ATLAS Offline Software
CalibrationDataInterfaceROOT.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2023 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 // //
7 // CalibrationDataInterfaceROOT //
8 /* Begin_Html
9 <h2>Purpose</h2>
10 <p>This class provides the main interface to b-tagging calibration information.
11  Each instance can be used to handle a single tagger (so if multiple taggers' information
12  needs to be accessed, multiple CalibrationDataInterfaceROOT instances need to be created).<br />
13  Its action is steered by a configuration file (which is parsed using TEnv and which is
14  specified in the CalibrationDataInterfaceROOT constructor).
15 </p>
16 <p>
17  Further details can be found below, arranged by topic: <a href="#basic">basic usage</a>,
18  <a href="#ev">eigenvector variation usage</a>, and <a href="#configuration">configuration file
19  specification</a>.
20 </p>
21 <a name="basic"><h2>Basic usage</h2></a>
22 <p>
23  The main functionality is to retrieve data/MC calibration scale factors and MC efficiencies,
24  on a jet-by-jet basis. This is done using the following methods:
25  <pre>
26  getScaleFactor (variables, label, OP, unc)
27  getMCEfficiency (variables, label, OP, unc, mapIndex)
28  </pre>
29  with the following meaning for the arguments:
30  <pre>
31  variables: a CalibrationDataVariables object that should be filled by the user with all
32  the information needed to extract the calibration information
33  label: flavour label. Currently recognised labels follow the Athena TruthInfo conventions
34  (see package PhysicsAnalysis/JetTagging/JetTagInfo): "B", "C", "T", "N/A", and in
35  addition "Light" (the "N/A" is internally converted to "Light")
36  OP: tagger working point. This should correspond to a documented weight cut for the
37  tagger under consideration, but converted to a string, and with any period (".")
38  replaced with an underscore for technical reasons. Alternatively, "Continuous" may
39  be used if a "continuous tagging" calibration object exists for the tagger under
40  consideration. (Note that the use of this method for "continuous tagging" is not
41  in general to be recommended, as it does not not allow for scale factor rescaling,
42  which is ne
43  unc: enum specifying what uncertainty information is to be retrieved. Recognised values
44  for normal usage are <b>None</b> (retrieval of central values only), <b>Statistical</b>
45  (statistical uncertainty), <b>Systematic</b> (systematic uncertainty), <b>Total</b>
46  (combined statistical and systematic uncertainty). (Other choices exist for more advanced
47  usage and will be described <a href="#ev">below</a>.)
48  mapIndex: index specifying the precise MC efficiency calibration to be used. This is relevant if
49  multiple "efficiency calibration" names are specified for the given flavour label (see
50  the <a href="#configuration">configuration section</a>).
51  </pre>
52  All methods return a pair&lt;double, double&gt; (the stated <b>CalibResult</b> return type is a simple typedef),
53  the first member of which contains the central value and the second the requested uncertainty (or 0 if no
54  uncertainty was requested). Note that central values are retricted to be within the physical region (between 0
55  and 1 for the MC efficiencies, and positive for the scale factors).
56 </p>
57 <p>
58  A few additional methods exist, based on (and internally using) the above methods:
59  <pre>
60  getEfficiency (variables, label, OP, unc, mapIndex): data efficiency calculated as MC efficiency times SF
61  getInefficiency (variables, label, OP, unc, mapIndex): 1 - data efficiency
62  getMCInefficiency (variables, label, OP, unc, mapIndex): 1 - MC efficiency
63  getInefficiencyScaleFactor (variables, label, OP, unc, mapIndex): ratio of data to MC inefficiencies
64  </pre>
65  Especially the last of these methods is likely to be of interest when data/MC scale factors are applied;
66  <a href="http://cdsweb.cern.ch/record/1269912">this note</a> provides more detail. Restrictions to the physical
67  range apply, as is the case for the data/MC scale factor and MC efficiency methods.
68 </p>
69 <a name="speed-up"><h3>Code speed-up using variable caching</h3></a>
70 <p>
71  Internally, pointers to the calibration objects are cached. However, the string matching needed to
72  exploit this feature is slow and leads to a non-negligible CPU overhead. Since internally all pointers
73  are stored in a vector, it is possible to request the position in this vector for a given calibration
74  object. This position can then be used in subsequent alternative calls to retrieve information:
75  <pre>
76  getScaleFactor (variables, indexSF, indexEff, unc)
77  getMCEfficiency (variables, index, unc)
78  </pre>
79  Here the "index" variables replace the specification of the flavour label and operating point. They can
80  be retrieved by calling
81  <pre>
82  retrieveCalibrationIndex(label, OP, author, isSF, index)
83  </pre>
84  where the following additional variables are to be used:
85  <pre>
86  author: jet collection name
87  isSF: set to true (false) if the object concerned is a scale factor object (a MC efficiency object)
88  index: requested information
89  </pre>
90  Note that this method has a boolean return value, indicating whether or not the retrieval succeeded.
91  This return value should be checked by the user, as no checks are carried in the alternative getScaleFactor()
92  etc. methods as to the validity of the index specified. Note also that for all methods except those using
93  only the MC information, both indices need to be provided.
94 </p>
95 <a name="continuous"><h3>Continuous tagging</h3></a>
96 <p>
97  Rather than merely inquiring whether the tag weight discriminant resulting from a given tagger satisfies a
98  given criterion, it may be useful to use more detailed information. In particular, "continuous tagging"
99  information can be made available. This is essentially a calibrated version of the (binned) tag weight
100  discriminant distribution, or to be more precise, the corresponding data/MC ratio.
101 </p>
102 <p>
103  The use of this information differs somewhat from the regular calibration usage, as the "transport" from
104  the calibration sample(s) to the sample used in physics becomes a non-trivial extension of the efficiency
105  and inefficiency scale factors used for the regular calibrations. Therefore, two separate methods exist
106  which should be used for such cases:
107  <pre>
108  getWeightScaleFactor (variables, label, unc, numVariation, mapIndex)
109  getWeightScaleFactor (variables, indexSF, indexEff, unc, numVariation)
110  </pre>
111  The meaning of the variables is as above.
112 </p>
113 <a name="ev"><h2>Eigenvector variations</h2></a>
114 <p>
115  The 'basic usage' described above does not do justice to the fact that data/MC calibration scale factors
116  are derived in kinematic bins, with uncertainties not being fully correlated from bin to bin (indeed, the
117  methods themselves do not know anything about binning to start with). It is however possible to arrive at
118  a statistically more correct approach by considering 'variations'. This exploits the fact that in the case
119  of scale factor calibrations, besides statistical and total systematic uncertainties also individual
120  systematic uncertainties are stored (along with a model of their bin-to-bin correlations). The typical use
121  of this, applicable for a systematic uncertainty that is fully correlated (or anti-correlated) between bins,
122  would be to consider the effect on all calibration scale factors from a &pm; 1 standard deviation of the
123  underlying source of systematic.
124 </p>
125 <p>
126  In practice, this approach is a bit cumbersome due to the sometimes large number of contributions to the
127  systematic uncertainty. In addition, no infrastructure exists at present to deal with uncertainties that are
128  not, or only partially, correlated from bin to bin. An eigenvector decomposition technique allows to address
129  both of these issues at the same time.
130 </p>
131 <p>
132  This method starts from the scale factor covariance matrix that can be constructed on the basis of the
133  available information (uncertainties plus a model of their bin-to-bin correlations). This covariance matrix
134  can be diagonalised and its eigenvectors and corresponding eigenvalues determined. The product of an eigenvector
135  and the square root of its corresponding eigenvalue is what is referred to as an 'eigenvector variation'.
136  The number of such (statistically independent) variations equals the number of calibration bins, and the set
137  of variations is the minimal set needed to (re-)construct the covariance matrix. After this eigenvector
138  decomposition, the eigenvector variations may be used instead of the variations corresponding to the original
139  sources of uncertainty.
140 </p>
141 <p>
142  One further refinement can be made, related to the fact that sometimes sources of uncertainty affecting
143  the calibration analyses also affect the physics analysis in which the calibration results are used.
144  Including these sources of uncertainty in the eigenvector decomposition would not allow to correlate the
145  effect on the calibration properly with the effect on the physics analysis; therefore it is possible to
146  exclude these sources of uncertainty from being used in the construction of the covariance matrix that is
147  diagonalised, and consider their variations separately (note, per the above, that this will be done
148  correctly only in the case of full bin-to-bin correlations).
149 </p>
150 <p>
151  The use of the eigenvector variation is not enabled by default and must be switched on in the configuration
152  file (see <a href="#configuration">Configuration</a>).
153 </p>
154 <p>
155  The above can be used to obtain jet-by-jet information by a slight modification of the arguments to the
156  normal methods for information retrieval also employed for <a href="#basic">basic usage</a>:
157  <pre>
158  getScaleFactor (variables, label, OP, unc, numVariation)
159  </pre>
160  Here, the first three variables function exactly as in the basic usage case. As for the two last arguments:
161  <pre>
162  unc: this should take the value <b>SFEigen</b> or <b>SFNamed</b> for eigenvector variations or named variations, respectively.
163  numVariation: this indicates exactly which eigenvector variation or named variation is to be considered.
164  </pre>
165  In addition, it should be noticed that the methods' return values have a different meaning in this context:
166  while in normal usage they are (value, uncertainty) pairs, here they are (up, down) pairs, with up and down
167  meaning the result of an up- or downward eigenvector variation or named variation.
168 </p>
169 <p>
170  The number of valid variations for each type can be retrieved using
171  <pre>
172  getNumVariations(author, label, OP, Uncertainty unc)
173  </pre>
174  with "unc" set appropriately. Finally, calling
175  <pre>
176  listScaleFactorUncertainties(author, label, OP, named)
177  </pre>
178  can be used to retrieve information about uncertainties in two ways, depending on the value of the last argument:
179  <pre>
180  named = false (default): retrieve an unsorted list of all the uncertainties associated with the relevant scale factor
181  calibration object. This can be used to identify sources of uncertainty to be excluded from
182  the eigenvector decomposition.
183  named = true: the list in this case is restricted to the named uncertainties (these should have been specified
184  in the configuration file by the user) and ordered: the position in the vector constitutes the
185  link between the name and the index to be used as the "numVariation" argument to the
186  getScaleFactor() etc. method.
187  </pre>
188  Note that as in the basic usage case, the code can be sped up by replacing the jet author/label/OP specification by the appropriate
189  integer index (see the <a href="#speed-up">corresponding section</a>).
190 </p>
191 <a name="configuration"><h2>Configuration</h2></a>
192 <p>
193  The configuration file may specify the following settings:
194 </p>
195 <ul>
196  <li>calibration file specification:
197  <pre>
198 
199  filename: common ROOT file for calibration scale factors and MC efficiencies
200  (default: BTaggingPerformanceCalibrations.root)
201  filenameEff: separate ROOT file for MC efficiencies
202  filenameSF: separate ROOT file for calibration scale factors
203  </pre>
204  Note that it is not necessary to specify all three files. The most common use for the specification
205  of more than one file is likely to be the specification of analysis-specific MC efficiencies (the
206  efficiencies provided in the common file are expected to be sufficient for many analysis purposes,
207  but depending on the accuracy needed it may be desirable to add custom efficiencies).
208  </li>
209  <li>choice of calibration:
210  <pre>
211 
212  ScaleFactorCalibrationBName: name for scale factor calibration object to be used for b-jets (default: default)
213  EfficiencyCalibrationBName: name for MC efficiencies object(s) to be used for b-jets (default: default).
214  Note that multiple (semicolon-separated) MC efficiency objects may be specified;
215  internally they will be converted to a vector. The position in the vector can
216  then be used as the 'mapIndex' argument in the methods involving MC information
217  (see e.g. the <a href="#basic">basic usage</a> section).
218  </pre>
219  Analogous keywords (with B replaced with C, T, Light) can be used to specify the objects to be used for
220  charm, tau, and light-flavour jets, respectively. Note that the "default" object should always exist and reflect
221  the recommended choice of object unless analysis-specific needs dictate otherwise.
222  </li>
223  <li>jet aliasing:
224  <pre>
225  aliases: semicolon-separated list of jet collection aliases
226  </pre>
227  The feature of jet aliasing follows the strategy also used in the CalibrationBroker Athena class.
228  It allows for the use of a calibration for different jet collection names than those actually
229  employed in physics analysis (caveat emptor!). Each alias consists of the specification
230  <pre>
231  source-&gt;target
232  </pre>
233  where source indicates the name used in physics analysis, while target is the name to be used for calibration purposes.
234  </li>
235  <li>eigenvector decomposition:
236  <pre>
237  runEigenVectorMethod: if set to true this will carry out an eigenvector decomposition, the results
238  of which can subsequently be used as calibration scale factor "variations"
239  correctly accounting for bin-to-bin correlations. For detailed usage of
240  b-tagging results (e.g. in profile likelihood fits) this is recommended (default: false)
241  excludeFromCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
242  decomposition, for all flavours.
243  excludeFromBCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
244  decomposition for b jets
245  excludeFromCCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
246  decomposition for c jets
247  excludeFromTCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
248  decomposition for tau "jets"
249  excludeFromLightCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
250  decomposition for light-flavour jets
251  </pre>
252  </li>
253 </ul>
254 End_Html */
255 //
256 // CalibrationDataInterfaceROOT.cxx, (c) ATLAS Detector software //
258 
261 
264 #include <boost/algorithm/string.hpp>
265 
266 #include "TMath.h"
267 #include "TEnv.h"
268 #include "TFile.h"
269 #include "TObjString.h"
270 #include <iostream>
271 #include <iomanip>
272 #include <cmath>
273 #include <cassert>
274 #include <cstring>
275 
276 using std::string;
277 using std::cout;
278 using std::cerr;
279 using std::endl;
280 using std::setw;
281 
286 using boost::trim;
287 
288 #ifndef __CINT__
290 #endif
291 
292 //________________________________________________________________________________
293 Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT(const string& taggerName, const std::string& configname, const std::string& pathname) :
294  m_runEigenVectorMethod(false), m_EVStrategy(SFEigen), m_useRecommendedEVExclusions(false), m_verbose(true),
295  m_absEtaStrategy(GiveUp), m_otherStrategy(Flag)
296 {
297  // Normal constructor.
298  //
299  // taggerName: this should correspond to the tagger name as used in the calibration ROOT file
300  // configname: full name of the configuration file
301  // pathname: directory specification for separate scale factor or efficiency ROOT file
302 
303  m_taggerName = taggerName;
304 
305  TEnv env;
306  env.ReadFile(configname.c_str(),kEnvGlobal);
307 
308 
309  // ROOT file containing the calibrations
310  TString filename = env.GetValue("File", "BTaggingPerformanceCalibrations.root");
311  m_filenameEff = string(env.GetValue("FileEff", "")); trim(m_filenameEff);
312  m_filenameSF = string(env.GetValue("FileSF", "")); trim(m_filenameSF);
313  if (m_filenameEff == "") {
314  m_filenameEff = pathname + filename.Data();
315  }
316  if (m_filenameSF == "") {
317  m_filenameSF = pathname + filename.Data();
318  }
319 
320  if (m_verbose) {
321  cout << "=== CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ===" << endl;
322  cout << " Config name : " << configname << endl;
323  cout << " taggerName : " << taggerName << endl;
324  cout << " Efficiency file name : " << m_filenameEff << endl
325  << " SF file name : " << m_filenameSF << endl;
326  }
327 
328  m_fileEff = TFile::Open(m_filenameEff.c_str(), "READ");
329  if (m_filenameEff == m_filenameSF)
330  m_fileSF = m_fileEff;
331  else
332  m_fileSF = TFile::Open(m_filenameSF.c_str(), "READ");
333 
334  if (m_verbose) {
335  TObjString* s;
336  m_fileSF->GetObject("VersionInfo/BuildNumber", s);
337  if (s) cout << " CDI file build number: " << s->GetName() << endl;
338  cout << endl;
339  }
340 
341  m_flavours = { "B", "C", "T", "Light" };
342  string testPrefix(taggerName); testPrefix += ".";
343 
344  // Since TEnv doesn't allow for straight retrieval of vectors of strings, expect
345  // semicolon-separated entries (semicolon because ROOT considers this as a "special"
346  // token anyway in object names).
347  string::size_type end;
348 
349  // Calibration names for the efficiencies
350  std::map<string, std::vector<string> > effNames;
351  for (auto const& flavour : m_flavours) {
352  string test(testPrefix); test += "EfficiencyCalibration"; test += flavour; test += "Name";
353  effNames[flavour] = split(string(env.GetValue(test.c_str(), "default")));
354  }
355  setEffCalibrationNames(effNames);
356 
357  // Calibration names for the efficiency scale factors
358  std::map<string, string> SFNames;
359  for (auto const& flavour : m_flavours) {
360  string test(testPrefix); test += "ScaleFactorCalibration"; test += flavour; test += "Name";
361  SFNames[flavour] = string(env.GetValue(test.c_str(), "default")); trim(SFNames[flavour]);
362  }
363  setSFCalibrationNames(SFNames);
364 
365  // Since TEnv doesn't allow for straight retrieval of vectors of strings, expect
366  // semicolon-separated entries (semicolon because ROOT considers this as a "special"
367  // token anyway in object names).
368  // Don't prefix this since the aliases are common to all taggers (even if they are read again for each tagger).
369  string AL(env.GetValue("aliases", ""));
370  if (AL.size() > 0) {
371  do {
372  end = AL.find(";");
373  string alias = AL.substr(0, end);
374  // Each alias specification uses an arrow ("->"). Forget about entries
375  // not properly following this specification.
376  // NB: TEnv imposes a maximum string length of 1024 characters -- is this a problem?
377  string::size_type arrow = alias.find("->");
378  if (arrow == string::npos) continue;
379  string target = alias.substr(0,arrow); trim(target);
380  m_aliases[target] = alias.substr(arrow+2); trim(m_aliases[target]);
381  if (end != string::npos) AL = AL.substr(end+1);
382  } while (end != string::npos);
383  }
384 
385  //run egenvector method or not?
386  string test="runEigenVectorMethod";
387  m_runEigenVectorMethod=(bool)env.GetValue(test.c_str(),0);
388 
389  if (m_runEigenVectorMethod) {
390  // Retrieve the list of systematic uncertainties not to be considered when building up
391  // the full covariance matrix used for the eigenvector method.
392  // We do this in two steps: first, for backward compatibility reasons, a flavour-independent list is scanned.
393  // Second, flavour-specific lists are scanned.
