if (m_initialized) std::cerr << "CalibrationDataGlobalEigenVariations::excludeNamedUncertainty error:" << " initialization already done" << std::endl;
1526 
1527  else if (name == "comment" || name == "result" || name == "systematics" ||
1528  name == "statistics" || name == "combined" || name == "extrapolation" ||
1529  name == "MCreference" || name == "MChadronisation" || name == "ReducedSets" ||
1530  name == "excluded_set" || name == "" || name == " ")
1531  std::cerr << "CalibrationDataGlobalEigenVariations::excludeNamedUncertainty error:" << " name [" << name << "] not allowed" << std::endl;
1532 
1533  // Note: we WANT to exclude named uncertainties FROM ALL FLAVOURS, even if they don't contain the uncertainty (just fill with zeros). So I won't do this check here.
1534  // only really add if the entry is not yet in the list
1535  else if (m_flav_namedIndices[flavour].find(name) == m_flav_namedIndices[flavour].end()) {
1536  m_flav_named[flavour].push_back(std::pair<TH1*, TH1*>(0, 0));
1537  m_flav_namedIndices[flavour][name] = m_flav_named[flavour].size()-1; // store the index that the name variation pair is stored with in m_named
1538  }
1539 }
1540 
1541 
1542 //________________________________________________________________________________
1543 std::vector<std::string>
1545 {
1546  // Provides the list of named variations
1547 
1548  std::vector<std::string> names;
1549  for(const auto& namedar : m_flav_namedIndices.find(flavour)->second){
1550  names.push_back(namedar.first);
1551  }
1552  return names;
1553 }
1554 
1555 
1556 //________________________________________________________________________________
1557 void
1559 {
1560  // This is this class's most important method, in the sense that it does all the
1561  // math and constructs all "variation" histograms (for both eigenvector and named
1562  // named variations). This constitutes the full initialisation of the class.
1563  // This method is meant to be called only after all calls (if any) to the
1564  // CalibrationDataGlobalEigenVariations::excludeNamedUncertainty() method.
1565 
1566 
1567  // First step: construct the block covariance matrix
1568  TMatrixDSym cov = getEigenCovarianceMatrix();
1569 
1570  TMatrixDSym corr(cov); // We want to construct the correlation matrix in order to compare the final eigenvariations correlation matrix to it
1571  for (int row = 0 ; row < cov.GetNrows() ; row++){
1572  for (int col = 0 ; col < cov.GetNcols() ; col++){
1573  double rowvar = sqrt(cov(row,row));
1574  double colvar = sqrt(cov(col,col));
1575  corr(row,col) = corr(row,col)/(rowvar * colvar); // divide each element by the variance
1576  }
1577  }
1578 
1580 
1581  // Second step: create the variations for the named sources of uncertainty (easy...)
1582  // News flash: This isn't so easy now, as it has to be done for all the flavours to which the uncertainty pertains
1583  // the following are temporary data structures
1584  std::vector<double> combined_result;
1585  std::map<std::string, int> flav_bins; // store the nbins of each flavour histogram for later use in "reporting"
1586  // and eventually, at the end, we will want to separate the flavour blocks out...
1587  for (const auto& flavour : m_flavours) {
1588  // for each flavour, we want to combine the results and uncertainty values across flavours into one "block" vector
1589  // retrieve the central calibration
1590  Analysis::CalibrationDataHistogramContainer* c = m_histcontainers[flavour]; // pointer to the flavour container
1591 
1592  TH1* result = dynamic_cast<TH1*>(c->GetValue("result"));
1593  if (not result){
1594  std::cerr<<"CalibrationDataGlobalEigenVariations::initialize: dynamic cast failed\n ";
1595  continue;
1596  }
1597  //construct the combined_result and combined_named_variations (up and down)
1598  if (c->getTagWeightAxis() == -1){ // For fixed cut WP, the Y axis **should** be the pT axis (but can it can potentially be different in the future)
1599  flav_bins[flavour] = result->GetNbinsY(); // Add the number of bins of the result histogram with non-zero results...
1600  if (m_verbose) std::cout << "flav_bins["<<flavour<<"] = " << flav_bins[flavour] << std::endl;
1601  for(int i = 0 ; i < flav_bins[flavour] ; i++){
1602  // push bin content onto the combined_result vector
1603  Int_t bin = result->GetBin(1,i+1); // This will only pick up the CONTENTS, not of the underflow bin
1604  double res_value = result->GetBinContent(bin);
1605  combined_result.push_back(res_value);
1606  }
1607  } else if (c->getTagWeightAxis() == 0) { // for continuous WP, the taxweight axis determines which axis is pt and |eta|
1608  flav_bins[flavour] = result->GetNbinsX()*result->GetNbinsY();
1609  int tagbins = result->GetNbinsX();
1610  int ptbins = result->GetNbinsY();
1611  if (m_verbose) std::cout << "flav_bins["<<flavour<<"] = " << flav_bins[flavour] << std::endl;
1612  for(int i = 0 ; i < tagbins ; i++){
1613  for(int j = 0 ; j < ptbins ; j++){
1614  // push bin content onto the combined_result vector
1615  Int_t bin = result->GetBin(j+1,1,i+1); // This will only pick up the CONTENTS, not of the underflow bin
1616  double res_value = result->GetBinContent(bin);
1617  combined_result.push_back(res_value);
1618  }
1619  }
1620  } else if (c->getTagWeightAxis() == 1) {
1621  flav_bins[flavour] = result->GetNbinsX()*result->GetNbinsY();
1622  int tagbins = result->GetNbinsY();
1623  int ptbins = result->GetNbinsX();
1624  if (m_verbose) std::cout << "flav_bins["<<flavour<<"] = " << flav_bins[flavour] << std::endl;
1625  for(int i = 0 ; i < tagbins ; i++){
1626  for(int j = 0 ; j < ptbins ; j++){
1627  // push bin content onto the combined_result vector
1628  Int_t bin = result->GetBin(j+1,1,i+1); // This will only pick up the CONTENTS, not of the underflow bin
1629  double res_value = result->GetBinContent(bin);
1630  combined_result.push_back(res_value);
1631  }
1632  }
1633  } else if (c->getTagWeightAxis() == 2) {
1634  flav_bins[flavour] = result->GetNbinsX()*result->GetNbinsZ();
1635  int tagbins = result->GetNbinsZ();
1636  int ptbins = result->GetNbinsX();
1637  if (m_verbose) std::cout << "flav_bins["<<flavour<<"] = " << flav_bins[flavour] << std::endl;
1638  for(int i = 0 ; i < tagbins ; i++){
1639  for(int j = 0 ; j < ptbins ; j++){
1640  // push bin content onto the combined_result vector
1641  Int_t bin = result->GetBin(j+1,1,i+1); // This will only pick up the CONTENTS, not of the underflow bin
1642  double res_value = result->GetBinContent(bin);
1643  combined_result.push_back(res_value);
1644  }
1645  }
1646  }
1647 
1648 
1649  // loop over the excluded uncertainties for this flavour, and construct their actual variations...
1650  // the "m_flav_namedIndices" are constructed within "excludeNamedUncertainties", which is called in the constructor
1651  for (map<string, unsigned int>::iterator it = m_flav_namedIndices[flavour].begin(); it != m_flav_namedIndices[flavour].end(); ++it) {
1652  TH1* hunc = (TH1*) c->GetValue(it->first.c_str()); // this should store the name uncertainty, if it exists for this flavour
1653  // I need to test if this uncertainty actually exists, and if it doesn't just use a ZERO variation histogram explicitly
1654  // but even if it doesn't exist, we want to have it, so that the indices match between flavours
1655  pair<TH1*, TH1*>& p = m_flav_named[flavour][it->second];
1656  TString namedvar("namedVar");
1657  namedvar += it->first.c_str();
1658  TString namedvarUp(namedvar); namedvarUp += "_up";
1659  TString namedvarDown(namedvar); namedvarDown += "_down";
1660  TH1* resultVariedUp = (TH1*)result->Clone(namedvarUp);
1661  TH1* resultVariedDown = (TH1*)result->Clone(namedvarDown);
1662  if (hunc){
1663  resultVariedUp->Add(hunc, 1.0); resultVariedUp->SetDirectory(0);
1664  resultVariedDown->Add(hunc, -1.0); resultVariedDown->SetDirectory(0);
1665  } else {
1666  resultVariedUp->SetDirectory(0);
1667  resultVariedDown->SetDirectory(0);
1668  }
1669  p.first = resultVariedUp;
1670  p.second = resultVariedDown;
1671  } // End of uncertainty in flavour loop
1672 
1673  // Now handle the extrapolation uncertainties per flavour...
1674  // Refinement: add the "extrapolation" uncertainty as a named uncertainty, if the histogram is provided
1675  // This is a bit special, since the extrapolation uncertainty histogram has a different size than other histograms
1676  if (TH1* hunc = (TH1*)c->GetValue("extrapolation")) { // this is just saying "if it exists"...
1677  TH1* resultVariedUp = (TH1*) hunc->Clone("extrapolation_up"); resultVariedUp->SetDirectory(0);
1678  TH1* resultVariedDown = (TH1*) hunc->Clone("extrapolation_down"); resultVariedDown->SetDirectory(0);
1679  Int_t nbinx = hunc->GetNbinsX()+2, nbiny = hunc->GetNbinsY()+2, nbinz = hunc->GetNbinsZ()+2;
1680  Int_t firstbinx = hunc->GetXaxis()->FindFixBin(result->GetXaxis()->GetBinCenter(1));
1681  Int_t firstbiny = result->GetDimension() > 1 ? hunc->GetYaxis()->FindFixBin(result->GetYaxis()->GetBinCenter(1)) : 1;
1682  Int_t firstbinz = result->GetDimension() > 2 ? hunc->GetZaxis()->FindFixBin(result->GetZaxis()->GetBinCenter(1)) : 1;
1683  for (Int_t binx = 1; binx < nbinx-1; ++binx) {
1684  Int_t binxResult = binx - firstbinx + 1;
1685  if (binxResult < 1) binxResult = 1;
1686  if (binxResult > result->GetNbinsX()) binxResult = result->GetNbinsX();
1687  for (Int_t biny = 1; biny < nbiny-1; ++biny) {
1688  Int_t binyResult = biny - firstbiny + 1;
1689  if (binyResult > result->GetNbinsY()) binyResult = result->GetNbinsY();
1690  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
1691  Int_t binzResult = binz - firstbinz + 1;
1692  if (binzResult > result->GetNbinsZ()) binzResult = result->GetNbinsZ();
1693  Int_t bin = hunc->GetBin(binx, biny, binz);
1694  double contResult = result->GetBinContent(binxResult, binyResult, binzResult);
1695  resultVariedUp->SetBinContent(bin, contResult + hunc->GetBinContent(bin));
1696  resultVariedDown->SetBinContent(bin, contResult - hunc->GetBinError(bin));
1697  }
1698  }
1699  }
1700  m_flav_named[flavour].push_back(std::make_pair(resultVariedUp, resultVariedDown));
1701  m_flav_namedExtrapolation[flavour] = m_flav_namedIndices[flavour]["extrapolation"] = m_flav_named[flavour].size()-1;
1702  }
1703 
1704 
1705  } // End flavour loop
1706 
1707 
1708 
1709  // Third step: compute the eigenvector variations corresponding to the remaining sources of uncertainty
1710  // First, build the combined_result vector into a TH1
1711  std::unique_ptr<TH1> comb_result(new TH1D("combined_result", "", combined_result.size(), 0., 1.));
1712  int nbins = comb_result->GetNbinsX()+2;
1713  int ndim = comb_result->GetDimension();
1714  if (ndim > 1) nbins*= (comb_result->GetNbinsY()+2);
1715  if (ndim > 2) nbins*= (comb_result->GetNbinsZ()+2);
1716 
1717  // I want to take the contents of "combined_result" and fill in "comb_result" without the under/overflow
1718  for (unsigned int i=0 ; i<combined_result.size() ; i++){
1719  // assuming dimension == 1, which should be the case...
1720  comb_result->SetBinContent(i+1, combined_result[i]); // setting i+1 so we don't start with the underflow bin
1721  }
1722 
1723  // Get the portions of the covariance matrix that aren't zero, this next step
1724  TMatrixT<double> matrixVariationJacobian = getJacobianReductionMatrix(cov); // we pass the covariance matrix in as a starting point
1725 
1726  int size = matrixVariationJacobian.GetNrows();
1727 
1728  // Reduce the matrix to one without the zeros, using a "similarity" transformation
1729  const TMatrixDSym matrixCovariance = cov.Similarity(matrixVariationJacobian); // <--- This step removes the zeros
1730 
1731  // Carry out the Eigenvector decomposition on this matrix
1732  TMatrixDSymEigen eigenValueMaker (matrixCovariance);
1733  TVectorT<double> eigenValues = eigenValueMaker.GetEigenValues();
1734  TMatrixT<double> eigenVectors = eigenValueMaker.GetEigenVectors();
1735  TMatrixT<double> matrixVariations (size,size);
1736 
1737  //compute the total variance by summing the eigenvalues
1738  m_totalvariance = eigenValues.Sum();
1739 
1740  for (int i = 0; i < size; ++i) {
1741  for (int r = 0; r < size; ++r) {
1742  //first index is the variation number, second corresponds to the pT bin // The "eigenvariations" matrix is the "C" matrix which has CKC^T = I with "K" being the o.g. covariance matrix, and "I" is the identity.