394  test = "excludeFromCovMatrix";
395  std::vector<std::string> to_exclude = split(env.GetValue(test.c_str(), ""));
396  // Copy the resulting list to all flavours
397  for (auto const& flavour : m_flavours) {
398  m_excludeFromCovMatrix[flavour] = to_exclude;
399  }
400  for (auto const& flavour : m_flavours) {
401  test = "excludeFrom"; test += flavour; test += "CovMatrix";
402  to_exclude = split(env.GetValue(test.c_str(), ""));
403  // Append to the existing list
404  m_excludeFromCovMatrix[flavour].insert(m_excludeFromCovMatrix[flavour].end(), to_exclude.begin(), to_exclude.end());
405  }
406 
407  unsigned int n_excluded = 0;
408  for (auto const& flavour : m_flavours) {
409  n_excluded += m_excludeFromCovMatrix[flavour].size();
410  }
411  if (m_verbose) {
412  cout << " List of uncertainties to exclude:";
413  if (n_excluded == 0) cout << " none";
414  for (auto const& flavour : m_flavours) {
415  if (m_excludeFromCovMatrix[flavour].size() > 0) {
416  cout << "\n\t" << flavour << ":\t";
417  for (unsigned int i = 0; i < m_excludeFromCovMatrix[flavour].size(); ++i) {
418  cout << m_excludeFromCovMatrix[flavour].at(i);
419  if (i+1 == m_excludeFromCovMatrix[flavour].size()) cout << "; ";
420  }
421  cout << endl;
422  }
423  }
424  cout << endl;
425  }
426 
427  // The following determines whether also pre-determined (recommended) lists of uncertainties are to be excluded from EV decomposition.
428  // These lists are stored with the CalibrationDataContainers, which have not been instantiated yet (so we cannot show them at this point).
429  m_useRecommendedEVExclusions = (bool) env.GetValue("ExcludeRecommendedFromEigenVectorTreatment", false);
430 
431  // determine also the eigenvector reduction strategies
432  std::map<string, EVReductionStrategy> mappings;
433  mappings["Loose"] = Loose;
434  mappings["Medium"] = Medium;
435  mappings["Tight"] = Tight;
436  for (auto const& flavour : m_flavours) {
437  test = testPrefix; test += "EigenvectorReduction"; test += flavour;
438  std::string reduction = string(env.GetValue(test.c_str(), "Loose")); trim(reduction);
439  m_EVReductions[flavour] = mappings.find(reduction) == mappings.end() ? mappings["Loose"] : mappings.find(reduction)->second;
440  }
441  }
442 
443  // determine |eta| validity range
444  m_maxAbsEta = env.GetValue("MaxAbsEta", 2.5);
445  if (m_maxAbsEta < 0) m_maxAbsEta = 2.5;
446 
447  // set validation / protection strategy in case an out-of-bounds eta value is specified
448  string strategy = string(env.GetValue("OutOfBoundsEta", "GiveUp")); trim(strategy);
449  if (strategy == "GiveUp") m_absEtaStrategy = GiveUp;
450  else if (strategy == "Flag") m_absEtaStrategy = Flag;
451  else if (strategy == "Ignore") m_absEtaStrategy = Ignore;
452  else {
453  cerr << "unknown |eta| extrapolation strategy: " << strategy << ", setting to GiveUp" << endl;
454  m_absEtaStrategy = GiveUp;
455  }
456 
457  // set validation / protection strategy in case out-of-bounds variables are specified
458  strategy = string(env.GetValue("OutOfBoundsOther", "Flag")); trim(strategy);
459  if (strategy == "GiveUp") m_otherStrategy = GiveUp;
460  else if (strategy == "GiveUpExtrapolated") m_otherStrategy = GiveUpExtrapolated;
461  else if (strategy == "Flag") m_otherStrategy = Flag;
462  else if (strategy == "Ignore") m_otherStrategy = Ignore;
463  else {
464  cerr << "unknown general extrapolation strategy: " << strategy << ", setting to Flag" << endl;
465  m_otherStrategy = Flag;
466  }
467 
468  // maximum tag weight to accept
469  m_maxTagWeight = env.GetValue("MaxTagWeight", 10.0);
470 
471  // MC/MC (hadronisation) scale factors: making this user-steerable is intended to be *temporary* only
472  m_useMCMCSF = (bool) env.GetValue("useMCMCSF", 1);
473  // MC/MC (topology) scale factors: making this user-steerable is intended to be *temporary* only
474  m_useTopologyRescaling = (bool) env.GetValue("useTopologySF", 0);
475 
476  if (m_verbose) cout << "======= end of CalibrationDataInterfaceROOT instantiation ========" << endl;
477 }
478 
479 
480 //________________________________________________________________________________
482  const char* fileSF, const char* fileEff,
483  const std::vector<std::string>& jetAliases,
484  const std::map<std::string, std::string>& SFNames,
485  const std::map<std::string, std::vector<std::string> >& EffNames,
486  const std::map<std::string, std::vector<std::string> >& excludeFromEV,
487  const std::map<std::string, EVReductionStrategy>& EVReductions,
488  bool useEV, Uncertainty strat, bool useMCMCSF, bool useTopologyRescaling,
489  bool useRecommendedEEVExclusions, bool verbose,
490  std::vector<std::string> flavours) :
491  m_filenameSF(fileSF), m_filenameEff(""), m_flavours(flavours),
492  m_runEigenVectorMethod(useEV), m_EVStrategy(strat), m_EVReductions(EVReductions),
493  m_useRecommendedEVExclusions(useRecommendedEEVExclusions), m_verbose(verbose),
494  m_useMCMCSF(useMCMCSF), m_useTopologyRescaling(useTopologyRescaling),
495  m_maxAbsEta(2.5), m_absEtaStrategy(GiveUp),
496  m_otherStrategy(Flag), m_maxTagWeight(10.0)
497 {
498  // Normal constructor avoiding the need for a .env file.
499  //
500  // taggerName: this should correspond to the tagger name as used in the calibration ROOT file
501  // fileSF: full path of the calibration ROOT file containing the calibration scale factors
502  // fileEff: optional full path name of a ROOT file containing additional MC efficiency maps
503  // (use a null pointer to disable the use of such additional file)
504  // flavours; This should correspond to the list of flavour labels that's used by a tagger, and
505  // which corresponds to the labels used in internal maps
506  // jetAliases: this can be used to convert jet collection names to the corresponding names in the
507  // calibration ROOT file (this may be useful as e.g. the collection names in the
508  // calibration ROOT file have the JVF criterion attached as a suffix).
509  // Each alias is specified as
510  // nameOrig->nameTarget,
511  // where nameOrig and nameTarget are the names of the input jet collection and the
512  // jet collection name as used in the calibration ROOT file, respectively.
513  // SFNames: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
514  // name of the scale factor calibration object
515  // EffNames: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
516  // names of the possibly relevant efficiency calibration objects
517  // excludeFromEV: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
518  // systematic uncertainties to be excluded from the Eigenvector variation treatment
519  // (this is used only if Eigenvector variations are used to begin with)
520  // EVReductions: Eigenvector variation reduction strategies for "B", "C", "Light" jets (again,
521  // this is only relevant if Eigenvector variations are used to begin with)
522  // useEV: switch specifying if Eigenvector variations will be used or not
523  // useMCMCSF: switch specifying if generator-dependent scale factors are to be applied or not
524 
525  // Note: at present, the means to change the strategies and maximum values initialized above do not exist
526  // when using this constructor
527 
528  if (m_verbose) {
529  cout << "=== CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ===" << endl;
530  cout << " taggerName : " << taggerName.c_str() << endl;
531  cout << " Systematic strategy : ";
533  cout << "SFEigen" << endl;
535  cout << "SFGlobalEigen" << endl;
536  } else {
537  cout << " Other" << endl;
538  }
539  if (fileEff) cout << " Efficiency file name : " << fileEff << endl;
540  cout << " SF file name : " << fileSF << endl
541  << endl;
542  }
543 
544  m_taggerName = taggerName;
545 
546  m_fileSF = TFile::Open(fileSF, "READ");
547  if (fileEff && strcmp(fileSF, fileEff) != 0) {
548  m_filenameEff = string(fileEff);
549  m_fileEff = TFile::Open(fileEff, "READ");
550  } else
552 
553  if (m_verbose) {
554  TObjString* s;
555  m_fileSF->GetObject("VersionInfo/BuildNumber", s);
556  if (s) cout << " CDI file build number: " << s->GetName() << endl;
557  cout << endl;
558  }
559 
560  for (unsigned int i = 0; i < jetAliases.size(); ++i) {
561  // Each alias specification uses an arrow ("->"). Forget about entries
562  // not properly following this specification.
563  string::size_type arrow = jetAliases[i].find("->");
564  if (arrow == string::npos) continue;
565  m_aliases[jetAliases[i].substr(0,arrow)] = jetAliases[i].substr(arrow+2);
566  }
567 
568  setEffCalibrationNames(EffNames);
569  setSFCalibrationNames(SFNames);
570 
571  if (m_runEigenVectorMethod) {
572  // if we want to run EV, then decide which one
573  // The following should hold for both eigenvector decomposition methods (SFEigen and SFGlobalEigen)
574  // The global one simply adapts itself to using the m_excludeFromCovMatrix to perform the same task
575 
576  m_excludeFromCovMatrix = excludeFromEV;
577  unsigned int n_excluded = 0;
578  for (auto const& flavour : m_flavours) {
579  n_excluded += m_excludeFromCovMatrix[flavour].size();
580  }
581  if (m_verbose) {
582  cout << " List of uncertainties to exclude:";
583  if (n_excluded == 0) cout << " none";
584  for (auto const& flavour : m_flavours) {
585  if (m_excludeFromCovMatrix[flavour].size() > 0) {
586  cout << "\n\t" << flavour << ":\t";
587  for (unsigned int i = 0; i < m_excludeFromCovMatrix[flavour].size(); ++i) {
588  cout << m_excludeFromCovMatrix[flavour].at(i);
589  if (i+1 == m_excludeFromCovMatrix[flavour].size()) cout << "; ";
590  }
591  cout << endl;
592  }
593  }
594  cout << endl;
595  }
596 
597  }
598 
599  if (m_verbose) cout << "======= end of CalibrationDataInterfaceROOT instantiation ========" << endl;
600 }
601 
602 //________________________________________________________________________________
604 {
605  // Default constructor for PROOF purposes
606 
607  m_fileEff=0;
608  m_fileSF=0;
609 }
610 
611 //________________________________________________________________________________
613  Analysis::CalibrationDataInterfaceBase(other), m_aliases(other.m_aliases), m_objects(), m_objectIndices(),
614  m_filenameSF(other.m_filenameSF), m_filenameEff(other.m_filenameEff),
615  m_eigenVariationsMap(), m_runEigenVectorMethod(other.m_runEigenVectorMethod), m_EVStrategy(other.m_EVStrategy),
616  m_excludeFromCovMatrix(other.m_excludeFromCovMatrix), m_useMCMCSF(other.m_useMCMCSF), m_useTopologyRescaling(other.m_useTopologyRescaling),
617  m_refMap(), m_hadronisationReference(),
618  m_maxAbsEta(other.m_maxAbsEta), m_absEtaStrategy(other.m_absEtaStrategy), m_otherStrategy(other.m_otherStrategy),
619  m_etaCounters(other.m_etaCounters), m_mainCounters(other.m_mainCounters), m_extrapolatedCounters(other.m_extrapolatedCounters),
620  m_checkedWeightScaleFactors(other.m_checkedWeightScaleFactors), m_maxTagWeight(other.m_maxTagWeight)
621 {
622  // Copy constructor. Note that the "cacheable" items aren't copied (they will be re-created if needed)
623 
624  // The TFile objects cannot be copied. Therefore, create duplicate objects starting from the filenames
625  m_fileSF = TFile::Open(m_filenameSF.c_str(), "READ");
628  else
629  m_fileEff = TFile::Open(m_filenameEff.c_str(), "READ");
630 }
631 
632 //________________________________________________________________________________
634 {
635  // Destructor
636  if ((m_fileEff!=0) && (m_fileSF!=0)) {
637  if (m_fileEff == m_fileSF) {
638  m_fileEff->Close();
639  delete m_fileEff; m_fileEff = 0;
640  } else {
641  m_fileEff->Close();
642  m_fileSF->Close();
643  delete m_fileEff; m_fileEff = 0;
644  delete m_fileSF; m_fileSF = 0;
645  }
646  }
647  // delete also the stored objects (these are owned by us)
648  for (std::vector<CalibrationDataContainer*>::iterator it = m_objects.begin(); it != m_objects.end(); ++it) {
649  if (*it) {
650  delete *it; *it = 0;
651  }
652  }
653 
655  it != m_refMap.end(); ++it) {
656  if(it->second)
657  { delete it->second; it->second=nullptr; }
658  }
659 
660  // Print summary output on out-of-bounds issues
661  if (m_absEtaStrategy == Flag && m_verbose) {
662  bool found = false;
663  cout << "\t\tCalibrationDataInterfaceROOT |eta| out-of-bounds summary:" << endl;
664  for (unsigned int index = 0; index < m_mainCounters.size(); ++index)
665  if (m_etaCounters[index] > 0) {
666  found = true;
667  cout << "\t\t\t" << nameFromIndex(index) << ": " << m_etaCounters[index] << endl;
668  }
669  if (!found) cout << "\t\t\tNo issues found" << endl;
670  }
671  if (m_otherStrategy == Flag && m_verbose) {
672  bool found = false;
673  cout << "\t\tCalibrationDataInterfaceROOT object out-of-bounds summary:" << endl;
674  for (unsigned int index = 0; index < m_mainCounters.size(); ++index)
675  if (m_mainCounters[index] + m_extrapolatedCounters[index] > 0) {
676  found = true;
677  cout << "\t\t\t" << nameFromIndex(index)
678  << " general: " << m_mainCounters[index]
679  << ", extrapolated: " << m_extrapolatedCounters[index]
680  << endl;
681  }
682  if (!found) cout << "\t\t\tNo issues found" << endl;
683  }
684 }
685 
686 //________________________________________________________________________________
687 bool
689  const std::string& OP,
690  const std::string& author,
691  bool isSF, unsigned int& index,
692  unsigned int mapIndex)
693 {
694  // Retrieve the integer index corresponding to a given combination of
695  // flavour label / tagger / working point / jet collection name, and separately
696  // for calibration scale factors and MC efficiencies (all these ingredients are needed
697  // to specify fully the calibration object).
698  // In fact this method will also trigger the retrieval of the object itself, if not already
699  // done, and will cache it internally. The absence of the requested calibration object will
700  // be flagged by a false return value.
701  // This method is used internally but should also be called by users in order to exploit the
702  // "code speed-up" features documented above.
703  //
704  // label: jet flavour label
705  // OP: tagger working point
706  // author: jet collection name
707  // isSF: set to true (false) for scale factors (MC efficiencies)
708  // index: resulting index (meaningful only for a 'true' function return value)
709  // mapIndex: index to the MC efficiency map to be used
710 
711  index = 0;
712 
713  // construct the full name from the label, operating point, SF/Eff choice;
714  // then look up this full name
715  string name = fullName(author, OP, label, isSF, mapIndex);
716  std::map<string, unsigned int>::const_iterator it = m_objectIndices.find(name);
717  if (it == m_objectIndices.end()) {
718  // If no container is found, attempt to retrieve it here (this is so that users won't
719  // have to call the named scale factor etc. methods once just to retrieve the container).
720  string flavour = (label == "N/A") ? "Light" : label;
721  string cntname = getContainername(flavour, isSF, mapIndex);
722  if (m_verbose) std::cout << "CalibrationDataInterfaceROOT->retrieveCalibrationIndex : container name is " << cntname << std::endl;
723  retrieveContainer(flavour, OP, author, cntname, isSF, m_verbose); // Only call this if you want to retrieve a currently not available container
724  it = m_objectIndices.find(name);
725  if (it == m_objectIndices.end()) return false;
726  } else {
727  if (m_verbose) std::cout << "CalibrationDataInterfaceROOT->retrieveCalibrationIndex : container " << name << " already cached! " << std::endl;
728  }
729 
730  index = it->second;
731  return true;
732 }
733 
734 //________________________________________________________________________________
737  const string& label, const string& OP,
738  Uncertainty unc, unsigned int numVariation,
739  unsigned int mapIndex) //const
740 {
741  // Scale factor retrieval identifying the requested calibration object by name.
742  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
743  // above, and will be a dummy value in case an error occurs.
744  //
745  // variables: object holding kinematic (and other) information needed to compute the result
746  // label: jet flavour label
747  // OP: tagger operating point
748  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
749  // named variations are to be computed)
750  // numVariation: variation index (in case of eigenvector or named variations)
751  // mapIndex: index to the efficiency map to be used (this is needed for MC/MC scale factor
752  // application)
753  unsigned int indexEff, indexSF;
754  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) && retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
755  cerr << "getScaleFactor: unable to find SF calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << " or SF calibration for object " << fullName(variables.jetAuthor, OP, label, true) << endl;
756  // Return a dummy result if the object is not found
757  return Analysis::dummyResult;
758  }
759 
760  Analysis::CalibResult result; // the following is SF #3
761  return (getScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
763 }
764 
765 //________________________________________________________________________________
768  unsigned int indexSF, unsigned int indexEff,
769  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
770 {
771  // Scale factor retrieval identifying the requested calibration object by index.
772  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
773  // above, and will be a dummy value in case an error occurs.
774  //
775  // variables: object holding kinematic (and other) information needed to compute the result
776  // indexSF: index to scale factor calibration object
777  // indexEff: index to MC efficiency object
778  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
779  // named variations are to be computed)
780  // numVariation: variation index (in case of eigenvector or named variations)
781  Analysis::CalibResult result; // the following is SF #3
782  return (getScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
784 }
785 
786 //________________________________________________________________________________
789  unsigned int indexSF, unsigned int indexEff,
790  Uncertainty unc, unsigned int numVariation,
791  Analysis::CalibResult& result, const string& flavour)
792 {
793  // Scale factor retrieval identifying the requested calibration object by index.
794  //
795  // variables: object holding kinematic (and other) information needed to compute the result
796  // indexSF: index to scale factor calibration object
797  // indexEff: index to MC efficiency object
798  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
799  // named variations are to be computed)
800  // numVariation: variation index (in case of eigenvector or named variations)
801  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
802  // A dummy value will be returned in case of an error.