1743  matrixVariations(i,r) = -1.0*eigenVectors[r][i]*sqrt(fabs(eigenValues[i])); // So the result is a matrix (eigenvariation) which is the eigenvector scaled by the sqrt(eigenvalue)
1744  }
1745  } // <------- matrixVariations: each row is one variation, each column is the pT bin.
1746 
1747  TMatrixT<double> matrixVariationsWithZeros = matrixVariations * matrixVariationJacobian; // This step adds in the zero rows again
1748 
1749  // Construct the initial set of variations from this
1750  for (int i = 0; i < matrixVariationsWithZeros.GetNrows(); ++i) {
1751  TString superstring("eigenVar");
1752  superstring+=i;
1753 
1754  TString nameUp(superstring); nameUp += "_up"; // In the end you get something like "eigenVar5_up"
1755  TString nameDown(superstring); nameDown += "_down";
1756  // TString nameUnc(superstring); nameUnc+= "_unc";
1757 
1758  TH1* resultVariedUp = (TH1*)comb_result->Clone(nameUp); resultVariedUp->SetDirectory(0);
1759  TH1* resultVariedDown = (TH1*)comb_result->Clone(nameDown); resultVariedDown->SetDirectory(0);
1760 
1761  for (int u = 0; u < comb_result->GetNbinsX(); ++u) {
1762  resultVariedUp->SetBinContent(u,(comb_result->GetBinContent(u) + matrixVariationsWithZeros(i,u)));
1763  resultVariedDown->SetBinContent(u,(comb_result->GetBinContent(u) - matrixVariationsWithZeros(i,u)));
1764  }
1765 
1766  m_eigen.push_back(std::make_pair(resultVariedUp, resultVariedDown)); //<--- This is currently storing the FULL/combined variations, which aren't binned with proper bin widths etc.
1767  // The "proper binning" isn't necessary for pruning purposes. Later on, after pruning, separate the flavour blocks of each eigenvariation and construct the variations for each flavour, storing results in m_flav_eigen
1768 
1769  } //end eigenvector size
1770 
1771 
1773  // Without any changes, all eigenvariations are kept due to the variation being non-negligible for SOME flavour...
1775  // Step 4 : Time for PRUNING
1776  // > Check the variation bins to see if any exceed a given threshold value of "min_variance"
1777  // > Value of E-6 seems to work well for SFGlobalEigen (found through a scan of possible thresholds)
1778  // but this is not necessarily going to hold for future CDI's. This needs to be checked through the
1779  // "validate_reduction" function, which can be used to compare how well the reduction captures the total covariance.
1781 
1782  // Remove variations that are below the given tolerance (effectively meaning that they don't have any effect)
1783  IndexSet final_set;
1784  size_t current_set = 0;
1785 
1786  // We set the custom min_variance here
1787  min_variance = 1.0E-6;
1788  for (size_t index = 0; index < m_eigen.size(); ++index) {
1789  bool keep_variation = false; // guilty until proven innocent
1790  TH1* up = static_cast<TH1*>(m_eigen[index].first->Clone()); up->SetDirectory(0); // clone the up variation and check it out
1791  up->Add(comb_result.get(), -1.0); // now we're left with decimal values centered around 0, i.e. 0.02 or -0.02
1792 
1793  for (int bin = 1; bin <= nbins; ++bin) {
1794  if (fabs(up->GetBinContent(bin)) > min_variance) { // If you find even ONE bin with big enough variance, we keep the whole systematic.
1795  keep_variation = true;
1796  break;
1797  }
1798  }
1799  if (!keep_variation){ // At this stage, if we find no bins in the systematic with large enough variation, we insert it to "final_set" for removal/pruning
1800  final_set.insert(current_set);
1801  } else {
1802  m_capturedvariance += eigenValues[index];
1803  }
1804  delete up;
1805  ++current_set;
1806  }
1807  if (final_set.size() > 0){ // at this point, a set of the indices of negligible variations should have been gathered, proceed to remove them...
1808  if (m_verbose) std::cout << "CalibrationDataEigenVariations: Removing " << final_set.size() << " eigenvector variations leading to sub-tolerance effects, retaining " << m_eigen.size()-final_set.size() << " variations" << std::endl;
1809  }
1810 
1811  CalibrationDataEigenVariations::removeVariations(final_set); // This method actually performs the reduction. The above logic simply flags which variations to get rid of, inserting them into "final_set"
1812 
1813  // AT THIS STAGE: Pruning has already occurred, leaving us with a set of combined eigenvariations in "m_eigen", which we can thence recombine and compute the correlation matrix
1814  // That correlation matrix can then be compared to the original correlation matrix "corr", simply subtracting one from the other. Better approximations will have close to zero deviation.
1815  // What follows is the construction of this comparison, and the reporting of the comparison (saving it to file)...
1816  std::streamsize ss = std::cout.precision();
1817  if (m_verbose) std::cout << " The total variance is " << m_totalvariance << " and the reduction captured " << std::setprecision(9) << 100.0*(m_capturedvariance/m_totalvariance) << "% of this." << std::endl;
1818  std::cout.precision(ss); //restore precision
1822  if (m_validate){ // <---- this flag can be set manually in a local checkout of this package (temporary fix)
1823  validate_reduction(m_blockmatrixsize, corr, m_eigen, comb_result.get(), "SFGlobalEigen", m_taggername, m_wp, m_jetauthor); // This method is simply here to report the matrix comparison, for reduction scheme validation
1824  }
1825 
1826 
1828  // Let's separate out the flavour histograms now, this should be far simpler to ensure the binning is correct for each flavour.
1829  // At this stage, we should have constructed a set of combined eigenvariations stored in m_eigen.
1830  // Below, we take them one by one, separate, and store the flavour variations in m_flav_eigen, with the proper flavour heading
1831  // <----- The "mergeVariations" code originally merged the variations in m_eigen. But now that wouldn't work, since m_eigen stores
1832  // the combined histograms. We should instead merge the "reported" flavour histograms, as they're properly binned (and physically meaningful)
1833  // So if we construct the flavour variations first, keeping the indices all the same, then merge them.
1835 
1836 
1837  for(const std::pair<TH1*,TH1*>& var : m_eigen){
1838  // now we make use of the same old flavour loop and impose the flavour variation to the flavour container
1839  TString eigenvarup = var.first->GetName();
1840  TString eigenvardown = var.second->GetName();
1841  int bin_baseline = 0; // increment this by flav_bins after getting each flavour block
1842  for (const std::string& flavour : m_flavours){
1844  TH1* result = dynamic_cast<TH1*>(c->GetValue("result"));
1845  if (not result){
1846  std::cerr<<"CalibrationDataGlobalEigenVariations::initialize: dynamic cast failed\n";
1847  continue;
1848  }
1849  TH1* resultVariedUp = (TH1*)result->Clone(eigenvarup); resultVariedUp->SetDirectory(0); // copy flavour result, want to set bin contents according to the combined eigenvartion flavour block
1850  TH1* resultVariedDown = (TH1*)result->Clone(eigenvardown); resultVariedDown->SetDirectory(0);
1851  int up_to_bin = flav_bins[flavour];
1852  int current_bin = 1; // starting from 1 for filling histograms
1853  for(int flav_bin = bin_baseline+1 ; flav_bin < up_to_bin+1 ; flav_bin++){ // the +1's here are to deal with bin numbering yet again...
1854  Int_t bin = result->GetBin(1,current_bin); // increment along smaller (result) flavour variation TH1
1855  resultVariedUp->SetBinContent(bin, var.first->GetBinContent(flav_bin)); // Sets the result TH1 bin content to the eigenvariation bin content
1856  resultVariedDown->SetBinContent(bin, var.second->GetBinContent(flav_bin)); // In this way, we achieve flavour variations with proper binning
1857  current_bin+=1;
1858  }
1859  bin_baseline+=up_to_bin;
1860  m_flav_eigen[flavour].push_back(std::make_pair(resultVariedUp, resultVariedDown)); // <-------- add the flavour EV to the storage (indexed the same as in m_eigen!)
1861  }
1862  }
1863 
1864  for(const auto& f : m_flavours){
1865  if (m_verbose) std::cout << " " << f << " m_flav_eigen has " << m_flav_eigen[f].size() << std::endl;
1866  }
1867 
1868  m_initialized = true;
1869 }
1870 
1871 
1872 
1873 //________________________________________________________________________________
1874 TMatrixD
1876 {
1877  // Construct the matrix that removes the rows and columns that fail to influence
1878  // the eigen-variations. To reduce the covariance matrix, do the following:
1879  // Note: Previous version called "getEigenCovariance" whereas here we pass it in by reference to save on compute
1880  // This "cov" is the "uncompressed" eigenvariation covariance matrix for all uncertainties.
1881  // We will subsequently compress it (removing columns/rows containing zeros only)
1882  // and then construct the hopefully rectangular matrix that can remove these ones from the covariance matrix
1883 
1884  int nZeros = 0;
1885  std::vector<int> zeroComponents;
1886 
1887  // First flag all the zeros
1888  for (int i = 0 ; i < m_blockmatrixsize ; i++){
1889  if (fabs(cov(i,0)) < 1e-10){
1890  bool isThereANonZero = false;
1891  for (int j = 0 ; j < m_blockmatrixsize ; j++){
1892  // Try a first (quick) identification of rows/columns of zeros by the first element in each row
1893  // If "successful", check the whole row in more detail
1894  if (fabs(cov(i,j)) > 1e-10){
1895  isThereANonZero = true;
1896  break;
1897  }
1898  }
1899  if (! isThereANonZero){
1900  ++nZeros;
1901  zeroComponents.push_back(i) ;
1902  }
1903  }
1904  }
1905 
1906  if (nZeros >= m_blockmatrixsize) {
1907  std::cerr << " Problem. Found n. " << nZeros << " while size of matrix is " << m_blockmatrixsize << std::endl;
1908  return TMatrixDSym();
1909  }
1910 
1911  int size = m_blockmatrixsize - nZeros;
1912  TMatrixT<double> matrixVariationJacobian(size,m_blockmatrixsize);
1913  int nMissed = 0;
1914 
1915  for (int i = 0; i < m_blockmatrixsize; ++i) { // full size
1916  bool missed = false;
1917  for (unsigned int s = 0 ; s < zeroComponents.size(); ++s) { // <--- Basically what this does is it flags "missed" for a given "i" of the full bin size
1918  if (zeroComponents.at(s) == i) { // <--- if "i" is in "zeroComponents". Breaks (because it found that it's to be missed)
1919  missed = true;
1920  break;
1921  }
1922  }
1923  if (missed) { // <-------- Finally, if "i" is to be missed, increase "nMissed" by one, and....
1924  ++nMissed;
1925  continue;
1926  }
1927 
1928  matrixVariationJacobian(i-nMissed,i)=1; // <-------- ... this ALWAYS adds a one. If zero "nMissed", add to diagonal. otherwise off-diagonal
1929  }
1930 
1931  return matrixVariationJacobian;
1932 }
1933 
1934 
1935 
1936 
1937 
1938 //________________________________________________________________________________
1939 unsigned int
1941 {
1942  if (! m_initialized) initialize();
1943 
1944  if (m_flav_eigen.find(flavour) == m_flav_eigen.end()){
1945  if (m_verbose) std::cout << "No m_flav_eigen for flavour " << flavour << std::endl;
1946  return 0;
1947  }
1948  return (m_flav_eigen.find(flavour)->second).size();
1949 }
1950 
1951 //________________________________________________________________________________
1952 bool
1953 CalibrationDataGlobalEigenVariations::getEigenvectorVariation(const std::string& flavour, unsigned int variation, TH1*& up, TH1*& down)
1954 {
1955  // Return the pointers to the up- and downward variation histogram for the specified
1956  // eigenvector variation. In case of an invalid variation number, null pointers will
1957  // be returned and the return value will be false.
1958  //
1959  // variation: eigenvector variation number
1960  // up: (reference to) pointer to upward variation histogram
1961  // down: (reference to) pointer to downward variation histogram
1962 
1963  if (! m_initialized) initialize();
1964  std::vector<std::pair<TH1*,TH1*>> flav_variations = m_flav_eigen.find(flavour)->second;
1965  if (variation < flav_variations.size()){
1966  up = flav_variations[variation].first;
1967  down = flav_variations[variation].second;
1968  return true;
1969  }
1970 
1971  up = down = 0;
1972  return false;
1973 }
1974 
1975 //________________________________________________________________________________
1976 bool
1977 CalibrationDataGlobalEigenVariations::getNamedVariation(const string& flavour, const string& name, TH1*& up, TH1*& down)
1978 {
1979  // Return the pointers to the up- and downward variation histogram for the specified
1980  // named variation. In case of an invalid named variation, null pointers will
1981  // be returned and the return value will be false.
1982  //
1983  // name: named variation
1984  // up: (reference to) pointer to upward variation histogram
1985  // down: (reference to) pointer to downward variation histogram
1986 
1987  // Find the named variation index (if it exists) and pass to "getNamedVariation"
1988  std::map<std::string, unsigned int>::const_iterator it = (m_flav_namedIndices.find(flavour)->second).find(name);
1989  if (it != (m_flav_namedIndices.find(flavour)->second).end()) return getNamedVariation(it->second, flavour, up, down);
1990 
1991  up = down = 0;
1992  return false;
1993 }
1994 
1995 //________________________________________________________________________________
1996 bool
1997 CalibrationDataGlobalEigenVariations::getNamedVariation(unsigned int nameIndex, const std::string& flavour, TH1*& up, TH1*& down)
1998 {
1999  // Return the pointers to the up- and downward variation histogram for the specified
2000  // named variation. In case of an invalid named variation number, null pointers will
2001  // be returned and the return value will be false.