803 
804  CalibrationDataContainer* container = m_objects[indexSF];
805  if (! container) {
806  cerr << "getScaleFactor: error retrieving container!" << endl;
807  return Analysis::kError;
808  }
809 
810  // perform out-of-bound check of jet eta
811  if (!checkAbsEta(variables, indexSF)) {
812  if (m_verbose)
813  cerr << "Jet |eta| is outside of the boundary!" << endl;
814  return Analysis::kRange;
815  }
816 
817  // retrieve the MC/MC scale factor
818  double MCMCSF = m_useMCMCSF ? getMCMCScaleFactor(variables, indexSF, indexEff) : 1; // if we don't want to switch generator, MCMCSF = 1, as it should be
819 
820  if (!m_runEigenVectorMethod && (unc == SFEigen || unc == SFNamed || unc == SFGlobalEigen))
821  {
822  cerr << " ERROR. Trying to call eigenvector method but initialization not switched on in b-tagging configuration." << endl;
823  cerr << " Please correct your configuration first. Nominal uncertainties used. " << endl;
824  }
825 
826  // Procede with eigenvariations methods i.e. return the SF variations
827  if (unc == SFEigen || unc == SFNamed || unc==SFGlobalEigen) {
828  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
829  try {
830  eigenVariation=m_eigenVariationsMap.at(container);
831  } catch (const std::out_of_range&) {
832  cerr << " Could not retrieve eigenvector variation, while it should have been there." << endl;
833  return Analysis::kError;
834  }
835  TH1* up=0;
836  TH1* down=0;
837  bool extrapolate = false; // store if the numVariation is the extrapolation named uncertainty index
838  if (unc == SFEigen || unc==SFNamed){
839  unsigned int maxVariations = (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
840  if (numVariation > maxVariations-1) {
841  cerr << "Asked for " << ((unc == SFEigen) ? "eigenvariation" : "named variation") << " number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
842  return Analysis::kError;
843  }
844  bool isOK = eigenVariation->getEigenvectorVariation(numVariation,up,down);
845  if (!isOK) {
846  cerr << "Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
847  return Analysis::kError;
848  }
849  // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
850  extrapolate = (unc == SFNamed) ? eigenVariation->isExtrapolationVariation(numVariation) : false;
851 
852  } else if (unc == SFGlobalEigen) {
853  std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation); //dynamic_cast<std::shared_ptr<CalibrationDataGlobalEigenVariations> >(eigenVariation);
854  if (not GEV){
855  cerr << "Analysis::CalibrationDataInterfaceROOT::getScaleFactor: dynamic cast failed\n";
856  return Analysis::kError;
857  }
858  unsigned int maxVariations = GEV->getNumberOfEigenVariations(flavour); // <----- This gets the number of variations of the flavour
859  if (numVariation > maxVariations-1) {
860  cerr << "Asked for global eigenvariation number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
861  return Analysis::kError;
862  }
863  bool isOK = GEV->getEigenvectorVariation(flavour, numVariation,up,down);
864  if (!isOK) {
865  cerr << "Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
866  return Analysis::kError;
867  }
868  // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
869  extrapolate = GEV->isExtrapolationVariation(numVariation, flavour);
870  } else {
871  std::cerr << "ERROR: you requested " << unc << " but that isn't in the set of (SFEigen, SFGlobalEigen, SFNamed) for eigenvariations. " << std::endl;
872  return Analysis::kError;
873  }
874 
875  double valueUp;
876  double valueDown;
877  Analysis::CalibrationStatus statUp = container->getResult(variables, valueUp, up, extrapolate); // This is what actually retrieves results from the container
878  Analysis::CalibrationStatus statDown = container->getResult(variables, valueDown,down, extrapolate);
879 
880  if (statUp == Analysis::kError || statDown == Analysis::kError)
881  return Analysis::kError;
882  if (m_otherStrategy == GiveUp)
883  assert (statUp != Analysis::kRange); // no need to test also statDown
884  else if (m_otherStrategy == GiveUpExtrapolated)
885  assert (statUp != Analysis::kExtrapolatedRange); // no need to test also statDown
886  else if (m_otherStrategy == Flag) {
887  if (statUp == Analysis::kRange)
888  increaseCounter(indexSF);
889  else if (statUp == Analysis::kExtrapolatedRange)
890  increaseCounter(indexSF, Extrapolated);
891  }
892 
893  result.first = MCMCSF*valueUp;
894  result.second = MCMCSF*valueDown;
895 
896  // Prevent negative return values. Should the comparison be against a strict 0?
897  result.first = std::max(Analysis::CalibZERO, result.first);
898  result.second = std::max(Analysis::CalibZERO, result.second);
899 
900  return statUp; // end of getScaleFactor if SFEigen, SFGlobalEigen, or SFNamed is set
901 
902 
903  } // The above returns the up/down varied scale factor
904  //Proceed with no-eigenvector result
905 
906  // always retrieve the result itself
907  double value;
909  if (status == Analysis::kError) {
910  cerr << "getScaleFactor: error retrieving result in non-EV context!" << endl;
911  return status;
912  }
913  if (m_otherStrategy == GiveUp){
914  assert (status != Analysis::kRange);
915  } else if (m_otherStrategy == GiveUpExtrapolated) {
917  } else if (m_otherStrategy == Flag) {
918  if (status == Analysis::kRange){
919  increaseCounter(indexSF);
920  } else if (status == Analysis::kExtrapolatedRange) {
921  increaseCounter(indexSF, Extrapolated);
922  }
923  }
924 
925  // retrieve the statistical uncertainty if desired
926  double stat(0);
927  if (unc == Total || unc == Statistical) {
928  if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
929  cerr << "getScaleFactor: error retrieving Scale factor parameter covariance matrix!" << endl;
930  return Analysis::kError;
931  }
932  }
933 
934  Analysis::UncertaintyResult resSyst(0,0);
935  if (unc == Total || unc == Systematic) {
936  if (container->getSystUncertainty(variables, resSyst) == Analysis::kError) {
937  cerr << "getScaleFactor: error retrieving Scale factor parameter systematic uncertainty!" << endl;
938  return Analysis::kError;
939  }
940  } else if (unc == Extrapolation) {
941  // this uncertainty is special, since it is not normally to be combined into the overall systematic uncertainty
942  if (container->getUncertainty("extrapolation", variables, resSyst) == Analysis::kError)
943  cerr << "getScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
944  } else if (unc == TauExtrapolation) {
945  // also this uncertainty is special, since it it singles out an uncertainty relevant only for tau "jets",
946  // and some care has to be taken not to duplicate or omit uncertainties
947  if (container->getUncertainty("extrapolation from charm", variables, resSyst) == Analysis::kError)
948  cerr << "getScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
949  }
950 
951  double uncertainty = combinedUncertainty(stat, resSyst);
952  result.first = MCMCSF*value;
953  result.second = MCMCSF*uncertainty;
954 
955  // Prevent negative return values. Should the comparison be against a strict 0?
956  result.first = std::max(Analysis::CalibZERO, result.first);
957  return status;
958 
959 }
960 
961 //________________________________________________________________________________
964  const string& label, const string& OP,
965  Uncertainty unc, unsigned int mapIndex)
966 {
967  // MC efficiency retrieval identifying the requested calibration object by name.
968  // The return value is a (value, uncertainty) pair, as documented above, and will
969  // be a dummy value in case an error occurs.
970  //
971  // variables: object holding kinematic (and other) information needed to compute the result
972  // label: jet flavour label
973  // OP: tagger operating point
974  // unc: keyword indicating what uncertainties to evaluate
975  // mapIndex: index to the efficiency map to be used
976 
977  unsigned int index;
978  if (! retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, index, mapIndex)) {
979  cerr << "getMCEfficiency: unable to find Eff calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << endl;
980  // Return a dummy result if the object is not found
981  return Analysis::dummyResult;
982  }
983 
985  return (getMCEfficiency(variables, index, unc, result) == Analysis::kError) ?
987 }
988 
989 //________________________________________________________________________________
992  unsigned int index, Uncertainty unc) //const
993 {
994  // MC efficiency retrieval identifying the requested calibration object by index.
995  // The return value is a (value, uncertainty) pair, as documented above, and will
996  // be a dummy value in case an error occurs.
997  //
998  // variables: object holding kinematic (and other) information needed to compute the result
999  // index: index to calibration object
1000  // unc: keyword indicating what uncertainties to evaluate
1001 
1003  return (getMCEfficiency(variables, index, unc, result) == Analysis::kError) ?
1005 }
1006 
1007 //________________________________________________________________________________
1010  unsigned int index, Uncertainty unc,
1012 {
1013  // MC efficiency retrieval identifying the requested calibration object by index.
1014  //
1015  // variables: object holding kinematic (and other) information needed to compute the result
1016  // index: index to calibration object
1017  // unc: keyword indicating what uncertainties to evaluate
1018  // result: (value, uncertainty) variation pair.
1019  // A dummy value will be returned in case of an error.
1020 
1021  CalibrationDataContainer* container = m_objects[index];
1022  if (! container) return Analysis::kError;
1023 
1024  // perform out-of-bound check of jet eta
1025  if (!checkAbsEta(variables, index)) {
1026  if (m_verbose)
1027  cerr << "Jet |eta| is outside of the boundary!" << endl;
1028  return Analysis::kRange;
1029  }
1030 
1031 
1032  // always retrieve the result itself
1033  double value;
1035  if (status == Analysis::kError) return status;
1036  if (m_otherStrategy == GiveUp)
1037  assert (status != Analysis::kRange); // no need to test also statDown
1038  else if (m_otherStrategy == Flag)
1039  if (status == Analysis::kRange)
1040  this->increaseCounter(index);
1041 
1042  // retrieve the statistical uncertainty if desired
1043  double stat(0);
1044  if (unc == Total || unc == Statistical) {
1045  if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
1046  cerr << "getMCEfficiency: error retrieving MC efficiency parameter covariance matrix!" << endl;
1047  return Analysis::kError;
1048  }
1049  }
1050 
1051  // Temporary(?) hack: comment this out since the present MC results don't have "systematics" contributions
1052  // Analysis::UncertaintyResult resSyst(0,0);
1053  // if (unc == Total || unc == Systematic) {
1054  // if (container->getSystUncertainty(variables, resSyst) == Analysis::kError)
1055  // cerr << "getScaleFactor: error retrieving Scale factor parameter covariance matrix!"
1056  // << endl;
1057  // }
1058 
1059  // since there is no combination of stat/syst uncertainties to be made, comment this out too
1060  double uncertainty = stat; // combinedUncertainty(stat, resSyst);
1061  result.first = std::max(0., std::min(1., value));
1062  result.second = uncertainty;
1063 
1064  return status;
1065 }
1066 
1067 //====================== efficiency retrieval ==========================================
1068 
1069 //________________________________________________________________________________
1072  const string& label,
1073  const string& OP, Uncertainty unc, const std::string& flavour,
1074  unsigned int numVariation, unsigned int mapIndex)
1075 {
1076  // Data efficiency retrieval identifying the requested calibration objects by name.
1077  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor.
1078  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1079  // above, and will be a dummy value in case an error occurs.
1080  //
1081  // variables: object holding kinematic (and other) information needed to compute the result
1082  // label: jet flavour label
1083  // OP: tagger operating point
1084  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1085  // named variations are to be computed)
1086  // numVariation: variation index (in case of eigenvector or named variations)
1087  // mapIndex: index to the efficiency map to be used
1088 
1089  unsigned int indexSF, indexEff;
1090  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1091  retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1092  cerr << "getEfficiency: unable to find Eff calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << " or SF calibration for object " << fullName(variables.jetAuthor, OP, label, true) << endl;
1093  // Return a dummy result if the object is not found
1094  return Analysis::dummyResult;
1095  }
1096 
1098  return (getEfficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ? Analysis::dummyResult : result;
1099 }
1100 
1101 //________________________________________________________________________________
1104  unsigned int indexSF, unsigned int indexEff,
1105  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
1106 {
1107  // Data efficiency retrieval identifying the requested calibration objects by index.
1108  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor.
1109  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1110  // above, and will be a dummy value in case an error occurs.
1111  //
1112  // variables: object holding kinematic (and other) information needed to compute the result
1113  // indexSF: index to scale factor calibration object
1114  // indexEff: index to MC efficiency object
1115  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1116  // named variations are to be computed)
1117  // numVariation: variation index (in case of eigenvector or named variations)
1118 
1120  return (getEfficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1122 }
1123 
1124 //________________________________________________________________________________
1127  unsigned int indexSF, unsigned int indexEff,
1128  Uncertainty unc, unsigned int numVariation,
1129  Analysis::CalibResult& result, const std::string& flavour)
1130 {
1131  // Data efficiency retrieval identifying the requested calibration objects by index.
1132  //
1133  // variables: object holding kinematic (and other) information needed to compute the result
1134  // indexSF: index to scale factor calibration object
1135  // indexEff: index to MC efficiency object
1136  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1137  // named variations are to be computed)
1138  // numVariation: variation index (in case of eigenvector or named variations)
1139  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1140  // A dummy value will be returned in case of an error.
1141 
1142  Analysis::CalibResult sfResult;
1143  Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1144  if (sfStatus == Analysis::kError) return sfStatus;
1145  Analysis::CalibResult effResult;
1146  Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1147  if (effStatus == Analysis::kError) return effStatus;
1148 
1149  double relative = 0;
1150  double value = effResult.first;
1151  if (TMath::Abs(sfResult.first) > Analysis::CalibZERO) {
1152  value = std::min(effResult.first*sfResult.first, 1.);
1153 
1154  // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1155  // (e.g. 'value' above contains the upward variation)
1156  if (unc == SFEigen || unc == SFNamed) {
1157  double valueDown = effResult.first*sfResult.second;
1158  result.first = value; // up/down variataions of data-efficiency
1159  result.second = valueDown;
1160  return sfStatus;
1161  }
1162  if (value > 0.) {
1163  relative = effResult.second/effResult.first;
1164  double sfRelative = sfResult.second/sfResult.first;
1165  /*
1166  cout << "sferr=" << sfResult.second
1167  << "btag Calib relative=" << relative << " sfRelative=" << sfRelative << endl;
1168  */
1169  relative = TMath::Sqrt(sfRelative*sfRelative + relative*relative);
1170  }
1171  } else {
1172  // now never happens due to protection of SF return value:
1173  cerr << "ERROR: CalibrationDataInterfaceROOT::getEfficiency: SF null result, SF=" << sfResult.first << " MC eff=" << effResult.first << "; setting SF=1." << endl;
1174  relative = Analysis::dummyValue;
1175  }
1176 
1177  result.first = value;
1178  result.second = value*relative;
1179  // "Select" the status code for the actual calibration (it is subject to more constraints)
1180  return sfStatus;
1181 }
1182 
1183 
1184 //________________________________________________________________________________
1187  const string& label,
1188  const string& OP, Uncertainty unc,
1189  unsigned int numVariation, unsigned int mapIndex)
1190 {
1191  // Inefficiency scale factor retrieval identifying the requested calibration objects by name.
1192  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1193  // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1194  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1195  // above, and will be a dummy value in case an error occurs.
1196  //
1197  // variables: object holding kinematic (and other) information needed to compute the result
1198  // label: jet flavour label
1199  // OP: tagger operating point
1200  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1201  // named variations are to be computed)
1202  // numVariation: variation index (in case of eigenvector or named variations)
1203  // mapIndex: index to the efficiency map to be used
1204 
1205  unsigned int indexSF, indexEff;
1206  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1207  retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1208  cerr << "getInefficiencyScaleFactor: unable to find Eff calibration for object "
1209  << fullName(variables.jetAuthor, OP, label, false, mapIndex)
1210  << " or SF calibration for object "
1211  << fullName(variables.jetAuthor, OP, label, true) << endl;
1212  // Return a dummy result if the object is not found
1213  return Analysis::dummyResult;
1214  }
1215 
1217  return (getInefficiencyScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
1219 }
1220 
1221 //________________________________________________________________________________
1224  unsigned int indexSF, unsigned int indexEff,
1225  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
1226 {
1227  // Inefficiency scale factor retrieval identifying the requested calibration objects by index.
1228  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1229  // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1230  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1231  // above, and will be a dummy value in case an error occurs.
1232  //
1233  // variables: object holding kinematic (and other) information needed to compute the result
1234  // indexSF: index to scale factor calibration object
1235  // indexEff: index to MC efficiency object
1236  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1237  // named variations are to be computed)
1238  // numVariation: variation index (in case of eigenvector or named variations)
1239 
1241  return (getInefficiencyScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1243 }
1244 
1245 //________________________________________________________________________________
1248  unsigned int indexSF, unsigned int indexEff,
1249  Uncertainty unc, unsigned int numVariation,
1250  Analysis::CalibResult& result, const std::string& flavour)
1251 {
1252  // Inefficiency scale factor retrieval identifying the requested calibration objects by index.
1253  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1254  // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1255  //
1256  // variables: object holding kinematic (and other) information needed to compute the result
1257  // indexSF: index to scale factor calibration object
1258  // indexEff: index to MC efficiency object
1259  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1260  // named variations are to be computed)
1261  // numVariation: variation index (in case of eigenvector or named variations)
1262  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1263  // A dummy value will be returned in case of an error.
1264 
1265  Analysis::CalibResult sfResult;
1266  Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1267  if (sfStatus == Analysis::kError) return sfStatus;
1268  Analysis::CalibResult effResult;
1269  Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1270  if (effStatus == Analysis::kError) return effStatus;
1271 
1272  double eff = std::min(effResult.first, 1.);
1273  // double efferr = effResult.second; // not needed as (per the code change indicated below) we are not doing anything with MC statistical uncertainties
1274  double sf = sfResult.first;
1275  double sferr = sfResult.second;
1276 
1277  double val = 0.; // Analysis::dummyValue;
1278  double err = 0.; // Analysis::dummyValue;
1279  if (1. - eff > CalibZERO) {
1280  // Protect against negative scale factors
1281  val = std::max((1. - eff*sf), CalibZERO) / (1. - eff);
1282  // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1283  // ('sf' and 'sferr' above contain the upward and downward variations, respectively).
1284  if (unc == SFEigen || unc == SFNamed) {
1285  double valDown = std::max((1. - eff*sferr), CalibZERO) / (1. - eff);
1286  result.first = val;
1287  result.second = valDown;
1288  return sfStatus;
1289  }
1290  // When using eigenvector (or named) variations (as above), only scale factor variations are considered.
1291  // For the sake of consistency, it has been decided (see https://its.cern.ch/jira/browse/AFT-350) to remove them also when EV variations aren't used
1292  //err = pow((1. - sf) / (1. - eff) * efferr, 2) + pow(eff*sferr, 2);
1293  err = pow(eff*sferr, 2);
1294  if (err > 0.)
1295  err = 1./(1. - eff) * TMath::Sqrt(err);
1296  // cout << "btag Calib Ineff err=" << err << endl;
1297  }
1298 
1299  result.first = std::max(CalibZERO, val);
1300  result.second = err;
1301  // "Select" the status code for the actual calibration (it is subject to more constraints)
1302  return sfStatus;
1303 }
1304 
1305 //________________________________________________________________________________
1308  const string& label,
1309  const string& OP, Uncertainty unc,
1310  unsigned int numVariation, unsigned int mapIndex)
1311 {
1312  // Data inefficiency retrieval identifying the requested calibration objects by name.
1313  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1314  // the inefficiency is then computed as the 1 minus the efficiency.
1315  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1316  // above, and will be a dummy value in case an error occurs.
1317  //
1318  // variables: object holding kinematic (and other) information needed to compute the result
1319  // label: jet flavour label
1320  // OP: tagger operating point
1321  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1322  // named variations are to be computed)
1323  // numVariation: variation index (in case of eigenvector or named variations)
1324  // mapIndex: index to the efficiency map to be used
1325 
1326  unsigned int indexSF, indexEff;
1327  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1328  retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1329  cerr << "getInefficiency: unable to find Eff calibration for object "
1330  << fullName(variables.jetAuthor, OP, label, false, mapIndex)
1331  << " or SF calibration for object "
1332  << fullName(variables.jetAuthor, OP, label, true) << endl;
1333  // Return a dummy result if the object is not found
1334  return Analysis::dummyResult;
1335  }
1336 
1338  return (getInefficiency(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
1340 }
1341 
1342 //________________________________________________________________________________
1345  unsigned int indexSF, unsigned int indexEff,
1346  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
1347 {
1348  // Data inefficiency retrieval identifying the requested calibration objects by index.
1349  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1350  // the inefficiency is then computed as the 1 minus the efficiency.
1351  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1352  // above, and will be a dummy value in case an error occurs.
1353  //
1354  // variables: object holding kinematic (and other) information needed to compute the result
1355  // indexSF: index to scale factor calibration object
1356  // indexEff: index to MC efficiency object
1357  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1358  // named variations are to be computed)
1359  // numVariation: variation index (in case of eigenvector or named variations)
1360 
1362  return (getInefficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1364 }
1365 
1366 //________________________________________________________________________________
1369  unsigned int indexSF, unsigned int indexEff,
1370  Uncertainty unc, unsigned int numVariation,
1371  Analysis::CalibResult& result, const std::string& flavour)
1372 {
1373  // Data inefficiency retrieval identifying the requested calibration objects by index.
1374  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1375  // the inefficiency is then computed as the 1 minus the efficiency.
1376  //
1377  // variables: object holding kinematic (and other) information needed to compute the result
1378  // indexSF: index to scale factor calibration object
1379  // indexEff: index to MC efficiency object
1380  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1381  // named variations are to be computed)
1382  // numVariation: variation index (in case of eigenvector or named variations)
1383  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1384  // A dummy value will be returned in case of an error.
1385 
1386  Analysis::CalibResult sfResult;
1387  Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1388  if (sfStatus == Analysis::kError) return sfStatus;
1389  Analysis::CalibResult effResult;
1390  Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1391  if (effStatus == Analysis::kError) return effStatus;
1392 
1393  double val = std::max(0., 1. - effResult.first * sfResult.first);
1394  double err = 0.; // Analysis::dummyValue;
1395 
1396  // Bail out here if not both results are strictly positive
1397  if (effResult.first <= 0. || sfResult.first <= 0.) return Analysis::kError;
1398 
1399  // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1400  // (e.g. 'val' above contains the upward variation)
1401  if (unc == SFEigen || unc == SFNamed) {
1402  double valDown = std::max(0., 1. - effResult.first*sfResult.second);
1403 
1404  result.first = val;
1405  result.second = valDown;
1406  } else {
1407  // safer than pow(x, 2):
1408  err = effResult.second/effResult.first*effResult.second/effResult.first
1409  + sfResult.second/sfResult.first*sfResult.second/sfResult.first;
1410  err = val*TMath::Sqrt(err);
1411 
1412  result.first = std::max(0., std::min(1., val));
1413  result.second = err;
1414  }
1415 
1416  // "Select" the status code for the actual calibration (it is subject to more constraints)
1417  return sfStatus;
1418 }
1419 
1420 //________________________________________________________________________________
1423  const string& label, const string& OP,
1424  Uncertainty unc, unsigned int mapIndex)
1425 {
1426  // Data inefficiency retrieval identifying the requested calibration objects by name.
1427  // The inefficiency is computed as the 1 minus the efficiency.
1428  // The return value is a (value, uncertainty), as documented above, and will be a dummy value
1429  // in case an error occurs.
1430  //
1431  // variables: object holding kinematic (and other) information needed to compute the result
1432  // label: jet flavour label
1433  // OP: tagger operating point
1434  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1435  // named variations are to be computed)
1436  // numVariation: variation index (in case of eigenvector or named variations)
1437  // mapIndex: index to the efficiency map to be used
1438 
1439  Analysis::CalibResult effResult = getMCEfficiency(variables, label, OP, unc, mapIndex);
1440  return std::make_pair(std::max(0., 1. - effResult.first), effResult.second);
1441 }
1442 
1443 //________________________________________________________________________________
1446  unsigned int index, Uncertainty unc)
1447 {
1448  // MC inefficiency retrieval identifying the requested calibration object by index.
1449  // The inefficiency is computed as the 1 minus the efficiency.
1450  // The return value is a (value, uncertainty), as documented above, and will be a dummy value
1451  // in case an error occurs.
1452  //
1453  // variables: object holding kinematic (and other) information needed to compute the result
1454  // index: index to MC efficiency object
1455  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1456  // named variations are to be computed)
1457  // numVariation: variation index (in case of eigenvector or named variations)
1458 
1459  Analysis::CalibResult effResult = getMCEfficiency(variables, index, unc);
1460  return std::make_pair(std::max(0., 1. - effResult.first), effResult.second);
1461 }
1462 
1463 //________________________________________________________________________________
1464 double
1466  unsigned indexSF, unsigned int indexEff) const
1467 {
1468  // Retrieve the MC/MC scale factor given the set of scale factor and efficiency indices.
1469  // variables: object holding kinematic (and other) information needed to compute the result
1470  // indexSF: index to scale factor calibration object
1471  // indexEff: index to MC efficiency object
1472 
1473  // If either reference doesn't exist, or if they are the same, nothing can / needs to be done.
1474  int indexSFRef = m_hadronisationReference[indexSF], indexEffRef = m_hadronisationReference[indexEff];
1475  if (indexSFRef < 0 || indexEffRef < 0 || indexSFRef == indexEffRef) return 1;
1476 
1477  // Verify also that the individual efficiencies are physically meaningful.
1478  double effSFRef; m_objects[indexSFRef]->getResult(variables, effSFRef);
1479  double effEffRef; m_objects[indexEffRef]->getResult(variables, effEffRef);
1480  return (effSFRef > 0 && effEffRef > 0) ? effSFRef/effEffRef : 1;
1481 }
1482 
1483 //________________________________________________________________________________
1486  const string& label, Uncertainty unc,
1487  unsigned int numVariation, unsigned int mapIndex)
1488 {
1489  // #1
1490  // Tag weight fraction scale factor retrieval identifying the requested calibration object by name.
1491  // The return value is either a (value, uncertainty) or (if eigenvector or named variations are specified)
1492  // an (up, down) variation pair, and will be a dummy value in case an error occurs.
1493  // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1494  // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1495  // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1496  // unity for each given kinematic bin.
1497  //
1498  // variables: object holding kinematic (and other) information needed to compute the result
1499  // label: jet flavour label
1500  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1501  // named variations are to be computed)
1502  // numVariation: variation index (in case of eigenvector or named variations)
1503  // mapIndex: index to the MC efficiency map to be used for scale factor rescaling
1504 
1505  static const string cont("Continuous");
1506 
1507  unsigned int indexSF, indexEff;
1508  if (! (retrieveCalibrationIndex (label, cont, variables.jetAuthor, false, indexEff, mapIndex) &&
1509  retrieveCalibrationIndex (label, cont, variables.jetAuthor, true, indexSF))) {
1510  cerr << "getWeightScaleFactor: unable to find Eff calibration for object "
1511  << fullName(variables.jetAuthor, cont, label, false, mapIndex)
1512  << " or SF calibration for object "
1513  << fullName(variables.jetAuthor, cont, label, true) << endl;
1514  return Analysis::dummyResult;
1515  }
1516 
1518  return (getWeightScaleFactor(variables, indexSF, indexEff, unc, numVariation, result) == Analysis::kError) ? Analysis::dummyResult : result;
1519 }
1520 
1521 //________________________________________________________________________________
1524  unsigned int indexSF, unsigned int indexEff,
1525  Uncertainty unc, unsigned int numVariation)
1526 {
1527  // #2
1528  // Tag weight fraction scale factor retrieval identifying the requested calibration object by index.
1529  // The return value is either a (value, uncertainty) or (if eigenvector or named variations are specified)
1530  // an (up, down) variation pair, and will be a dummy value in case an error occurs.
1531  // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1532  // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1533  // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1534  // unity for each given kinematic bin.
1535  //
1536  // variables: object holding kinematic (and other) information needed to compute the result
1537  // indexSF: index to calibration object
1538  // indexEff: index to MC tag weight
1539  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1540  // named variations are to be computed)
1541  // numVariation: variation index (in case of eigenvector or named variations)
1542 
1544  return (getWeightScaleFactor(variables, indexSF, indexEff, unc, numVariation, result) == Analysis::kError) ?
1546 }
1547 
1548 //________________________________________________________________________________
1551  unsigned int indexSF, unsigned int indexEff,
1552  Uncertainty unc, unsigned int numVariation,
1554 {
1555  // #3
1556  // Tag weight fraction scale factor retrieval identifying the requested calibration object by index.
1557  // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1558  // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1559  // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1560  // unity for each given kinematic bin.
1561  //
1562  // variables: object holding kinematic (and other) information needed to compute the result
1563  // indexSF: index to calibration object
1564  // indexEff: index to MC tag weight
1565  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1566  // named variations are to be computed)
1567  // numVariation: variation index (in case of eigenvector or named variations)
1568  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1569  // A dummy value will be returned in case of an error.
1570  CalibrationDataContainer* container = m_objects[indexSF];
1571  if (! container) return Analysis::kError;
1572  CalibrationDataContainer* effContainer = m_objects[indexEff];
1573  if (! effContainer) return Analysis::kError;
1574 
1575  // the first time this combination of scale factor and "efficiency" objects is given, check on the
1576  // scale factors that will result from their combination (where the computations reproduce those
1577  // shown below)
1578  checkWeightScaleFactors(indexSF, indexEff);
1579 
1580  // perform out-of-bound check of jet eta
1581  if (!checkAbsEta(variables, indexSF)) {
1582  if (m_verbose)
1583  cerr << "Jet |eta| is outside of the boundary!" << endl;
1584  return Analysis::kRange;
1585  }
1586 
1587  // Always retrieve the result itself
1588  double value;
1590  if (status == Analysis::kError) return status;
1591  if (m_otherStrategy == GiveUp) assert (status != Analysis::kRange);
1592  else if (m_otherStrategy == GiveUpExtrapolated) assert (status != Analysis::kExtrapolatedRange);
1593  else if (m_otherStrategy == Flag) {
1594  if (status == Analysis::kRange)
1595  increaseCounter(indexSF);
1597  increaseCounter(indexSF, Extrapolated);
1598  }
1599 
1600  // Retrieve the reference MC tag weight fraction (corresponding to the calibration scale factors)
1601  Analysis::UncertaintyResult refMCResult(0,0);
1602  if (container->getUncertainty("MCreference", variables, refMCResult) == Analysis::kError)
1603  return Analysis::kError;
1604  double fracMCref = refMCResult.first;
1605  // Retrieve the MC reference information, if requested (the initialisation below is to make sure
1606  // that no exceptions in the code will be needed)
1607  double fracSFref = fracMCref, fracEffref = fracMCref;
1608  if (m_useMCMCSF) {
1609  int indexSFref = m_hadronisationReference[indexSF], indexEffref = m_hadronisationReference[indexEff];
1610  if (indexSFref < 0 || indexEffref < 0) {
1611  cerr << "getWeightScaleFactor: error: generator-specific corrections requested but necessary reference containers lacking " << endl;
1612  return Analysis::kError;
1613  } else {
1614  m_objects[indexSFref]->getResult(variables, fracSFref);
1615  m_objects[indexEffref]->getResult(variables, fracEffref);
1616  if (! (fracSFref > 0. && fracEffref > 0.)) {
1617  cerr << "getWeightScaleFactor: error: invalid reference tag weight fraction " <<fracSFref <<" " <<fracEffref << std::endl;
1618  return Analysis::kError;
1619  }
1620  }
1621  }
1622 
1623  // Retrieve the MC tag weight fraction for the sample we need to reweight to
1624  double fracMCnew;
1625  Analysis::CalibrationStatus effStatus = effContainer->getResult(variables, fracMCnew);
1626  if (effStatus == Analysis::kError) return effStatus;
1627  if (m_otherStrategy == GiveUp) assert (effStatus != Analysis::kRange);
1628  else if (m_otherStrategy == Flag)
1629  if (effStatus == Analysis::kRange) increaseCounter(indexEff);
1630  // since we need to divide by this quantity, check that it is well-defined
1631  if (!(fracMCnew > 0.) and m_useTopologyRescaling) {// but we only care if using topology rescaling
1632  cerr << "getWeightScaleFactor: error: null fracMCnew would lead to invalid operation" << endl;
1633  return Analysis::kError;
1634  }
1635 
1636  if (!m_runEigenVectorMethod && (unc == SFEigen || unc == SFNamed)) {
1637  cerr << "getWeightScaleFactor: ERROR. Trying to call eigenvector method but initialization not switched on in b-tagging .env config file." << endl;
1638  cerr << " Please correct your .env config file first. Nominal uncertainties used. " << endl;
1639  }
1640 
1641  if (unc == SFEigen || unc == SFNamed) {
1642  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
1643  try {
1644  eigenVariation = m_eigenVariationsMap.at(container);
1645  } catch (const std::out_of_range&) {
1646  cerr << "getWeightScaleFactor: could not retrieve eigenvector variation, while it should have been there." << endl;
1647  return Analysis::kError;
1648  }
1649  unsigned int maxVariations = (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
1650  if (numVariation > maxVariations-1) {
1651  cerr << "getWeightScaleFactor: asked for " << ((unc == SFEigen) ? "eigenvariation" : "named variation") << " number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
1652  return Analysis::kError;
1653  }
1654  TH1* up=0;
1655  TH1* down=0;
1656  bool isOK = (unc == SFEigen) ? eigenVariation->getEigenvectorVariation(numVariation,up,down) : eigenVariation->getNamedVariation(numVariation,up,down);
1657  if (!isOK) {
1658  cerr << "getWeightScaleFactor: Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
1659  return Analysis::kError;
1660  }
1661  // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
1662  bool extrapolate = ( unc == SFNamed ) ? eigenVariation->isExtrapolationVariation(numVariation) : false;
1663 
1664  double valueUp;
1665  double valueDown;
1666  Analysis::CalibrationStatus statusUp = container->getResult(variables, valueUp, up, extrapolate);
1667  Analysis::CalibrationStatus statusDown = container->getResult(variables, valueDown,down, extrapolate);
1668  if (statusUp == Analysis::kError || statusDown == Analysis::kError) return Analysis::kError;
1669 
1670  // now carry out the rescaling. Protect against unphysical or suspiciously large scale factors
1671  double variationUp = valueUp - value;
1672  double variationDown = valueDown - value;
1673  // First step: from the calibration sample to its reference sample
1674  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracMCref / fracSFref);
1675  // Second step: from the calibration reference sample to the MC object's reference sample
1676  if (m_useMCMCSF) value *= (fracSFref / fracEffref);
1677  // Third step: from the MC object's reference sample to the MC sample itself
1678  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracEffref / fracMCnew);
1679  // Since all transformations of the scale factor itself are linear, the transformation of the variations is simpler.
1680  if (m_useTopologyRescaling) {
1681  double f = (fracMCref / fracMCnew);
1682  variationUp *= f;
1683  variationDown *= f;
1684  } else if (m_useMCMCSF) {
1685  double f = (fracSFref / fracEffref);
1686  variationUp *= f;
1687  variationDown *= f;
1688  }
1689  valueUp = value + variationUp;
1690  valueDown = value + variationDown;
1691  if (valueUp < 0) {
1692  valueUp = 0; increaseCounter(indexSF, TagWeight);
1693  } else if (valueUp > m_maxTagWeight) {
1694  valueUp = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1695  }
1696  if (valueDown < 0) {
1697  valueDown = 0; increaseCounter(indexSF, TagWeight);
1698  } else if (valueDown > m_maxTagWeight) {
1699  valueDown = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1700  }
1701 
1702  result.first = valueUp;
1703  result.second = valueDown;
1704  return statusUp;
1705  } //end eigenvector method
1706 
1707  //Proceed with no-eigenvector result
1708 
1709  // retrieve the statistical uncertainty if desired
1710  double stat(0);
1711  if (unc == Total || unc == Statistical) {
1712  if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
1713  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter covariance matrix!" << endl;
1714  return Analysis::kError;
1715  }
1716  }
1717  Analysis::UncertaintyResult uncertaintyResult(0,0);
1718  if (unc == Total || unc == Systematic) {
1719  if (container->getSystUncertainty(variables, uncertaintyResult) == Analysis::kError) {
1720  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter systematic uncertainty!" << endl;
1721  return Analysis::kError;
1722  }
1723  } else if (unc == Extrapolation) {
1724  // this uncertainty is special, since it is not normally to be combined into the overall systematic uncertainty
1725  if (container->getUncertainty("extrapolation", variables, uncertaintyResult) == Analysis::kError)
1726  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
1727  } else if (unc == TauExtrapolation) {
1728  // also this uncertainty is special, since it it singles out an uncertainty relevant only for tau "jets",
1729  // and some care has to be taken not to duplicate or omit uncertainties
1730  if (container->getUncertainty("extrapolation from charm", variables, uncertaintyResult) == Analysis::kError)
1731  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
1732  }
1733 
1734  double uncertainty = combinedUncertainty(stat, uncertaintyResult);
1735 
1736  // Now carry out the rescaling. Again protect against unphysical or suspiciously large scale factors
1737  // First step: from the calibration sample to its reference sample
1738  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracMCref / fracSFref);
1739  // Second step: from the calibration reference sample to the MC object's reference sample
1740  if (m_useMCMCSF) value *= (fracSFref / fracEffref);
1741  // Third step: from the MC object's reference sample to the MC sample itself
1742  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracEffref / fracMCnew);
1743  if (value < 0) {
1744  value = 0; increaseCounter(indexSF, TagWeight);
1745  } else if (value > m_maxTagWeight) {
1746  value = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1747  }
1748  // Since all transformations of the scale factor itself are linear, the transformation of the uncertainty is simpler.
1749  if (m_useTopologyRescaling) {
1750  uncertainty *= (fracMCref / fracMCnew);
1751  } else if (m_useMCMCSF) {
1752  uncertainty *= (fracSFref / fracEffref);
1753  }
1754 
1755  result.first = std::max(0., value);
1756  result.second = uncertainty;
1757  // "Select" the status code for the actual calibration object (it is subject to more constraints)
1758  return status;
1759 }
1760 
1761 //________________________________________________________________________________
1762 void
1764  unsigned int indexEff)
1765 {
1766  // Check the tag weight scale factors that would result from the combination of
1767  // the provided scale factor and MC tag weight objects.
1768  // The way this is done is by determining the binning that would apply to the
1769  // combination of the two individual inputs, and then by explicitly computing
1770  // the scale factors in each of these resulting bins.