2002  //
2003  // nameIndex: named variation number
2004  // up: (reference to) pointer to upward variation histogram
2005  // down: (reference to) pointer to downward variation histogram
2006 
2007  if (! m_initialized) initialize();
2008 
2009  if (nameIndex < m_flav_named[flavour].size()) {
2010  up = m_flav_named[flavour][nameIndex].first;
2011  down = m_flav_named[flavour][nameIndex].second;
2012  return true;
2013  }
2014 
2015  up = down = 0;
2016  return false;
2017 }
2018 
2019 
2020 //________________________________________________________________________________
2021 unsigned int
2022 CalibrationDataGlobalEigenVariations::getNamedVariationIndex(const std::string& name, const std::string& flavour) const
2023 {
2024  // Return the integer index corresponding to the named variation.
2025  // Note that no checks are made on the validity of the name provided.
2026  std::map<std::string, unsigned int>::const_iterator it = (m_flav_namedIndices.find(flavour)->second).find(name);
2027  return it->second;
2028 }
2029 
2030 
2031 //________________________________________________________________________________
2032 bool
2033 CalibrationDataGlobalEigenVariations::isExtrapolationVariation(unsigned int nameIndex, const std::string& flavour) const
2034 {
2035  // Verifies whether the given named variation index corresponds to the extrapolation
2036  // uncertainty.
2037  int extrapIndex = m_flav_namedExtrapolation.find(flavour)->second;
2038  return (extrapIndex == int(nameIndex));
2039 }
2040 
2041 
2042 
2043 //________________________________________________________________________________
2044 void
2046 {
2047  // Merge all systematic variation starting from the given index.
2048  // The resulting merged variation replaces the first entry in the list
2049  // (i.e., the entry specified by the index).
2050 
2051  IndexSet simple_set;
2052 
2053  for (size_t it = index; it < m_flav_eigen[flav].size(); ++it)
2054  simple_set.insert(it);
2055  mergeVariations(simple_set, flav);
2056 }
2057 
2058 //________________________________________________________________________________
2059 void
2061 {
2062  IndexSuperSet sset;
2063  sset.insert(set);
2064  mergeVariations(sset, flav);
2065 }
2066 
2067 
2068 //________________________________________________________________________________
2069 void
2071 {
2073  // Merge the (flavour specific) eigenvariations, as stored in m_flav_eigen
2075 
2076  // check for overlap
2077  IndexSet checker;
2078  for (IndexSuperSet::iterator set_it = set.begin(); set_it != set.end(); ++set_it) {
2079  for (IndexSet::iterator subset_it = set_it->begin(); subset_it != set_it->end(); ++subset_it){
2080  if (checker.count(*subset_it) == 0 && *subset_it <= m_flav_eigen[flav].size())
2081  checker.insert(*subset_it);
2082  else {
2083  std::cerr << "Error in CalibrationDataGlobalEigenVariations::mergeVariations: \
2084  IndexSets must not overlap and must lie between 1 and " << m_eigen.size() << ". Aborting!" << std::endl;
2085  return;
2086  }
2087  }
2088  }
2089 
2090  std::string flavour = flav;
2091 
2093 
2094  TH1* result = dynamic_cast<TH1*>(c->GetValue("result"));
2095  if (not result){
2096  std::cerr << "Error in CalibrationDataGlobalEigenVariations::mergeVariations: failed dynamic cast\n";
2097  return;
2098  }
2099  // retrieve the central calibration
2100 
2101  IndexSet toDelete;
2102  int nbins = result->GetNbinsX()+2;
2103  int ndim = result->GetDimension();
2104  if (ndim > 1) nbins *= (result->GetNbinsY()+2);
2105  if (ndim > 2) nbins *= (result->GetNbinsZ()+2);
2106 
2107  // complex sum
2108  for (IndexSuperSet::iterator set_it = set.begin(); set_it != set.end(); ++set_it) {
2109  if (set_it->empty()) continue;
2110 
2111  double sum_H_up = 0.0, sum_H_down = 0.0;
2112  size_t lowest_index = *set_it->lower_bound(0);
2113  TH1 *total_var_up = static_cast<TH1*>(m_flav_eigen[flavour][lowest_index].first->Clone());
2114  TH1 *total_var_down = static_cast<TH1*>(m_flav_eigen[flavour][lowest_index].second->Clone());
2115  total_var_up->SetDirectory(0);
2116  total_var_down->SetDirectory(0);
2117 
2118  total_var_up->Reset();
2119  total_var_down->Reset();
2120 
2121  // sum all other variations
2122  for (IndexSet::iterator subset_it = set_it->begin(); subset_it != set_it->end(); ++subset_it) {
2123  size_t actual_index = *subset_it;
2124 
2125  if (actual_index != lowest_index) toDelete.insert(*subset_it); //
2126 
2127  TH1 *partial_var_up = static_cast<TH1*>(m_flav_eigen[flavour][actual_index].first->Clone());
2128  TH1 *partial_var_down = static_cast<TH1*>(m_flav_eigen[flavour][actual_index].second->Clone());
2129  partial_var_up->SetDirectory(0);
2130  partial_var_down->SetDirectory(0);
2131 
2132  partial_var_up->Add(result, -1.0);
2133  partial_var_down->Add(result, -1.0);
2134  for (int i = 0; i < nbins; ++i) {
2135  partial_var_down->SetBinContent(i, -1.0*partial_var_down->GetBinContent(i));
2136  }
2137 
2138  for (int u = 0; u < nbins; ++u) {
2139  double sum_up = total_var_up->GetBinContent(u);
2140  double sum_down = total_var_down->GetBinContent(u);
2141  for (int v = 0; v < nbins; ++v) {
2142  sum_up += partial_var_up->GetBinContent(u)*partial_var_up->GetBinContent(v);
2143  sum_H_up += partial_var_up->GetBinContent(u)*partial_var_up->GetBinContent(v);
2144  sum_down += partial_var_down->GetBinContent(u)*partial_var_down->GetBinContent(v);
2145  sum_H_down += partial_var_down->GetBinContent(u)*partial_var_down->GetBinContent(v);
2146  }
2147  total_var_up->SetBinContent(u, sum_up);