1771 
1772  std::vector<std::pair<unsigned int, unsigned int> >::const_iterator it = std::find(m_checkedWeightScaleFactors.begin(), m_checkedWeightScaleFactors.end(), std::make_pair(indexSF, indexEff));
1773  if (it != m_checkedWeightScaleFactors.end()) return;
1774 
1775 
1776  // Assume that only histogram containers are involved here (this should be the case
1777  // as at least a strict tag weight binning should be applied).
1778  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[indexSF]);
1779  if (! container) {
1780  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: container for object " << nameFromIndex(indexSF) << " not found!" << endl;
1781  return;
1782  } else if (! container->GetValue("MCreference")) {
1783  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: no MCreference histogram for object " << nameFromIndex(indexSF) << "!" << endl;
1784  return;
1785  }
1786  CalibrationDataHistogramContainer* effContainer = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[indexEff]);
1787  if (! effContainer) {
1788  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: container for object " << nameFromIndex(indexEff) << " not found!" << endl;
1789  return;
1790  }
1791 
1792  // Retrieve the variable types and corresponding bin boundaries
1793  std::vector<unsigned int> vars = container->getVariableTypes();
1794  std::vector<unsigned int> effVars = effContainer->getVariableTypes();
1795  // Retrieve the corresponding bin boundaries
1796  std::map<unsigned int, std::vector<double> > boundaries, effBoundaries, mergedBoundaries;
1797  for (unsigned int t = 0; t < vars.size(); ++t)
1798  boundaries[vars[t]] = container->getBinBoundaries(vars[t]);
1799  for (unsigned int t = 0; t < effVars.size(); ++t)
1800  effBoundaries[effVars[t]] = effContainer->getBinBoundaries(effVars[t]);
1801 
1802  // Special case: handle |eta| versus eta differences, by transforming to the latter
1803  if (boundaries.find(CalibrationDataContainer::kEta) == boundaries.end() && boundaries.find(CalibrationDataContainer::kAbsEta) != boundaries.end()) {
1805  boundaries.erase(CalibrationDataContainer::kAbsEta);
1806  }
1807  if (effBoundaries.find(CalibrationDataContainer::kEta) == effBoundaries.end() && effBoundaries.find(CalibrationDataContainer::kAbsEta) != effBoundaries.end()) {
1808  effBoundaries[CalibrationDataContainer::kEta] = effBoundaries[CalibrationDataContainer::kAbsEta];
1809  effBoundaries.erase(CalibrationDataContainer::kAbsEta);
1810  }
1811  if (boundaries.find(CalibrationDataContainer::kEta) != boundaries.end() && effBoundaries.find(CalibrationDataContainer::kEta) != effBoundaries.end()) {
1812  std::vector<double>& v = boundaries[CalibrationDataContainer::kEta];
1813  std::vector<double>& vEff = effBoundaries[CalibrationDataContainer::kEta];
1814  if (v[0] < 0 && vEff[0] >= 0) {
1815  // in this case, supplement the positive entries in vEff with their negative analogues
1816  std::vector<double> vtmp(vEff);
1817  for (std::vector<double>::iterator it = vtmp.begin(); it != vtmp.end(); ++it)
1818  if (*it > 0) vEff.insert(vEff.begin(), -(*it));
1819  } else if (v[0] >= 0 && vEff[0] < 0) {
1820  // in this case, supplement the positive entries in v with their negative analogues
1821  std::vector<double> vtmp(v);
1822  for (std::vector<double>::iterator it = vtmp.begin(); it != vtmp.end(); ++it)
1823  if (*it > 0) v.insert(v.begin(), -(*it));
1824  }
1825  }
1826 
1827  // Now that the individual sets of boundaries have been determined, merge these
1828  for (unsigned int t = 0; t < vars.size(); ++t) {
1829  if (effBoundaries.find(vars[t]) == effBoundaries.end())
1830  // Variables not present in the efficiency object can go in unmodified
1831  mergedBoundaries[vars[t]] = boundaries[vars[t]];
1832  else {
1833  // Merge the boundaries for variables existing in both objects.
1834  // Take the MC array as a starting point, as it's likely to be the longest.
1835  mergedBoundaries[vars[t]] = effBoundaries[vars[t]];
1836 
1837  for (std::vector<double>::iterator it = boundaries[vars[t]].begin(); it != boundaries[vars[t]].end(); ++it) {
1838  std::vector<double>::iterator itcmp = mergedBoundaries[vars[t]].begin();
1839  // Iterate until we've found a value in the target array equal to
1840  // or larger than the given element
1841  while (itcmp != mergedBoundaries[vars[t]].end() &&
1843  *itcmp < *it) ++itcmp;
1844  // Nothing needs to be done if the values are "nearly identical"
1845  // (or if we don't find such an element).
1846  if (itcmp == mergedBoundaries[vars[t]].end() || CalibrationDataContainer::isNearlyEqual(*itcmp, *it)) continue;
1847  // Otherwise insert the given element (this can mean adding to the end)
1848  mergedBoundaries[vars[t]].insert(itcmp, *it);
1849  }
1850  }
1851  }
1852  // Variables not present in the scale factor object still need to go in
1853  for (unsigned int t = 0; t < effVars.size(); ++t)
1854  if (boundaries.find(effVars[t]) == boundaries.end())
1855  mergedBoundaries[effVars[t]] = effBoundaries[effVars[t]];
1856 
1857  // Carry out a rudimentary cross-check of the tag weight bin
1858  // (the binning used for the scale factor and MC objects should be identical).
1859  if (boundaries.find(CalibrationDataContainer::kTagWeight) == boundaries.end()) {
1860  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "no tag weight axis found for object " << nameFromIndex(indexSF) << endl;
1861  } else if (effBoundaries.find(CalibrationDataContainer::kTagWeight) == effBoundaries.end()) {
1862  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "no tag weight axis found for object " << nameFromIndex(indexEff) << endl;
1863  } else if (boundaries[CalibrationDataContainer::kTagWeight].size() != effBoundaries[CalibrationDataContainer::kTagWeight].size()) {
1864  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "different tag weight binning for objects " << nameFromIndex(indexSF) << " (";
1865  std::vector<double>& v = boundaries[CalibrationDataContainer::kTagWeight];
1866  for (unsigned int ib = 0; ib < v.size()-1; ++ib) cerr << v[ib] << ",";
1867  cerr << v[v.size()-1] << ") and " << nameFromIndex(indexEff) << " (";
1868  v = effBoundaries[CalibrationDataContainer::kTagWeight];
1869  for (unsigned int ib = 0; ib < v.size()-1; ++ib) cerr << v[ib] << ",";
1870  cerr << v[v.size()-1] << ") do not match!" << endl;
1871  } else {
1872  // Make sure that (possibly) dummy vectors exist for _all_ known variables
1873  // (this is a mere technicality allowing to loop over all variables explicitly).
1874  if (mergedBoundaries.find(CalibrationDataContainer::kPt) == mergedBoundaries.end()) {
1875  std::vector<double> v; v.push_back(20.); v.push_back(300.); mergedBoundaries[CalibrationDataContainer::kPt] = v;
1876  }
1877  if (mergedBoundaries.find(CalibrationDataContainer::kEta) == mergedBoundaries.end()) {
1878  std::vector<double> v; v.push_back(-2.5); v.push_back(2.5); mergedBoundaries[CalibrationDataContainer::kEta] = v;
1879  }
1880  // Finally, carry out the cross-check that all this is about: recompute the scale factor
1881  // in each pseudo-bin
1882  if (m_verbose){
1883  cout << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: cross-checking scale factors for objects " << nameFromIndex(indexSF) << " and " << nameFromIndex(indexEff) << "\n" << std::setfill('-') << std::setw(100) << "-" << endl;
1884  cout << std::setfill(' ');
1885  }
1887  std::vector<double>& vPt = mergedBoundaries[CalibrationDataContainer::kPt], vEta = mergedBoundaries[CalibrationDataContainer::kEta], vTagWeight = mergedBoundaries[CalibrationDataContainer::kTagWeight];
1888  for (unsigned int ipt = 0; ipt < vPt.size()-1; ++ipt) {
1889  x.jetPt = (vPt[ipt] + vPt[ipt+1]) * 500.; // account for MeV -> GeV conversion
1890  for (unsigned int ieta = 0; ieta < vEta.size()-1; ++ieta) {
1891  x.jetEta = (vEta[ieta] + vEta[ieta+1]) / 2.;
1892  for (unsigned int iwt = 0; iwt < vTagWeight.size()-1; ++iwt) {
1893  x.jetTagWeight = (vTagWeight[iwt] + vTagWeight[iwt+1]) / 2.;
1894  // Retrieve the central scale factor value and the old and new MC tag weight fractions
1895  double value;
1896  container->getResult(x, value);
1897  Analysis::UncertaintyResult uncertaintyResult(0,0);
1898  container->getUncertainty("MCreference", x, uncertaintyResult);
1899  double fracMCref = uncertaintyResult.first;
1900  double fracMCnew;
1901  effContainer->getResult(x, fracMCnew);
1902  // Compute the new scale factor value
1903  if (!(fracMCnew > 0.)) {
1904  cout << "\tfor (pt=" << x.jetPt << ",eta=" << x.jetEta << ",tagweight=" << x.jetTagWeight << "): invalid new MC fraction: " << fracMCnew << endl;
1905  } else {
1906  double newvalue = 1.0 + (value - 1.0) * fracMCref/fracMCnew;
1907  if (newvalue <= 0 || newvalue > m_maxTagWeight) cout << "\tfor (pt=" << x.jetPt << ",eta=" << x.jetEta << ",tagweight=" << x.jetTagWeight << "): old (value=" << value << ",MC=" << fracMCref << "), new (value=" << newvalue << ",MC=" << fracMCnew << ")" << endl;
1908  }
1909  }
1910  }
1911  }
1912  }
1913 
1914  m_checkedWeightScaleFactors.push_back(std::make_pair(indexSF, indexEff));
1915 }
1916 
1917 //________________________________________________________________________________
1918 bool
1920  unsigned int index)
1921 {
1922  // Check whether the jet eta value is outside the range of validity, subject to the strategy
1923  // specified in the configuration file.
1924  bool pass = true;
1925  if (m_absEtaStrategy == Ignore) return pass;
1926 
1927  switch (m_absEtaStrategy) {
1928  case GiveUp:
1929  if (std::fabs(variables.jetEta) > m_maxAbsEta) {
1930  pass = false;
1931  }
1932  break;
1933  case Flag:
1934  default:
1935  if (std::fabs(variables.jetEta) > m_maxAbsEta) {
1936  increaseCounter(index, Eta);
1937  }
1938 
1939  }
1940  return pass;
1941 }
1942 
1943 //________________________________________________________________________________
1944 std::string
1946 {
1947  // Return the object name corresponding to the given index.
1948 
1949  for (std::map<std::string, unsigned int>::const_iterator it = m_objectIndices.begin();
1950  it != m_objectIndices.end(); ++it)
1951  if (it->second == index) return it->first;
1952 
1953  // This should never happen..
1954  return string("");
1955 }
1956 
1957 //________________________________________________________________________________
1958 void
1960  OutOfBoundsType oob)
1961 {
1962  // Internal method bumping the relevant counter out-of-bounds counter for the specified object.
1963  //
1964  // oob: further classification of out-of-bounds case
1965  // index: object index
1966 
1967  // make sure the vectors are appropriately dimensioned
1968  if (index >= m_mainCounters.size()) {
1969  unsigned int minsize = (index == 0) ? 2 : 2*index;
1970  m_mainCounters.resize(minsize, 0);
1971  m_etaCounters.resize(minsize, 0);
1972  m_extrapolatedCounters.resize(minsize, 0);
1973  }
1974  switch (oob) {
1975  case Main:
1976  m_mainCounters[index]++; break;
1977  case Eta:
1978  m_etaCounters[index]++; break;
1979  case Extrapolated:
1980  default:
1981  m_extrapolatedCounters[index]++;
1982  }
1983 }
1984 
1985 //________________________________________________________________________________
1986 std::vector<string>
1988  const string& label,
1989  const string& OP,
1990  bool named)
1991 {
1992  // Retrieve the sources of uncertainty relevant for the given scale factor calibration object,
1993  // identifying the object by name.
1994  //
1995  // author: jet collection name
1996  // label: jet flavour label
1997  // OP: tagger working point
1998  // named: if false, an unsorted list of sources of uncertainties will be returned.
1999  // if true, only 'named' uncertainties will be returned, and the position in
2000  // the vector that is the return value determines the 'numVariation' index
2001  // that is to be used if named variations are to be retrieved.
2002 
2003  unsigned int index;
2004  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2005  // Return a dummy result if the object is not found
2006  cerr << "listScaleFactorUncertainties: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2007  std::vector<string> dummy;
2008  return dummy;
2009  }
2010  return listScaleFactorUncertainties(index, label, named);
2011 }
2012 
2013 //________________________________________________________________________________
2014 std::vector<string>
2016  const std::string& flavour, bool named)
2017 {
2018  // Note: this method already works on a per-flavour basis, so passing flavour in is a simple addition
2019  // Method is called primarily from within the BTaggingEfficiencyTool - W.L.
2020  // Retrieve the sources of uncertainty relevant for the given scale factor calibration object,
2021  // identifying the object by index.
2022  //
2023  // index: index to scale factor calibration object
2024  // named: if false, an unsorted list of sources of uncertainties will be returned.
2025  // if true, only 'named' uncertainties will be returned, and the position in
2026  // the vector that is the return value determines the 'numVariation' index
2027  // that is to be used if named variations are to be retrieved.
2028 
2029  std::vector<string> dummy;
2030  CalibrationDataContainer* container = m_objects[index];
2031 
2032  if (container) {
2033  if (named) {
2034  // Find out which uncertainties are excluded from eigenvector construction
2035  if (! m_runEigenVectorMethod) return dummy;
2036  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation=m_eigenVariationsMap.at(container);
2037  if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
2038  std::vector<string> unordered = eigenVariation->listNamedVariations(); // this is for the regular EV
2039  std::vector<string> ordered(unordered.size());
2040  for (unsigned int i = 0; i < unordered.size(); ++i) {
2041  ordered[eigenVariation->getNamedVariationIndex(unordered[i])] = unordered[i];
2042  }
2043  return ordered;
2044  } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen){
2045  // here we want to get the named uncertainties from the global eigenvariations flavour container specifically...
2046  std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation);
2047  std::vector<std::string> unordered = GEV->listNamedVariations(flavour);
2048  std::vector<std::string> ordered(unordered.size()); // ordered by the NAMED VARIATION (internal) ORDERING
2049  for (unsigned int i = 0; i < unordered.size(); ++i) {
2050  ordered[GEV->getNamedVariationIndex(unordered[i], flavour)] = unordered[i];
2051  }
2052  return ordered;
2053  }
2054  }
2055  return container->listUncertainties(); // return this if not named
2056  }
2057 
2058  return dummy;
2059 }
2060 
2061 //________________________________________________________________________________
2062 unsigned int
2064  const std::string& label,
2065  const std::string& OP,
2066  Uncertainty unc)
2067 {
2068  // Retrieve the number of eigenvector variations or named variations relevant for
2069  // the given scale factor calibration object, identifying the object by name.
2070  //
2071  // author: jet collection name
2072  // label: jet flavour label
2073  // OP: tagger working point
2074  // unc: should be set to SFEigen or SFNamed for the cases of
2075  // eigenvector variations or named variations, respectively
2076 
2077  unsigned int index;
2078 
2079  if (! retrieveCalibrationIndex (label, OP, author, true, index)) return 0;
2080  return getNumVariations(index, unc, label);
2081 }
2082 
2083 //________________________________________________________________________________
2084 unsigned int
2086  Uncertainty unc, const std::string& flavour)
2087 {
2088  // Retrieve the number of eigenvector variations or named variations relevant for
2089  // the given scale factor calibration object, identifying the object by index.
2090  //
2091  // index: index to calibration scale factor object
2092  // unc: should be set to SFEigen or SFNamed for the cases of
2093  // eigenvector variations or named variations, respectively
2094 
2095  if (! (unc == SFEigen || unc == SFNamed || unc == SFGlobalEigen)) return 0;
2096  CalibrationDataContainer* container = m_objects[index];
2097  if (! container) return 0;
2098  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation=m_eigenVariationsMap.at(container);
2099  if (unc == SFGlobalEigen){
2100  std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation);
2101  return GEV->getNumberOfEigenVariations(flavour);
2102  }
2103  return (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
2104 }
2105 
2106 //________________________________________________________________________________
2107 const TH1*
2109  const std::string& label,
2110  const std::string& OP)
2111 {
2112  // Retrieve the actual histogrammed calibration scale factors, identifying the object by name.
2113  //
2114  // author: jet collection name
2115  // label: jet flavour label
2116  // OP: tagger working point
2117 
2118  unsigned int index;
2119  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2120  // Return a dummy result if the object is not found
2121  cerr << "getBinnedScaleFactors: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2122  return 0;
2123  }
2124  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2125  return (container) ? dynamic_cast<TH1*>(container->GetValue("result")) : 0;
2126 }
2127 
2128 //________________________________________________________________________________
2129 const TObject*
2131  const std::string& label,
2132  const std::string& OP,
2133  unsigned int mapIndex)
2134 {
2135  // Retrieve the actual central values object for the MC efficiences, identifying the object by name.
2136  // The object returned can be either a TH1 or a TF1; it is up to the user to determine which.
2137  //
2138  // author: jet collection name
2139  // label: jet flavour label
2140  // OP: tagger working point
2141  // mapIndex: index to the efficiency map to be used
2142 
2143  unsigned int index;
2144  if (! retrieveCalibrationIndex (label, OP, author, false, index, mapIndex)) {
2145  // Return a dummy result if the object is not found
2146  cerr << "getMCEfficiencyObject: unable to find efficiency calibration for object "
2147  << fullName(author, OP, label, false, mapIndex) << endl;
2148  return 0;
2149  }
2150  CalibrationDataContainer* container = m_objects[index];
2151  return (container) ? container->GetValue("result") : 0;
2152 }
2153 
2154 //====================== retrieval of shifted calibration object ===========================
2155 
2156 //________________________________________________________________________________
2157 const TH1*
2159  const std::string& label,
2160  const std::string& OP,
2161  const std::string& unc,
2162  double sigmas)
2163 {
2164  // Retrieve the actual histogrammed calibration scale factors, identifying the object by name
2165  // and with the scale factors shifted by the uncertainties due to the given source of uncertainty
2166  // (where bin-to-bin correlations are accounted for, i.e., shifts may be either positive or negative).
2167  //
2168  // author: jet collection name
2169  // label: jet flavour label
2170  // OP: tagger working point
2171  // unc: source of uncertainty to consider
2172  // sigmas: number of standard deviations by which to shift the scale factor central values
2173 
2174  // quick sanity check
2175  if (unc == "comment" || unc == "result" || unc == "combined" || unc == "statistics") return 0;
2176 
2177  unsigned int index;
2178  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2179  // Return a null result if the object is not found
2180  cerr << "getShiftedScaleFactors: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2181  return nullptr;
2182  }
2183  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2184  if (! container) return nullptr;
2185 
2186  TH1* result = dynamic_cast<TH1*>(container->GetValue("result"));
2187  TH1* hunc = dynamic_cast<TH1*>(container->GetValue(unc.c_str()));
2188  // another sanity check...
2189  if ((! hunc) || (! result)) return nullptr;
2190  if (hunc->GetDimension() != result->GetDimension() || hunc->GetNbinsX() != result->GetNbinsX() ||
2191  hunc->GetNbinsX() != result->GetNbinsX() || hunc->GetNbinsX() != result->GetNbinsX())
2192  return nullptr;
2193  // also check that the uncertainty is to be treated as correlated from bin to bin
2194  // (for the variation is applied coherently, which isn't appropriate for uncertainties
2195  // that aren't correlated from bin to bin)
2196  if (! container->isBinCorrelated(unc)) return 0;
2197 
2198  // if everything is consistent, the actual operation simply consists of adding histograms...
2199  std::string name(container->GetName()); name += "_"; name += unc; name += "_";
2200  TH1* shifted = dynamic_cast<TH1*>(result->Clone(name.c_str()));
2201  if (not shifted) return nullptr;
2202  shifted->Add(hunc, sigmas);
2203  return shifted;
2204 }
2205 //====================== run EigenVectorRecomposition method ===========================
2208  const std::string& label,
2209  const std::string& OP,
2210  unsigned int mapIndex){
2211  // run eigen vector recomposition method. If success, stored the retrieved coefficient map
2212  // in m_coefficientMap and return success. Otherwise return error and keep m_coefficientMap
2213  // untouched.
2214  // author: jet collection name
2215  // label: jet flavour label
2216  // OP: tagger working point
2217  // mapIndex: index to the MC efficiency map to be used. Should be 0?
2218  // Todo: What is mapindex?
2219  // Todo: Check the way xAODBTaggingTool initialize CDI. Check if that is the as how we are initialize CDI.
2220  if(!m_runEigenVectorMethod) {
2221  cerr << "runEigenVectorRecomposition: Recomposition need to be ran with CalibrationDataInterfaceRoot initialized in eigenvector mode" << endl;
2222  return Analysis::kError;
2223  }
2224 
2225  unsigned int indexSF;
2226  if (! retrieveCalibrationIndex (label, OP, author, true, indexSF, mapIndex)) {
2227  cerr << "runEigenVectorRecomposition: unable to find SF calibration for object "
2228  << fullName(author, OP, label, true) << endl;
2229  return Analysis::kError;
2230  }
2231 
2232  return runEigenVectorRecomposition (label, indexSF);
2233 }
2234 
2237  unsigned int indexSF){
2238  // run eigen vector recomposition method. If success, stored the retrieved coefficient map
2239  // in m_coefficientMap and return success. Otherwise return error and keep m_coefficientMap
2240  // untouched.
2241  // label: jet flavour label
2242  // indexSF: index to scale factor calibration object
2243  CalibrationDataContainer* container = m_objects[indexSF];
2244  if (! container) {
2245  cerr << "runEigenVectorRecomposition: error retrieving container!" << endl;
2246  return Analysis::kError;
2247  }
2248 
2249  // Retrieve eigenvariation
2250  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
2251  try {
2252  eigenVariation = m_eigenVariationsMap.at(container);
2253  } catch (const std::out_of_range&) {
2254  cerr << "runEigenVectorRecomposition: Could not retrieve eigenvector variation, while it should have been there." << endl;
2255  return Analysis::kError;
2256  }
2257  // Doing eigenvector recomposition
2258  std::map<std::string, std::map<std::string, float>> coefficientMap;
2259  if(!eigenVariation->EigenVectorRecomposition(label, coefficientMap))
2260  return Analysis::kError;
2261 
2262  m_coefficientMap = coefficientMap;
2263  return Analysis::kSuccess;
2264 }
2265 
2266 std::map<std::string, std::map<std::string, float>>
2268  if(m_coefficientMap.empty())
2269  cerr << "getCoefficientMap: Call runEigenVectorRecomposition() before retrieving coefficient map! " <<endl;
2270  return m_coefficientMap;
2271 }
2272 
2273 
2274 //====================== put some utility functions here ===================================
2275 
2276 namespace {
2277  // Construct the (diagonal) covariance matrix for the statistical uncertainties on the "ref" results
2278  TMatrixDSym getStatCovarianceMatrix(const TH1* hist) {
2279  Int_t nbinx = hist->GetNbinsX()+2, nbiny = hist->GetNbinsY()+2, nbinz = hist->GetNbinsZ()+2;
2280  Int_t rows = nbinx;
2281  if (hist->GetDimension() > 1) rows *= nbiny;
2282  if (hist->GetDimension() > 2) rows *= nbinz;
2283  TMatrixDSym stat(rows);
2284  for (Int_t binx = 1; binx < nbinx; ++binx){
2285  for (Int_t biny = 1; biny < nbiny; ++biny){
2286  for (Int_t binz = 1; binz < nbinz; ++binz) {
2287  Int_t bin = hist->GetBin(binx, biny, binz);
2288  double err = hist->GetBinError(bin);
2289  stat(bin, bin) = err*err;
2290  }
2291  }
2292  }
2293  return stat;
2294  }
2295 
2296  // Construct the covariance matrix assuming that histogram "unc" contains systematic uncertainties
2297  // pertaining to the "ref" results, and that the uncertainties are fully correlated from bin to bin
2298  // (unless option "doCorrelated" is false, in which bins are assumed uncorrelated)
2299  TMatrixDSym getSystCovarianceMatrix(const TH1* ref, const TH1* unc, bool doCorrelated, const std::string& uncname, int tagWeightAxis) {
2300  Int_t nbinx = ref->GetNbinsX()+2, nbiny = ref->GetNbinsY()+2, nbinz = ref->GetNbinsZ()+2;
2301  Int_t rows = nbinx;
2302  if (ref->GetDimension() > 1) rows *= nbiny;
2303  if (ref->GetDimension() > 2) rows *= nbinz;
2304  TMatrixDSym cov(rows);
2305 
2306  for(int i=0 ; i<10 ; i++){
2307  Int_t bin = unc->GetBin(1,i,1);
2308  double uncval = unc->GetBinContent(bin);
2309  cout << uncval << ", ";
2310  } cout << endl;
2311 
2312  // Carry out a minimal consistency check
2313  if (unc->GetNbinsX()+2 != nbinx || unc->GetNbinsY()+2 != nbiny || unc->GetNbinsZ()+2 != nbinz || unc->GetDimension() != ref->GetDimension()) {
2314  std::cout << "getSystCovarianceMatrix: inconsistency found in histograms " << ref->GetName() << " and " << unc->GetName() << " : " << uncname << std::endl;
2315  return cov;
2316  }
2317 
2318  // // the "2" below doesn't actually imply that two bins are used...
2319  // // this is just to make the loops below work
2320  // if (ref->GetDimension() <= 1) nbiny = 2;
2321  // if (ref->GetDimension() <= 2) nbinz = 2;
2322 
2323  // Special case: uncertainties not correlated from bin to bin.
2324  // The exception here is for tag weight bins, which are always assumed to be fully correlated.
2325  if (! doCorrelated) {
2326  if (tagWeightAxis < 0) {
2327  // truly uncorrelated uncertainties
2328  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2329  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2330  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
2331  Int_t bin = ref->GetBin(binx, biny, binz);
2332  double err = unc->GetBinContent(bin);
2333  cov(bin,bin) = err*err;
2334  }
2335  }
2336  }
2337  return cov;
2338  } else if (tagWeightAxis == 0) {
2339  // continuous histogram with tag weight X axis
2340  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2341  for (Int_t binz = 1; binz < nbinz-1; ++binz){
2342  for (Int_t binx = 1; binx < nbinx-1; ++binx) {
2343  Int_t bin = ref->GetBin(binx, biny, binz);
2344  double err = unc->GetBinContent(bin);
2345  for (Int_t binx2 = 1; binx2 < nbinx-1; ++binx2) {
2346  Int_t bin2 = ref->GetBin(binx2, biny, binz);
2347  double err2 = unc->GetBinContent(bin2);
2348  cov(bin,bin2) = err*err2;
2349  }
2350  }
2351  }
2352  }
2353  return cov;
2354  } else if (tagWeightAxis == 1) {
2355  // continuous histogram with tag weight Y axis
2356  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2357  for (Int_t binz = 1; binz < nbinz-1; ++binz){
2358  for (Int_t biny = 1; biny < nbiny-1; ++biny) {
2359  Int_t bin = ref->GetBin(binx, biny, binz);
2360  double err = unc->GetBinContent(bin);
2361  for (Int_t biny2 = 1; biny2 < nbiny-1; ++biny2) {
2362  Int_t bin2 = ref->GetBin(binx, biny2, binz);
2363  double err2 = unc->GetBinContent(bin2);
2364  cov(bin,bin2) = err*err2;
2365  }
2366  }
2367  }
2368  }
2369  return cov;
2370  } else if (tagWeightAxis == 2) {
2371  // continuous histogram with tag weight Z axis
2372  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2373  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2374  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
2375  Int_t bin = ref->GetBin(binx, biny, binz);
2376  double err = unc->GetBinContent(bin);
2377  for (Int_t binz2 = 1; binz2 < nbinz-1; ++binz2) {
2378  Int_t bin2 = ref->GetBin(binx, biny, binz2);
2379  double err2 = unc->GetBinContent(bin2);
2380  cov(bin,bin2) = err*err2;
2381  }
2382  }
2383  }
2384  }
2385  return cov;
2386  }
2387  }
2388 
2389  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2390  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2391  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
2392  Int_t bin = ref->GetBin(binx, biny, binz);
2393  double err = unc->GetBinContent(bin); // <------------- For every bin in the "ref" ("result") TH1*, GetBinContents of the corresponding uncertainty bin
2394  for (Int_t binx2 = 1; binx2 < nbinx-1; ++binx2){
2395  for (Int_t biny2 = 1; biny2 < nbiny-1; ++biny2){
2396  for (Int_t binz2 = 1; binz2 < nbinz-1; ++binz2) {
2397  Int_t bin2 = ref->GetBin(binx2, biny2, binz2);
2398  double err2 = unc->GetBinContent(bin2); // <------- Grab the unc contents of every bin, and compute the covariance matrix element
2399  cov(bin, bin2) = err*err2; // <------- err1 and err2 are the uncertainty content of the bins, so "cov" is real, symmetric
2400  } // <------- "cov" would imply that the "hunc" histogram stores "x - E[x]" differences from the mean. So in the end, it computes the covariance (as a sum of these)
2401  }
2402  }
2403  }
2404  }
2405  }
2406  return cov;
2407  }
2408 
2409 }
2410 
2411 //====================== retrieval of calibration covariance matrix ========================
2412 
2413 //________________________________________________________________________________
2414 TMatrixDSym
2416  const std::string& label,
2417  const std::string& OP,
2418  const std::string& unc)
2419 {
2420  // Return the scale factor covariance matrix for the given calibration object.
2421  // This function is deprecated since its functionality is duplicated in the
2422  // CalibrationDataEigenVariations class.
2423  //
2424  // author: jet collection name
2425  // label: jet flavour label
2426  // OP: tagger working point
2427  // unc: source of uncertainty to consider
2428  // Catch issues with the specified input as early as possible
2429  TMatrixDSym dummy;
2430  if (unc == "comment" || unc == "result" || unc == "combined") return dummy;
2431 
2432  unsigned int index;
2433  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2434  // Return a dummy result if the object is not found
2435  cerr << "getScaleFactorCovarianceMatrix: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2436  return dummy;
2437  }
2438  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2439  if (!container) return dummy;
2440 
2441  // retrieve the central calibration and its axes
2442  TH1* result = dynamic_cast<TH1*>(container->GetValue("result"));
2443  if (! result) return dummy;
2444  // "normal" case: single source of uncertainty
2445  if (unc != "all") {
2446  if (unc == "statistics") {
2447  return getStatCovarianceMatrix(result);
2448  } else {
2449  TH1* hunc = dynamic_cast<TH1*>(container->GetValue(unc.c_str()));
2450  if (! hunc) {
2451  cout << "getScaleFactorCovarianceMatrix: no uncertainty object found "
2452  << "corresponding to name " << unc << endl;
2453  return dummy;
2454  }
2455  return getSystCovarianceMatrix(result, hunc, container->isBinCorrelated(unc), unc, container->getTagWeightAxis());
2456  }
2457  }
2458 
2459  // special case: complete covariance matrix. This is to be constructed
2460  // as the sum over all individual contributions.
2461  // First, treat the statistics separately (as above)
2462  TMatrixDSym cov = getStatCovarianceMatrix(result);
2463 
2464  // Then loop through the list of (other) uncertainties
2465  std::vector<string> uncs = container->listUncertainties();
2466  for (unsigned int t = 0; t < uncs.size(); ++t) {
2467  if (uncs[t] == "comment" || uncs[t] == "result" || uncs[t] == "combined" ||
2468  uncs[t] == "statistics" || uncs[t]=="extrapolation" || uncs[t]=="MChadronisation" ||
2469  uncs[t]=="ReducedSets" || uncs[t]=="systematics") continue;
2470  TH1* hunc = dynamic_cast<TH1*>(container->GetValue(uncs[t].c_str()));
2471  if (not hunc) {
2472  std::cerr<<"Analysis::CalibrationDataInterfaceROOT::getScaleFactorCovarianceMatrix : dynamic cast failed\n";
2473  continue;
2474  }
2475  TMatrixDSym syst_cov = getSystCovarianceMatrix(result, hunc, container->isBinCorrelated(uncs[t]), uncs[t], container->getTagWeightAxis());
2476  cov += syst_cov;
2477  }
2478 
2479  return cov;
2480 }
2481 
2482 //________________________________________________________________________________
2483 void
2484 Analysis::CalibrationDataInterfaceROOT::initialize(const string& jetauthor, const string& OP, Uncertainty unc)
2485 {
2486  // Preload objects necessary so that the input calibration file can be closed.
2487  // This functionality is only needed when using PROOF.
2488 
2489  if((!m_fileEff)||(!m_fileSF)) {
2490  cerr << "initialize can only be called once per CalibrationDataInterfaceROOT object" << endl;
2491  return;
2492  } else {
2493  cout << "initializing BTagCalibrationDataInterfaceROOT for PROOF with jetAuthor = " << jetauthor << ", tagger = " << m_taggerName << ", operating point = " << OP << ", uncertainty = " << unc << endl;
2494  }
2495 
2497  BTagVars.jetAuthor = jetauthor;
2498  BTagVars.jetPt = 100000.; //Irrelevant, just has to be valid to retrieve objects
2499  BTagVars.jetEta = 1.5; //Irrelevant, just has to be valid to retrieve objects
2500 
2501  for(const auto& flavour : m_flavours){
2502  std::pair<double, double> BTagCalibResult;
2503  BTagCalibResult = getScaleFactor(BTagVars, flavour, OP, unc);
2504  std::cout << "CalibrationDataInterfaceROOT->initialize : BTagCalibResult " << std::endl;
2505 
2506  std::pair<double, double> BTagCalibMCEff;
2507  BTagCalibMCEff = getMCEfficiency(BTagVars, flavour, OP, unc);
2508  std::cout << "CalibrationDataInterfaceROOT->initialize : BTagCalibMCEff " << std::endl;
2509  }
2510 
2511  if (m_fileEff != m_fileSF) {
2512  m_fileEff->Close();
2513  delete m_fileEff;
2514  }
2515  m_fileSF->Close();
2516  delete m_fileSF;
2517  m_fileEff = 0; //prevents repeat deletion in destructor
2518  m_fileSF = 0; //prevents repeat deletion in destructor
2519 }
2520 
2521 //________________________________________________________________________________
2523 Analysis::CalibrationDataInterfaceROOT::retrieveContainer(const string& label, const string& OP, const string& author, const string& cntname, bool isSF, bool doPrint)
2524 {
2525  // Attempt to retrieve the given container from file. Note that also the corresponding
2526  // "hadronisation" reference is retrieved (if possible and not yet done).
2527  //
2528  // dir: name of the directory containing the requested container
2529  // cntname: name of the requested container itself (not including the full path)
2530  // isSF: set to false (true) if the object is to be retrieved from the MC efficiencies
2531  // file (the calibration scale factor file). Note that it is assumed that scale
2532  // factor objects will always be retrieved from the calibration scale factor file.
2533  // doPrint: if true, print out some basic information about the successfully retrieved container
2534  // (note that this is typically steered by the m_verbose setting;
2535  // only for the retrieval of the maps used for MC/MC SF calculations, this printout is always switched off)
2536 
2537  string dir = m_taggerName + "/" + getAlias(author) + "/" + OP + "/" + label;
2538  // construct the full object name
2539  string name = dir + "/" + cntname;
2540 
2541  // If the object cannot be found, then each call will result in a new attempt to
2542  // retrieve the object from the ROOT file. Hopefully this will not happen too often...
2543  unsigned int idx = m_objectIndices[name] = m_objects.size();
2544  // CalibrationDataContainer* cnt =
2545  // dynamic_cast<CalibrationDataContainer*>((isSF ? m_fileSF : m_fileEff) ->Get(name.c_str()));
2547  (isSF ? m_fileSF : m_fileEff)->GetObject(name.c_str(), cnt);
2548  // If the requested object is a MC efficiency container and is not found, make a second attempt
2549  // to retrieve it from the calibration scale factor file. This will avoid the need to duplicate
2550  // efficiency containers so that the MC efficiency file needs to store only those containers
2551  // not already present in the calibration scale factor file. Of course this is meaningful only
2552  // if separate files are used to begin with.
2553  if (!isSF && !cnt && m_fileSF != m_fileEff) m_fileSF->GetObject(name.c_str(), cnt);
2554  m_objects.push_back(cnt);
2555  if (!cnt) {
2556  cerr << "btag Calib: retrieveContainer: failed to retrieve container named " << name.c_str() << " from file" << endl;
2557  return 0;
2558  }
2559 
2560  // For successfully retrieved containers, also print some more information (implemented on user request)
2561  if (doPrint) {
2562  cout << "CalibrationDataInterface: retrieved container " << name << " (with comment: '" << cnt->getComment() << "' and hadronisation setting '" << cnt->getHadronisation() << "')" << endl;
2563  }
2564 
2565 
2566  // If the requested object is a MC efficiency container, make sure to retrieve the corresponding
2567  // calibration scale factor container first (a feature first thought to be necessary, erroneously,
2568  // but left in since this ordering should not hurt in any case).
2569  if (m_refMap.find(dir) == m_refMap.end()) {
2570  if (isSF) {
2571  // Retrieve the mapping objects from both files and merge their information using the 'helper' class.