2148  total_var_down->SetBinContent(u, sum_down);
2149  }
2150  delete partial_var_up;
2151  delete partial_var_down;
2152  }
2153 
2154  // final part of complex summing
2155  for (int i = 0; i < nbins; ++i) {
2156  if (sum_H_up != 0.0)
2157  total_var_up->SetBinContent(i, total_var_up->GetBinContent(i)/sqrt(sum_H_up));
2158  else
2159  total_var_up->SetBinContent(i, 0.0);
2160  if (sum_H_down != 0.0)
2161  total_var_down->SetBinContent(i, -1.0*total_var_down->GetBinContent(i)/sqrt(sum_H_down));
2162  else
2163  total_var_down->SetBinContent(i, 0.0);
2164  }
2165 
2166  total_var_up->Add(result);
2167  total_var_down->Add(result);
2168 
2169  m_flav_eigen[flavour][lowest_index].first = total_var_up;
2170  m_flav_eigen[flavour][lowest_index].second = total_var_down;
2171  }
2172 
2173  removeVariations(toDelete, flavour);
2174 }
2175 
2176 
2177 //________________________________________________________________________________
2178 void
2180 {
2181  if (set.size() == 0) return;
2182  std::vector<std::pair<TH1*, TH1*> > new_eigen;
2183  std::vector<std::pair<TH1*, TH1*>> eigen = m_flav_eigen[flav];
2184  for (size_t index = 0; index < eigen.size(); ++index){
2185  if (set.count(index) == 0) {
2186  new_eigen.push_back(eigen[index]);
2187  } else {
2188  delete eigen[index].first; delete eigen[index].second;
2189  }
2190  }
2191 
2192  m_flav_eigen[flav] = new_eigen;
2193 
2194 }
2195 
2196 //________________________________________________________________________________
2197 void
2199 {
2200  IndexSet simple_set;
2201 
2202  for (IndexSuperSet::iterator set_it = set.begin(); set_it != set.end(); ++set_it) {
2203  for (IndexSet::iterator subset_it = set_it->begin(); subset_it != set_it->end(); ++subset_it)
2204  simple_set.insert(*subset_it);
2205  }
2206 
2207  removeVariations(simple_set, flav);
2208 }
Analysis::CalibrationDataGlobalEigenVariations::getEigenCovarianceMatrix
TMatrixDSym getEigenCovarianceMatrix()
also provide (some) access to the underlying information: covariance matrix corresponding to eigenvec...
Definition: CalibrationDataEigenVariations.cxx:1377
xAOD::iterator
JetConstituentVector::iterator iterator
Definition: JetConstituentVector.cxx:68
Analysis::CalibrationDataEigenVariations::isExtrapolationVariation
bool isExtrapolationVariation(unsigned int nameIndex) const
flag whether the given index corresponds to an extrapolation variation
Definition: CalibrationDataEigenVariations.cxx:1099
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
base
std::string base
Definition: hcg.cxx:78
query_example.row
row
Definition: query_example.py:24
Analysis::CalibrationDataEigenVariations::getNamedVariationIndex
unsigned int getNamedVariationIndex(const std::string &name) const
retrieve the integer index corresponding to the named variation.
Definition: CalibrationDataEigenVariations.cxx:1088
beamspotman.r
def r
Definition: beamspotman.py:676
python.SystemOfUnits.second
int second
Definition: SystemOfUnits.py:120
beamspotnt.var
var
Definition: bin/beamspotnt.py:1394
Analysis::CalibrationDataEigenVariations::excludeNamedUncertainty
void excludeNamedUncertainty(const std::string &name, CalibrationDataContainer *cnt)
exclude the source of uncertainty indicated by name from eigenvector calculations
Definition: CalibrationDataEigenVariations.cxx:371
Analysis::CalibrationDataEigenVariations::m_named
std::vector< std::pair< TH1 *, TH1 * > > m_named
Definition: CalibrationDataEigenVariations.h:110
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
yodamerge_tmp.dim
dim
Definition: yodamerge_tmp.py:239
get_generator_info.result
result
Definition: get_generator_info.py:21
Analysis::CalibrationDataContainer
Definition: CalibrationDataContainer.h:51
PowhegControl_ttHplus_NLO.ss
ss
Definition: PowhegControl_ttHplus_NLO.py:83
Analysis::CalibrationDataGlobalEigenVariations::m_flav_named
std::map< std::string, std::vector< std::pair< TH1 *, TH1 * > > > m_flav_named
Definition: CalibrationDataEigenVariations.h:187
find
std::string find(const std::string &s)
return a remapped string
Definition: hcg.cxx:135
beamspotman.eospath
eospath
Definition: beamspotman.py:874
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
Analysis::CalibrationDataEigenVariations::m_initialized
bool m_initialized
flag whether the initialization has been carried out
Definition: CalibrationDataEigenVariations.h:105
Analysis::CalibrationDataEigenVariations::getNumberOfEigenVariations
unsigned int getNumberOfEigenVariations()
retrieve the number of eigenvector variations
Definition: CalibrationDataEigenVariations.cxx:1010
Analysis::CalibrationDataHistogramContainer::getTagWeightAxis
virtual int getTagWeightAxis()
Test whether this calibration object is one for "continuous" calibration (this has some subtle conseq...
Definition: CalibrationDataContainer.cxx:935
CalibrationDataContainer.h
index
Definition: index.py:1
Analysis::CalibrationDataEigenVariations::EigenVectorRecomposition
bool EigenVectorRecomposition(const std::string &label, std::map< std::string, std::map< std::string, float >> &coefficientMap)
Eigenvector recomposition method.
Definition: CalibrationDataEigenVariations.cxx:1109
Analysis::CalibrationDataEigenVariations::m_statVariations
bool m_statVariations
indicate whether statistical uncertainties are stored as variations
Definition: CalibrationDataEigenVariations.h:119
Analysis::CalibrationDataHistogramContainer::isBinCorrelated
bool isBinCorrelated(const std::string &unc) const
Indicate whether the given uncertainty is correlated from bin to bin or not (note that this function ...
Definition: CalibrationDataContainer.cxx:719
PlotCalibFromCool.label
label
Definition: PlotCalibFromCool.py:78
plotmaker.hist
hist
Definition: plotmaker.py:148
PlotCalibFromCool.begin
begin
Definition: PlotCalibFromCool.py:94
Analysis::CalibrationDataGlobalEigenVariations::isExtrapolationVariation
bool isExtrapolationVariation(unsigned int nameIndex, const std::string &flavour) const
Definition: CalibrationDataEigenVariations.cxx:2033
Analysis::CalibrationDataEigenVariations::m_totalvariance
double m_totalvariance
Definition: CalibrationDataEigenVariations.h:136
skel.it
it
Definition: skel.GENtoEVGEN.py:396
plotBeamSpotVxVal.cov
cov
Definition: plotBeamSpotVxVal.py:201
Analysis::CalibrationDataGlobalEigenVariations::CalibrationDataGlobalEigenVariations
CalibrationDataGlobalEigenVariations(const std::string &cdipath, const std::string &tagger, const std::string &wp, const std::string &jetcollection, const std::vector< std::string > &flavours, CalibrationDataHistogramContainer *cnt, bool excludeRecommendedUncertaintySet=false)
Definition: CalibrationDataEigenVariations.cxx:1282
PixelAthClusterMonAlgCfg.ybins
ybins
Definition: PixelAthClusterMonAlgCfg.py:169
Analysis::CalibrationDataEigenVariations::m_taggername
std::string m_taggername
Definition: CalibrationDataEigenVariations.h:130
bin
Definition: BinsDiffFromStripMedian.h:43
Analysis::CalibrationDataGlobalEigenVariations::getNamedVariation
bool getNamedVariation(const std::string &flavour, const std::string &name, TH1 *&up, TH1 *&down)
Definition: CalibrationDataEigenVariations.cxx:1977
Analysis::CalibrationDataEigenVariations::initialize
virtual void initialize(double min_variance=1.0E-20)
carry out the eigenvector computations.
Definition: CalibrationDataEigenVariations.cxx:637
Analysis::CalibrationDataEigenVariations::mergeVariationsFrom
void mergeVariationsFrom(const size_t &index)
merge all variations starting from the given index
Definition: CalibrationDataEigenVariations.cxx:863
Analysis::CalibrationDataEigenVariations::getJacobianReductionMatrix
TMatrixD getJacobianReductionMatrix()
matrix to remove unecessary rows and columns from covariance
Definition: CalibrationDataEigenVariations.cxx:500
Analysis::CalibrationDataGlobalEigenVariations::mergeVariationsFrom
void mergeVariationsFrom(const size_t &index, std::string &flav)
Definition: CalibrationDataEigenVariations.cxx:2045
Analysis::CalibrationDataEigenVariations::getEigenCovarianceMatrix
virtual TMatrixDSym getEigenCovarianceMatrix()
also provide (some) access to the underlying information: covariance matrix corresponding to eigenvec...
Definition: CalibrationDataEigenVariations.cxx:416
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
const
bool const RAWDATA *ch2 const
Definition: LArRodBlockPhysicsV0.cxx:560
Trk::u
@ u
Enums for curvilinear frames.
Definition: ParamDefs.h:77
CalibrationDataEigenVariations.h
mergePhysValFiles.end
end
Definition: DataQuality/DataQualityUtils/scripts/mergePhysValFiles.py:93
Analysis::CalibrationDataEigenVariations::IndexSuperSet
std::set< IndexSet > IndexSuperSet
Definition: CalibrationDataEigenVariations.h:30
Analysis::CalibrationDataEigenVariations::IndexSet
std::set< size_t > IndexSet
Definition: CalibrationDataEigenVariations.h:29
Analysis::CalibrationDataEigenVariations::m_eigen
std::vector< std::pair< TH1 *, TH1 * > > m_eigen
eigenvector variations
Definition: CalibrationDataEigenVariations.h:116
Analysis::CalibrationDataGlobalEigenVariations::~CalibrationDataGlobalEigenVariations
~CalibrationDataGlobalEigenVariations()
Definition: CalibrationDataEigenVariations.cxx:1359
python.setupRTTAlg.size
int size
Definition: setupRTTAlg.py:39
Analysis::CalibrationDataInterface::split
std::vector< std::string > split(const std::string &str, const char token=';')
local utility function: split string into a vector of substrings separated by a specified separator,...
Definition: CalibrationDataInternals.cxx:9
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
Analysis::CalibrationDataGlobalEigenVariations::mergeVariations
void mergeVariations(const IndexSet &set, std::string &flav)
Definition: CalibrationDataEigenVariations.cxx:2060
FortranAlgorithmOptions.fileName
fileName
Definition: FortranAlgorithmOptions.py:13
Analysis::CalibrationDataEigenVariations::m_wp
std::string m_wp
Definition: CalibrationDataEigenVariations.h:131
Analysis::CalibrationDataGlobalEigenVariations::m_all_shared_systematics
std::set< std::string > m_all_shared_systematics
Definition: CalibrationDataEigenVariations.h:181
Analysis::CalibrationDataContainer::listUncertainties
std::vector< std::string > listUncertainties() const
retrieve the list of "uncertainties" accessible to this object.
Definition: CalibrationDataContainer.cxx:120
dqt_zlumi_pandas.err
err
Definition: dqt_zlumi_pandas.py:182
Analysis::CalibrationDataEigenVariations::m_capturedvariance
double m_capturedvariance
Definition: CalibrationDataEigenVariations.h:137
lumiFormat.i
int i
Definition: lumiFormat.py:85
Analysis::CalibrationDataGlobalEigenVariations::m_flavours
std::vector< std::string > m_flavours
Definition: CalibrationDataEigenVariations.h:190
dqt_zlumi_alleff_HIST.fout
fout
Definition: dqt_zlumi_alleff_HIST.py:59
vector< double >
python.subdetectors.mmg.names
names
Definition: mmg.py:8
Analysis::CalibrationDataEigenVariations::m_namedIndices
std::map< std::string, unsigned int > m_namedIndices
named variations
Definition: CalibrationDataEigenVariations.h:109
Analysis::CalibrationDataEigenVariations
Definition: CalibrationDataEigenVariations.h:27
Analysis::CalibrationDataEigenVariations::getEigenvectorVariation
bool getEigenvectorVariation(unsigned int variation, TH1 *&up, TH1 *&down)
obtain the "up" and "down" variations for the given eigenvector number.
Definition: CalibrationDataEigenVariations.cxx:1018
Analysis::CalibrationDataGlobalEigenVariations::m_histcontainers
std::map< std::string, Analysis::CalibrationDataHistogramContainer * > m_histcontainers
Definition: CalibrationDataEigenVariations.h:180
Analysis::CalibrationDataGlobalEigenVariations
Definition: CalibrationDataEigenVariations.h:145
CalibCoolCompareRT.up
up
Definition: CalibCoolCompareRT.py:109
ftag::defaults::tagger
const std::string tagger
Definition: ToolDefaults.h:11
plotIsoValidation.el
el
Definition: plotIsoValidation.py:197
AnalysisUtils::copy_if
Out copy_if(In first, const In &last, Out res, const Pred &p)
Definition: IFilterUtils.h:30
JetTagCalibConfig.scheme
scheme
Definition: JetTagCalibConfig.py:16
hist_file_dump.f
f
Definition: hist_file_dump.py:135
beamspotnt.rows
list rows
Definition: bin/beamspotnt.py:1112
PlotSFuncertainty.wp
wp
Definition: PlotSFuncertainty.py:112
ReadTripsProbsFromCool.denominator
denominator
Definition: ReadTripsProbsFromCool.py:96
Analysis::CalibrationDataGlobalEigenVariations::excludeNamedUncertainty
void excludeNamedUncertainty(const std::string &name, const std::string &flavour)
Definition: CalibrationDataEigenVariations.cxx:1515
beamspotman.stat
stat
Definition: beamspotman.py:266
bin2
Definition: KillBinsByStrip.h:34
beamspotman.dir
string dir
Definition: beamspotman.py:623
CxxUtils::set
constexpr std::enable_if_t< is_bitmask_v< E >, E & > set(E &lhs, E rhs)
Convenience function to set bits in a class enum bitmask.