2572  // The map resulting from this is used to retrieve the information required to compute MC/MC scale factors.
2573  string hadronisationRefs(dir + "/MChadronisation_ref");
2574  TMap* mapSF = 0; m_fileSF->GetObject(hadronisationRefs.c_str(), mapSF);
2575  TMap* mapEff = 0; if (m_fileEff != m_fileSF) m_fileEff->GetObject(hadronisationRefs.c_str(), mapEff);
2576  m_refMap[dir] = new HadronisationReferenceHelper(mapSF, mapEff);
2577  delete mapSF;
2578  delete mapEff;
2579  } else {
2580  string SFCalibName = getContainername(getBasename(dir), true);
2581  if (m_objectIndices.find(SFCalibName) == m_objectIndices.end()) retrieveContainer(label, OP, author, SFCalibName, true, doPrint);
2582  }
2583  }
2584 
2585  // Attempt to find the corresponding hadronisation reference container needed for the application of
2586  // MC/MC scale factors.
2587  if (idx+1 > m_hadronisationReference.size()) m_hadronisationReference.resize(idx+1, -1);
2588  m_hadronisationReference[idx] = -1;
2589  string spec = cnt->getHadronisation();
2590  if (spec != "") {
2591  std::map<string, HadronisationReferenceHelper*>::const_iterator mapit = m_refMap.find(dir);
2592  if (mapit != m_refMap.end()) {
2593  string ref;
2594  if (mapit->second->getReference(spec, ref)) {
2595  // Retrieve the hadronisation reference if not already done. Note that the "isSF" is left unchanged:
2596  // this allows to retrieve the reference from the same file as the scale factor object. An exception
2597  // is the reference for the calibration scale factor object, which should always be obtained from
2598  // the scale factor file.
2599  // An efficiency container can be its own hadronisation reference (this is not "protected" against).
2600  string refname(dir + "/" + ref);
2601  std::map<string, unsigned int>::const_iterator it = m_objectIndices.find(refname);
2602  // If the reference cannot be found, assume that it hasn't yet been retrieved so attempt it now.
2603  if (it == m_objectIndices.end()) {
2604  // Omit the printout of container information here (the idea being that showing MC/MC SF information would confuse rather than help)
2605  retrieveContainer(label, OP, author, ref, isSF, false); it = m_objectIndices.find(refname);
2606  }
2607  m_hadronisationReference[idx] = it->second;
2608  }
2609  } else if (m_useMCMCSF) {
2610  cerr << "btag Calib: retrieveContainer: MC hadronisation reference map not found -- this should not happen!" << endl;
2611  }
2612  }
2613  if (m_hadronisationReference[idx] == -1 || ! m_objects[m_hadronisationReference[idx]]){
2614  // Not being able to construct the MC/MC scale factors will lead to a potential bias.
2615  // However, this is not considered sufficiently severe that we will flag it as an error.
2616  if (m_useMCMCSF){
2617  cerr << "btag Calib: retrieveContainer: warning: unable to apply MC/MC scale factors for container " << name << " with hadronisation reference = '" << spec << "'" << endl;
2618  }
2619  }
2620 
2621  // Initialize the Eigenvector variation object corresponding to this object, if applicable. Notes:
2622  // - the dual use of "isSF" (both referring to the file and to the object, see above) requires another protection here
2623  // - the constructor's second argument is used to determine whether to exclude a pre-determined set of uncertainties from the EV decomposition
2624  //
2625  // We also want to separate behavior between SFEigen and SFGlobalEigen systematic strategies
2626  // The former requires a CalibrationDataEigenVariations object to be made per flavour.
2627  // The latter combines all corresponding flavours, so once it's been made for a single flavour, it's cached under all the corresponding "flavour containers"
2628  // simulataneously in m_eigenVariationsMap, and is checked for on each subsequent call to this method.
2629  if (m_runEigenVectorMethod && isSF && name.find("_SF") != string::npos) {
2631  if (histoContainer==0) {
2632  cerr << "Could not cast Container to a HistogramContainer. " << endl;
2633  return 0;
2634  }
2635  if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
2637  std::shared_ptr<CalibrationDataEigenVariations> newEigenVariation(new CalibrationDataEigenVariations(m_filenameSF, m_taggerName, OP, author, histoContainer, m_useRecommendedEVExclusions));
2638  newEigenVariation->setVerbose(m_verbose);
2639 
2640  // At this point we may also want to reduce the number of eigenvector variations.
2641  // The choices are stored with the container object; but first we need to know what flavour we are dealing with.
2642  string flavour = dir.substr(dir.find_last_of("/")+1);
2643 
2644  for (auto entry : m_excludeFromCovMatrix[flavour]) {
2645  newEigenVariation->excludeNamedUncertainty(entry, cnt);
2646  }
2647  newEigenVariation->initialize();
2648  int to_retain = histoContainer->getEigenvectorReduction(m_EVReductions[flavour]); // returns the number of eigenvariations to retain as per the EV reduction strategy
2649  if (to_retain > -1) {
2650  if (m_verbose) cout << "btag Calib: reducing number of eigenvector variations for flavour " << flavour << " to " << to_retain << endl;
2651  // The merged variations will end up as the first entry in the specified list, i.e., as the last of the variations to be "retained"
2652  newEigenVariation->mergeVariationsFrom(size_t(to_retain-1)); // All variations stored with indices larger than this are merged
2653  } else if (m_EVReductions[flavour] != Loose) {
2654  cerr << "btag Calib: unable to retrieve eigenvector reduction information for flavour " << flavour << " and scheme " << m_EVReductions[flavour] << "; not applying any reduction" << endl;
2655  }
2656  m_eigenVariationsMap[cnt]=newEigenVariation;
2657 
2659  } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen) {
2661  std::map<const CalibrationDataContainer*, std::shared_ptr<CalibrationDataEigenVariations> >::iterator evit = m_eigenVariationsMap.find(cnt);
2662  // The global implementation internally combines all the "flavour containers" (containers that correspond to each other, only with different flavours)
2663  // But the CalibrationDataInterfaceROOT object doesn't need to know that, so we want to get all the flavour containers in one go here
2664  // and map them (with m_eigenVariationsMap) to the same CalibrationDataGlobalEigenVariations pointer.
2665  // Then, in methods like getScaleFactor, we call the virtual methods which will give the proper result e.g. if you want the SF for a b-jet, it'll call the
2666 
2667  if (evit == m_eigenVariationsMap.end()){
2668  // now to see if it's completely empty or not
2669  if (m_eigenVariationsMap.empty()){
2670  std::shared_ptr<CalibrationDataGlobalEigenVariations> newEigenVariation(new CalibrationDataGlobalEigenVariations(m_filenameSF, m_taggerName, OP, author, m_flavours, histoContainer, m_useRecommendedEVExclusions));
2671  for (auto entry : m_excludeFromCovMatrix[label]) {
2672  newEigenVariation->excludeNamedUncertainty(entry, label); // <---- custom exclude named uncertainties method for global variations
2673  }
2674 
2675  newEigenVariation->initialize();
2676 
2677  // flavour loop to get the flavour reduction schemes and apply them
2678  for (std::string& flavour : m_flavours){
2679  int to_retain = histoContainer->getEigenvectorReduction(m_EVReductions[flavour]); // returns the number of eigenvariations to retain as per the EV reduction strategy
2680  if (to_retain > -1) {
2681  if (m_verbose) cout << "btag Calib: reducing number of eigenvector variations for flavour " << flavour << " to " << to_retain << endl;
2682  // The merged variations will end up as the first entry in the specified list, i.e., as the last of the variations to be "retained"
2683  newEigenVariation->mergeVariationsFrom(size_t(to_retain-1), flavour); // All variations stored with indices larger than this are merged
2684  } else if (m_EVReductions[flavour] != Loose) {
2685  cerr << "btag Calib: unable to retrieve eigenvector reduction information for flavour " << flavour << " and scheme " << m_EVReductions[flavour] << "; not applying any reduction" << endl;
2686  }
2687  }
2688 
2689  m_eigenVariationsMap.insert({cnt, newEigenVariation});
2690  } else {
2691  // Need to point to the CDGEV object four times in the m_eigenVariationsMap to appease the CDIROOT backend design...
2692  // Ok, turns out I can't retrieve the containers from CDGEV and insert them directly, because I'd have to use the containers directly instead..
2693  // So the strategy is to just take the CGEV objects that are already in the map, and mpa the present container to it
2694  std::shared_ptr<CalibrationDataEigenVariations> previous_eigenvariation = m_eigenVariationsMap.begin()->second;
2695  m_eigenVariationsMap.insert({cnt, previous_eigenvariation});
2696  }
2697 
2698  } else {
2699  std::cout << "CalibrationDataInterfaceROOT->retrieveContainer : the CDGEV object for " << name << " already exists! " << std::endl;
2700  }
2702  }
2703  }
2704 
2705  return cnt;
2706 }
2707 
2708 //________________________________________________________________________________
2709 string
2711 {
2712  // Return the alias for the given jet collection name, if an alias exists.
2713  // If this is not the case, the return value will simply equal the input jet collection name.
2714 
2715  std::map<string,string>::const_iterator it = m_aliases.find(author);
2716  return (it == m_aliases.end()) ? author : it->second;
2717 }
2718 
2719 //________________________________________________________________________________
2720 string
2722  const string& label, bool isSF,
2723  unsigned mapIndex) const
2724 {
2725  // Construct the full calibration object's pathname within the calibration ROOT file.
2726  //
2727  // author: jet collection name
2728  // OP: tagger working point
2729  // label: jet flavour label
2730  // isSF: set to true (false) for scale factors (MC efficiencies)
2731  // mapIndex: index in the list of MC efficiency calibration objects
2732 
2733  string flavour = (label == "N/A") ? "Light" : label;
2734  string full(m_taggerName + "/" + getAlias(author) + "/" + OP + "/" + flavour + "/");
2735  full += getContainername(flavour, isSF, mapIndex);
2736  // full += getAlias(author); full += "/";
2737  // string name = (isSF) ?
2738  // getBasename(OP, label, "_SF", true) :
2739  // getBasename(OP, label, "_Eff", false, mapIndex);
2740  // full += name;
2741  return full;
2742 }
2743 
2744 //________________________________________________________________________________
2746 {
2747  // Create the map from hadronisation specifications to reference container names for
2748  // a given ROOT file directory.
2749  //
2750  // mapSF: reference specification as extracted from calibration scale factor file
2751  // mapEff: reference specification as extracted from MC efficiency file
2752  // (null if the two files are identical)
2753 
2754  // First take the scale factor file's map
2755  if (mapSF) {
2756  TMapIter next(mapSF); TObjString* spec;
2757  while ((spec = (TObjString*) next())) {
2758  TObjString* ref = (TObjString*) mapSF->GetValue(spec);
2759  m_refs[string(spec->GetName())] = string(ref->GetName());
2760  }
2761  }
2762  // Then do the same with the efficiency file's map. The result will be to override any
2763  // items from the SF file's map. An exception is made for the scale factor calibration object,
2764  // for which (for the sake of consistency) the SF reference must be retained.
2765  if (mapEff) {
2766  TMapIter next(mapEff); TObjString* spec;
2767  while ((spec = (TObjString*) next())) {
2768  TObjString* ref = (TObjString*) mapEff->GetValue(spec);
2769  m_refs[string(spec->GetName())] = string(ref->GetName());
2770  }
2771  }
2772 }
2773 
2774 //________________________________________________________________________________
2775 bool
2777  string& ref) const
2778 {
2779  // Extract the reference histogram name corresponding to the given hadronisation specification (if existing).
2780  // The return value is used to indicate whether the specification could be found.
2781  //
2782  // spec: hadronisation specification
2783  // ref: container name corresponding to this specification
2784 
2785  std::map<string, string>::const_iterator it = m_refs.find(spec);
2786  if (it == m_refs.end()) return false;
2787 
2788  ref = it->second;
2789  return true;
2790 }
Analysis::CalibResult
std::pair< double, double > CalibResult
Definition: CalibrationDataInterfaceBase.h:34
xAOD::iterator
JetConstituentVector::iterator iterator
Definition: JetConstituentVector.cxx:68
xAOD::strategy
strategy
Definition: L2CombinedMuon_v1.cxx:107
Analysis::CalibrationDataEigenVariations::isExtrapolationVariation
bool isExtrapolationVariation(unsigned int nameIndex) const
flag whether the given index corresponds to an extrapolation variation
Definition: CalibrationDataEigenVariations.cxx:1099
Analysis::CalibrationDataHistogramContainer::getUncertainty
virtual CalibrationStatus getUncertainty(const std::string &unc, const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)
retrieve the calibration uncertainty due to the given source.
Definition: CalibrationDataContainer.cxx:622
Analysis::GiveUp
@ GiveUp
Definition: CalibrationDataInterfaceROOT.h:82
LikeEnum::Loose
@ Loose
Definition: LikelihoodEnums.h:12
Analysis::CalibrationDataEigenVariations::getNamedVariationIndex
unsigned int getNamedVariationIndex(const std::string &name) const
retrieve the integer index corresponding to the named variation.
Definition: CalibrationDataEigenVariations.cxx:1088
ClassImp
ClassImp(Analysis::CalibrationDataInterfaceROOT) Analysis
Definition: CalibrationDataInterfaceROOT.cxx:289
Analysis::CalibrationDataContainer::getUncertainty
virtual CalibrationStatus getUncertainty(const std::string &unc, const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)=0
retrieve the calibration uncertainty due to the given source.
Analysis::CalibrationDataInterfaceROOT::nameFromIndex
std::string nameFromIndex(unsigned int index) const
Retrieve the name of the calibration object (container) given its index.
Definition: CalibrationDataInterfaceROOT.cxx:1945
Analysis::CalibrationDataEigenVariations::excludeNamedUncertainty
void excludeNamedUncertainty(const std::string &name, CalibrationDataContainer *cnt)
exclude the source of uncertainty indicated by name from eigenvector calculations
Definition: CalibrationDataEigenVariations.cxx:371
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
Analysis::dummyResult
const CalibResult dummyResult(dummyValue, dummyValue)
Analysis::CalibrationDataInterfaceROOT::m_EVStrategy
Uncertainty m_EVStrategy
Definition: CalibrationDataInterfaceROOT.h:430
get_generator_info.result
result
Definition: get_generator_info.py:21
Analysis::CalibrationDataContainer
Definition: CalibrationDataContainer.h:51
checkCoolLatestUpdate.variables
variables
Definition: checkCoolLatestUpdate.py:13
Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT
CalibrationDataInterfaceROOT()
default constructor for PROOF object retrieval
Definition: CalibrationDataInterfaceROOT.cxx:603
find
std::string find(const std::string &s)
return a remapped string
Definition: hcg.cxx:135
Analysis::CalibrationDataInterfaceROOT::fullName
std::string fullName(const std::string &author, const std::string &OP, const std::string &label, bool isSF, unsigned mapIndex=0) const
@ brief construct the full object pathname from its individual components
Definition: CalibrationDataInterfaceROOT.cxx:2721
Analysis::CalibrationDataInterfaceBase
Definition: CalibrationDataInterfaceBase.h:47
Analysis::CalibrationDataEigenVariations::getNumberOfEigenVariations
unsigned int getNumberOfEigenVariations()
retrieve the number of eigenvector variations
Definition: CalibrationDataEigenVariations.cxx:1010
Analysis::CalibrationDataHistogramContainer::getTagWeightAxis
virtual int getTagWeightAxis()
Test whether this calibration object is one for "continuous" calibration (this has some subtle conseq...
Definition: CalibrationDataContainer.cxx:935
CalibrationDataContainer.h
CaloCondBlobAlgs_fillNoiseFromASCII.spec
spec
Definition: CaloCondBlobAlgs_fillNoiseFromASCII.py:47
index
Definition: index.py:1
Analysis::CalibrationDataEigenVariations::EigenVectorRecomposition
bool EigenVectorRecomposition(const std::string &label, std::map< std::string, std::map< std::string, float >> &coefficientMap)
Eigenvector recomposition method.
Definition: CalibrationDataEigenVariations.cxx:1109
Analysis::CalibrationDataHistogramContainer::isBinCorrelated
bool isBinCorrelated(const std::string &unc) const
Indicate whether the given uncertainty is correlated from bin to bin or not (note that this function ...
Definition: CalibrationDataContainer.cxx:719
Analysis::SFNamed
@ SFNamed
Definition: CalibrationDataInterfaceROOT.h:70
max
constexpr double max()
Definition: ap_fixedTest.cxx:33
Analysis::CalibrationDataInterfaceROOT::runEigenVectorRecomposition
CalibrationStatus runEigenVectorRecomposition(const std::string &author, const std::string &label, const std::string &OP, unsigned int mapindex=0)
run EigenVector Recomposition method
Definition: CalibrationDataInterfaceROOT.cxx:2207
plotmaker.hist
hist
Definition: plotmaker.py:148
min
constexpr double min()
Definition: ap_fixedTest.cxx:26
Analysis::CalibrationDataInterfaceROOT::getWeightScaleFactor
CalibResult getWeightScaleFactor(const CalibrationDataVariables &variables, const std::string &label, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency scale factor retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1485
WriteCellNoiseToCool.fullName
fullName
Definition: WriteCellNoiseToCool.py:461
Analysis::Statistical
@ Statistical
Definition: CalibrationDataInterfaceROOT.h:70
PlotCalibFromCool.begin
begin
Definition: PlotCalibFromCool.py:94
skel.it
it
Definition: skel.GENtoEVGEN.py:396
plotBeamSpotVxVal.cov
cov
Definition: plotBeamSpotVxVal.py:201
Analysis::TagWeight
@ TagWeight
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::CalibrationDataInterfaceROOT::getShiftedScaleFactors
const TH1 * getShiftedScaleFactors(const std::string &author, const std::string &label, const std::string &OP, const std::string &unc, double sigmas)
retrieve the binned calibration object for the given flavour label and operating point,...
Definition: CalibrationDataInterfaceROOT.cxx:2158
Analysis::CalibrationDataInterfaceROOT::initialize
void initialize(const std::string &jetauthor, const std::string &OP, Uncertainty unc)
initialization for PROOF usage
Definition: CalibrationDataInterfaceROOT.cxx:2484
bin
Definition: BinsDiffFromStripMedian.h:43
PlotCalibFromCool.ib
ib
Definition: PlotCalibFromCool.py:419
Analysis::CalibrationDataEigenVariations::initialize
virtual void initialize(double min_variance=1.0E-20)
carry out the eigenvector computations.