Definition: bitmask.h:232
Analysis::CalibrationDataGlobalEigenVariations::m_blockmatrixsize
int m_blockmatrixsize
Definition: CalibrationDataEigenVariations.h:178
Analysis::CalibrationDataGlobalEigenVariations::getNamedVariationIndex
unsigned int getNamedVariationIndex(const std::string &name, const std::string &flavour) const
Definition: CalibrationDataEigenVariations.cxx:2022
RPDUtils::nCols
unsigned constexpr int nCols
Definition: RPDUtils.h:25
Analysis::CalibrationDataEigenVariations::listNamedVariations
std::vector< std::string > listNamedVariations() const
list the named variations
Definition: CalibrationDataEigenVariations.cxx:997
PlotSFuncertainty.nom
nom
Definition: PlotSFuncertainty.py:141
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
VP1PartSpect::E
@ E
Definition: VP1PartSpectFlags.h:21
ActsTrk::to_string
std::string to_string(const DetectorType &type)
Definition: GeometryDefs.h:34
Analysis::CalibrationDataEigenVariations::removeVariations
void removeVariations(const IndexSet &set)
remove all variations in the given set
Definition: CalibrationDataEigenVariations.cxx:835
plotBeamSpotVxVal.bin
int bin
Definition: plotBeamSpotVxVal.py:83
Analysis::CalibrationDataGlobalEigenVariations::initialize
void initialize(double min_variance=1.0E-6)
carry out the eigenvector computations.
Definition: CalibrationDataEigenVariations.cxx:1558
ClassImp
ClassImp(CalibrationDataEigenVariations) CalibrationDataEigenVariations
Definition: CalibrationDataEigenVariations.cxx:328
Analysis::CalibrationDataHistogramContainer
Definition: CalibrationDataContainer.h:247
SCT_CalibAlgs::nbins
@ nbins
Definition: SCT_CalibNumbers.h:10
query_example.col
col
Definition: query_example.py:7
Analysis::CalibrationDataEigenVariations::m_jetauthor
std::string m_jetauthor
Definition: CalibrationDataEigenVariations.h:132
Analysis::CalibrationDataEigenVariations::m_verbose
bool m_verbose
Definition: CalibrationDataEigenVariations.h:139
LArCellBinning.xbins
int xbins
Definition: LArCellBinning.py:163
python.PyAthena.v
v
Definition: PyAthena.py:154
DeMoScan.index
string index
Definition: DeMoScan.py:364
Analysis::CalibrationDataEigenVariations::m_validate
bool m_validate
Definition: CalibrationDataEigenVariations.h:106
Analysis::CalibrationDataEigenVariations::getEigenCovarianceMatrixFromVariations
TMatrixDSym getEigenCovarianceMatrixFromVariations()
covariance matrix corresponding to eigenvector variations constructed from the eigen-variation
Definition: CalibrationDataEigenVariations.cxx:473
trigbs_pickEvents.cnt
cnt
Definition: trigbs_pickEvents.py:71
ref
const boost::regex ref(r_ef)
Analysis::CalibrationDataEigenVariations::setVerbose
void setVerbose(bool)
Definition: CalibrationDataEigenVariations.cxx:1247
Analysis::CalibrationDataEigenVariations::m_namedExtrapolation
int m_namedExtrapolation
named variation index for the special case of extrapolation uncertainties
Definition: CalibrationDataEigenVariations.h:113
python.TriggerHandler.verbose
verbose
Definition: TriggerHandler.py:297
Analysis::CalibrationDataGlobalEigenVariations::removeVariations
void removeVariations(const IndexSet &set, std::string &flav)
Definition: CalibrationDataEigenVariations.cxx:2179
Analysis::CalibrationDataGlobalEigenVariations::getEigenvectorVariation
bool getEigenvectorVariation(const std::string &flavour, unsigned int variation, TH1 *&up, TH1 *&down)
Definition: CalibrationDataEigenVariations.cxx:1953
CalibrationDataInternals.h
Analysis::CalibrationDataGlobalEigenVariations::m_flav_eigen
std::map< std::string, std::vector< std::pair< TH1 *, TH1 * > > > m_flav_eigen
Definition: CalibrationDataEigenVariations.h:189
Analysis::CalibrationDataEigenVariations::getNumberOfNamedVariations
unsigned int getNumberOfNamedVariations() const
retrieve the number of named variations
Definition: CalibrationDataEigenVariations.cxx:988
Analysis::CalibrationDataEigenVariations::getNamedVariation
bool getNamedVariation(const std::string &name, TH1 *&up, TH1 *&down)
obtain the "up" and "down" variations for the named uncertainty.
Definition: CalibrationDataEigenVariations.cxx:1043
Analysis::CalibrationDataEigenVariations::m_cnt
CalibrationDataHistogramContainer * m_cnt
container object containing the basic information
Definition: CalibrationDataEigenVariations.h:100
RPDUtils::nRows
unsigned constexpr int nRows
Definition: RPDUtils.h:24
Analysis::CalibrationDataEigenVariations::mergeVariations
void mergeVariations(const IndexSet &set)
merge all variations in the given set
Definition: CalibrationDataEigenVariations.cxx:877
Analysis::CalibrationDataGlobalEigenVariations::m_flav_namedIndices
std::map< std::string, std::map< std::string, unsigned int > > m_flav_namedIndices
Definition: CalibrationDataEigenVariations.h:186
python.compressB64.c
def c
Definition: compressB64.py:93
Trk::split
@ split
Definition: LayerMaterialProperties.h:38
zero
void zero(TH2 *h)
zero the contents of a 2d histogram
Definition: comparitor.cxx:436
Analysis::CalibrationDataGlobalEigenVariations::m_only_shared_systematics
std::set< std::string > m_only_shared_systematics
Definition: CalibrationDataEigenVariations.h:182
Analysis::CalibrationDataGlobalEigenVariations::m_flav_namedExtrapolation
std::map< std::string, int > m_flav_namedExtrapolation
Definition: CalibrationDataEigenVariations.h:188
dumpTriggerInfo.checker
checker
Definition: dumpTriggerInfo.py:20