Definition: CalibrationDataEigenVariations.cxx:637
Analysis::CalibrationDataEigenVariations::mergeVariationsFrom
void mergeVariationsFrom(const size_t &index)
merge all variations starting from the given index
Definition: CalibrationDataEigenVariations.cxx:863
athena.value
value
Definition: athena.py:124
Analysis::CalibrationDataGlobalEigenVariations::mergeVariationsFrom
void mergeVariationsFrom(const size_t &index, std::string &flav)
Definition: CalibrationDataEigenVariations.cxx:2045
TrigInDetValidation_Base.test
test
Definition: TrigInDetValidation_Base.py:147
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
Analysis::CalibrationDataContainer::getSystUncertainty
CalibrationStatus getSystUncertainty(const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)
retrieve the calibration total systematic uncertainty
Definition: CalibrationDataContainer.cxx:101
Analysis::CalibrationDataInterfaceROOT::HadronisationReferenceHelper::HadronisationReferenceHelper
HadronisationReferenceHelper()
Definition: CalibrationDataInterfaceROOT.h:367
x
#define x
Analysis::CalibrationDataContainer::getResult
virtual CalibrationStatus getResult(const CalibrationDataVariables &x, double &result, TObject *obj=0, bool extrapolate=false)=0
retrieve the calibration result.
Analysis::TauExtrapolation
@ TauExtrapolation
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::CalibrationDataInterfaceROOT::getNumVariations
unsigned int getNumVariations(const std::string &author, const std::string &label, const std::string &OP, Uncertainty unc)
retrieve the number of variations relevant to the calibration object.
Definition: CalibrationDataInterfaceROOT.cxx:2063
Analysis::dummyValue
const double dummyValue
Definition: CalibrationDataInterfaceBase.h:33
CalibrationDataEigenVariations.h
Analysis::CalibrationDataContainer::kAbsEta
@ kAbsEta
Definition: CalibrationDataContainer.h:66
mergePhysValFiles.end
end
Definition: DataQuality/DataQualityUtils/scripts/mergePhysValFiles.py:93
Analysis::CalibrationDataInterfaceBase::m_taggerName
std::string m_taggerName
tagging algorithm name
Definition: CalibrationDataInterfaceBase.h:94
Analysis::Main
@ Main
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::CalibrationDataInterfaceROOT::HadronisationReferenceHelper
Definition: CalibrationDataInterfaceROOT.h:363
Analysis::kSuccess
@ kSuccess
Definition: CalibrationDataVariables.h:57
Analysis::Total
@ Total
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::CalibrationDataInterfaceROOT::m_excludeFromCovMatrix
std::map< std::string, std::vector< std::string > > m_excludeFromCovMatrix
store the uncertainties which should be excluded from building the full covariance matrix
Definition: CalibrationDataInterfaceROOT.h:436
python.setupRTTAlg.size
int size
Definition: setupRTTAlg.py:39
Analysis::CalibrationDataInterface::split
std::vector< std::string > split(const std::string &str, const char token=';')
local utility function: split string into a vector of substrings separated by a specified separator,...
Definition: CalibrationDataInternals.cxx:9
CalibrationDataInterfaceROOT.h
Analysis::CalibrationDataInterfaceROOT::retrieveContainer
CalibrationDataContainer * retrieveContainer(const std::string &label, const std::string &OP, const std::string &author, const std::string &cntname, bool isSF, bool doPrint=true)
utility function taking care of object retrieval
Definition: CalibrationDataInterfaceROOT.cxx:2523
Analysis::GiveUpExtrapolated
@ GiveUpExtrapolated
Definition: CalibrationDataInterfaceROOT.h:82
Analysis::CalibrationDataContainer::listUncertainties
std::vector< std::string > listUncertainties() const
retrieve the list of "uncertainties" accessible to this object.
Definition: CalibrationDataContainer.cxx:120
Analysis::CalibrationDataInterfaceROOT::getEfficiency
CalibResult getEfficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1071
Analysis::CalibrationDataInterfaceROOT::m_verbose
bool m_verbose
if true, allow also for some informational (and not only error/warning) messages
Definition: CalibrationDataInterfaceROOT.h:444
dqt_zlumi_pandas.err
err
Definition: dqt_zlumi_pandas.py:182
fillPileUpNoiseLumi.next
next
Definition: fillPileUpNoiseLumi.py:52
Analysis::kExtrapolatedRange
@ kExtrapolatedRange
Definition: CalibrationDataVariables.h:59
lumiFormat.i
int i
Definition: lumiFormat.py:85
Analysis::CalibrationDataContainer::kEta
@ kEta
Definition: CalibrationDataContainer.h:65
Analysis::Uncertainty
Uncertainty
specification of type information requested by the user
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::kError
@ kError
Definition: CalibrationDataVariables.h:60
Analysis::CalibrationDataInterfaceROOT::m_filenameSF
std::string m_filenameSF
in addition, store also the filenames themselves (needed for the copy constructor)
Definition: CalibrationDataInterfaceROOT.h:417
Analysis::CalibrationDataInterfaceROOT::~CalibrationDataInterfaceROOT
virtual ~CalibrationDataInterfaceROOT()
default destructor
Definition: CalibrationDataInterfaceROOT.cxx:633
Analysis::CalibrationDataInterfaceROOT::m_flavours
std::vector< std::string > m_flavours
Definition: CalibrationDataInterfaceROOT.h:419
Analysis::CalibrationDataEigenVariations
Definition: CalibrationDataEigenVariations.h:27
COOLRates.alias
alias
Definition: COOLRates.py:1172
Analysis::CalibrationDataEigenVariations::getEigenvectorVariation
bool getEigenvectorVariation(unsigned int variation, TH1 *&up, TH1 *&down)
obtain the "up" and "down" variations for the given eigenvector number.
Definition: CalibrationDataEigenVariations.cxx:1018
Analysis::Loose
@ Loose
Definition: CalibrationDataInterfaceROOT.h:73
Analysis::CalibrationDataGlobalEigenVariations
Definition: CalibrationDataEigenVariations.h:145
Analysis::CalibrationDataInterfaceROOT::getMCMCScaleFactor
double getMCMCScaleFactor(const CalibrationDataVariables &variables, unsigned indexSF, unsigned int indexEff) const
MC/MC scale factor retrieval.
Definition: CalibrationDataInterfaceROOT.cxx:1465
CalibCoolCompareRT.up
up
Definition: CalibCoolCompareRT.py:109
add-xsec-uncert-quadrature-N.label
label
Definition: add-xsec-uncert-quadrature-N.py:104
Analysis::kRange
@ kRange
Definition: CalibrationDataVariables.h:58
Analysis::SFEigen
@ SFEigen
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::UncertaintyResult
std::pair< double, double > UncertaintyResult
The following typedef is for convenience: most uncertainties can be asymmetric.
Definition: CalibrationDataContainer.h:33
Analysis::CalibrationDataHistogramContainer::getResult
virtual CalibrationStatus getResult(const CalibrationDataVariables &x, double &result, TObject *obj=0, bool extrapolate=false)
retrieve the calibration result.
Definition: CalibrationDataContainer.cxx:539
Analysis::CalibrationDataInterfaceROOT::listScaleFactorUncertainties
std::vector< std::string > listScaleFactorUncertainties(const std::string &author, const std::string &label, const std::string &OP, bool named=false)
retrieve the list of "uncertainties" relevant to the calibration object.
Definition: CalibrationDataInterfaceROOT.cxx:1987
python.xAODType.dummy
dummy
Definition: xAODType.py:4
Analysis::CalibrationDataInterfaceROOT::getMCEfficiency
CalibResult getMCEfficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
"MC" efficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:963
hist_file_dump.f
f
Definition: hist_file_dump.py:135
GEV
#define GEV
Definition: PrintPhotonSF.cxx:24
Analysis::CalibrationDataInterfaceROOT::m_aliases
std::map< std::string, std::string > m_aliases
Do not attempt to persistify (PROOF)
Definition: CalibrationDataInterfaceROOT.h:405
beamspotnt.rows
list rows
Definition: bin/beamspotnt.py:1112
Analysis::CalibrationDataInterfaceROOT::retrieveCalibrationIndex
bool retrieveCalibrationIndex(const std::string &label, const std::string &OP, const std::string &author, bool isSF, unsigned int &index, unsigned int mapIndex=0)
Retrieve the index of the calibration object (container) starting from the label and operating point.
Definition: CalibrationDataInterfaceROOT.cxx:688
Analysis::CalibrationDataGlobalEigenVariations::excludeNamedUncertainty
void excludeNamedUncertainty(const std::string &name, const std::string &flavour)
Definition: CalibrationDataEigenVariations.cxx:1515
beamspotman.stat
stat
Definition: beamspotman.py:266
bin2
Definition: KillBinsByStrip.h:34
beamspotman.dir
string dir
Definition: beamspotman.py:623
Analysis::CalibrationDataInterfaceROOT::getMCInefficiency
CalibResult getMCInefficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
"MC" inefficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1422
LikeEnum::Tight
@ Tight
Definition: LikelihoodEnums.h:15
Analysis::CalibrationDataInterfaceBase::setEffCalibrationNames
void setEffCalibrationNames(const std::map< std::string, std::vector< std::string > > &names)
Definition: CalibrationDataInterfaceBase.cxx:63
Analysis::CalibrationDataInterfaceROOT::m_filenameEff
std::string m_filenameEff
Definition: CalibrationDataInterfaceROOT.h:418
Analysis::CalibrationDataEigenVariations::listNamedVariations
std::vector< std::string > listNamedVariations() const
list the named variations
Definition: CalibrationDataEigenVariations.cxx:997
GetAllXsec.entry
list entry
Definition: GetAllXsec.py:132
Analysis::CalibrationDataInterfaceROOT::increaseCounter
void increaseCounter(unsigned int index, OutOfBoundsType oob=Main)
Definition: CalibrationDataInterfaceROOT.cxx:1959
Analysis::Extrapolated
@ Extrapolated
Definition: CalibrationDataInterfaceROOT.h:85
Analysis
The namespace of all packages in PhysicsAnalysis/JetTagging.
Definition: BTaggingCnvAlg.h:20
Analysis::CalibrationStatus
CalibrationStatus
Definition: CalibrationDataVariables.h:56
Analysis::CalibrationDataContainer::getVariableTypes
std::vector< unsigned int > getVariableTypes()
utility to retrieve variable types
Definition: CalibrationDataContainer.cxx:408
python.TriggerEDMRun3.BTagVars
BTagVars
Definition: TriggerEDMRun3.py:150
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
Analysis::OutOfBoundsType
OutOfBoundsType
counter types (to be used when flagging out-of-bounds cases)
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::Eta
@ Eta
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::CalibrationDataGlobalEigenVariations::initialize
void initialize(double min_variance=1.0E-6)
carry out the eigenvector computations.
Definition: CalibrationDataEigenVariations.cxx:1558
Analysis::CalibrationDataHistogramContainer
Definition: CalibrationDataContainer.h:247
Analysis::CalibrationDataContainer::kTagWeight
@ kTagWeight
Definition: CalibrationDataContainer.h:67
find_data.full
full
Definition: find_data.py:27
Analysis::CalibrationDataContainer::isNearlyEqual
static bool isNearlyEqual(double a, double b)
utility for comparison of doubles
Definition: CalibrationDataContainer.cxx:1744
python.PyAthena.v
v
Definition: PyAthena.py:154
DeMoScan.index
string index
Definition: DeMoScan.py:364
Analysis::CalibrationDataInterfaceROOT::HadronisationReferenceHelper::getReference
bool getReference(const std::string &spec, std::string &ref) const
Retrieve the (full) name of the reference histogram, given the hadronisation specification.
Definition: CalibrationDataInterfaceROOT.cxx:2776
Analysis::CalibrationDataInterfaceROOT::checkAbsEta
bool checkAbsEta(const CalibrationDataVariables &variables, unsigned int index)
Definition: CalibrationDataInterfaceROOT.cxx:1919
Analysis::CalibrationDataInterfaceROOT::getInefficiency
CalibResult getInefficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
inefficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1307
InDetDD::other
@ other
Definition: InDetDD_Defs.h:16
CondAlgsOpts.found
int found
Definition: CondAlgsOpts.py:101
mapkey::sf
@ sf
Definition: TElectronEfficiencyCorrectionTool.cxx:38
LikeEnum::Medium
@ Medium
Definition: LikelihoodEnums.h:14
trigbs_pickEvents.cnt
cnt
Definition: trigbs_pickEvents.py:71
ref
const boost::regex ref(r_ef)
Analysis::CalibrationDataInterfaceROOT
Definition: CalibrationDataInterfaceROOT.h:88
Analysis::SFGlobalEigen
@ SFGlobalEigen
Definition: CalibrationDataInterfaceROOT.h:70
copySelective.target
string target
Definition: copySelective.py:37
Pythia8_RapidityOrderMPI.val
val
Definition: Pythia8_RapidityOrderMPI.py:14
Analysis::CalibrationDataEigenVariations::setVerbose
void setVerbose(bool)
Definition: CalibrationDataEigenVariations.cxx:1247
Analysis::CalibrationDataInterfaceROOT::m_runEigenVectorMethod
bool m_runEigenVectorMethod
decide whether to run the eigenvector method or not
Definition: CalibrationDataInterfaceROOT.h:429
python.TriggerHandler.verbose
verbose
Definition: TriggerHandler.py:297
Analysis::CalibrationDataInterfaceROOT::getScaleFactor
CalibResult getScaleFactor(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency scale factor retrieval by name.
Definition: CalibrationDataInterfaceROOT.cxx:736
CaloCondBlobAlgs_fillNoiseFromASCII.author
string author
Definition: CaloCondBlobAlgs_fillNoiseFromASCII.py:26
Analysis::CalibrationDataInterfaceROOT::checkWeightScaleFactors
void checkWeightScaleFactors(unsigned int indexSF, unsigned int indexEff)
Definition: CalibrationDataInterfaceROOT.cxx:1763
Analysis::CalibrationDataVariables
Definition: CalibrationDataVariables.h:42
LArNewCalib_DelayDump_OFC_Cali.idx
idx
Definition: LArNewCalib_DelayDump_OFC_Cali.py:69
CaloCellTimeCorrFiller.filename
filename
Definition: CaloCellTimeCorrFiller.py:24
GRLStrUtil::trim
void trim(std::string &input)
Definition: StrUtil.cxx:12
Analysis::CalibrationDataInterfaceBase::setSFCalibrationNames
void setSFCalibrationNames(const std::map< std::string, std::string > &names)
Definition: CalibrationDataInterfaceBase.cxx:87
Analysis::Ignore
@ Ignore
Definition: CalibrationDataInterfaceROOT.h:82
CalibrationDataInternals.h
MuonHough::extrapolate
float extrapolate(const MuonLayerHough::Maximum &ref, const MuonLayerHough::Maximum &ex, bool doparabolic=false)
Definition: MuonLayerHough.cxx:521
Analysis::CalibrationDataInterfaceROOT::getInefficiencyScaleFactor
CalibResult getInefficiencyScaleFactor(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
"MC" inefficiency scale factor retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1186
Analysis::CalibrationDataEigenVariations::getNumberOfNamedVariations
unsigned int getNumberOfNamedVariations() const
retrieve the number of named variations
Definition: CalibrationDataEigenVariations.cxx:988
dqt_zlumi_alleff_HIST.eff
int eff
Definition: dqt_zlumi_alleff_HIST.py:113
Analysis::CalibrationDataContainer::kPt
@ kPt
Definition: CalibrationDataContainer.h:64
merge.status
status
Definition: merge.py:17
Analysis::CalibrationDataEigenVariations::getNamedVariation
bool getNamedVariation(const std::string &name, TH1 *&up, TH1 *&down)
obtain the "up" and "down" variations for the named uncertainty.
Definition: CalibrationDataEigenVariations.cxx:1043
Analysis::CalibrationDataHistogramContainer::getEigenvectorReduction
virtual int getEigenvectorReduction(unsigned int choice) const
Retrieve the number of eigenvectors to be retained for the purpose of eigenvector variation reduction...
Definition: CalibrationDataContainer.cxx:986
Analysis::CalibrationDataInterfaceROOT::m_fileSF
TFile * m_fileSF
Do not attempt to persistify (PROOF)
Definition: CalibrationDataInterfaceROOT.h:401
python.DataFormatRates.env
env
Definition: DataFormatRates.py:32
Analysis::Systematic
@ Systematic
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::Flag
@ Flag
Definition: CalibrationDataInterfaceROOT.h:82
Analysis::Extrapolation
@ Extrapolation
Definition: CalibrationDataInterfaceROOT.h:70
pow
constexpr int pow(int base, int exp) noexcept
Definition: ap_fixedTest.cxx:15
xAOD::bool
setBGCode setTAP setLVL2ErrorBits bool
Definition: TrigDecision_v1.cxx:60
Analysis::CalibrationDataInterfaceROOT::getAlias
std::string getAlias(const std::string &author) const
associated alias retrieval method
Definition: CalibrationDataInterfaceROOT.cxx:2710
Analysis::CalibrationDataInterfaceROOT::getMCEfficiencyObject
const TObject * getMCEfficiencyObject(const std::string &author, const std::string &label, const std::string &OP, unsigned int mapIndex=0)
retrieve the MC efficiency (central values) object for the given flavour label and operating point.
Definition: CalibrationDataInterfaceROOT.cxx:2130
Analysis::CalibrationDataContainer::getStatUncertainty
virtual CalibrationStatus getStatUncertainty(const CalibrationDataVariables &x, double &result)=0
retrieve the calibration statistical uncertainty.
Trk::split
@ split
Definition: LayerMaterialProperties.h:38
Analysis::CalibrationDataInterfaceROOT::getScaleFactorCovarianceMatrix
TMatrixDSym getScaleFactorCovarianceMatrix(const std::string &author, const std::string &label, const std::string &OP, const std::string &unc="all")
retrieve the named covariance matrix element corresponding to the binned calibration object.
Definition: CalibrationDataInterfaceROOT.cxx:2415
Analysis::CalibZERO
const double CalibZERO
Definition: CalibrationDataInterfaceBase.h:32
Analysis::CalibrationDataInterfaceROOT::m_fileEff
TFile * m_fileEff
pointer to the TFile object providing access to the calibrations
Definition: CalibrationDataInterfaceROOT.h:400
Analysis::CalibrationDataInterfaceROOT::getBinnedScaleFactors
const TH1 * getBinnedScaleFactors(const std::string &author, const std::string &label, const std::string &OP)
retrieve the binned calibration object for the given flavour label and operating point.
Definition: CalibrationDataInterfaceROOT.cxx:2108
Analysis::CalibrationDataHistogramContainer::getBinBoundaries
virtual std::vector< double > getBinBoundaries(unsigned int vartype)
Retrieve the bin boundaries for the specified variable type (which should be a CalibrationParametriza...
Definition: CalibrationDataContainer.cxx:952
Analysis::CalibrationDataInterfaceROOT::getEigenVectorRecompositionCoefficientMap
std::map< std::string, std::map< std::string, float > > getEigenVectorRecompositionCoefficientMap()
Get Eigenvector recomposition map after running runEigenVectorRecomposition()
Definition: CalibrationDataInterfaceROOT.cxx:2267