ATLAS Offline Software
CalibrationDataInterfaceROOT.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2025 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 // //
7 // CalibrationDataInterfaceROOT //
8 /* Begin_Html
9 <h2>Purpose</h2>
10 <p>This class provides the main interface to b-tagging calibration information.
11  Each instance can be used to handle a single tagger (so if multiple taggers' information
12  needs to be accessed, multiple CalibrationDataInterfaceROOT instances need to be created).<br />
13  Its action is steered by a configuration file (which is parsed using TEnv and which is
14  specified in the CalibrationDataInterfaceROOT constructor).
15 </p>
16 <p>
17  Further details can be found below, arranged by topic: <a href="#basic">basic usage</a>,
18  <a href="#ev">eigenvector variation usage</a>, and <a href="#configuration">configuration file
19  specification</a>.
20 </p>
21 <a name="basic"><h2>Basic usage</h2></a>
22 <p>
23  The main functionality is to retrieve data/MC calibration scale factors and MC efficiencies,
24  on a jet-by-jet basis. This is done using the following methods:
25  <pre>
26  getScaleFactor (variables, label, OP, unc)
27  getMCEfficiency (variables, label, OP, unc, mapIndex)
28  </pre>
29  with the following meaning for the arguments:
30  <pre>
31  variables: a CalibrationDataVariables object that should be filled by the user with all
32  the information needed to extract the calibration information
33  label: flavour label. Currently recognised labels follow the Athena TruthInfo conventions
34  (see package PhysicsAnalysis/JetTagging/JetTagInfo): "B", "C", "T", "N/A", and in
35  addition "Light" (the "N/A" is internally converted to "Light")
36  OP: tagger working point. This should correspond to a documented weight cut for the
37  tagger under consideration, but converted to a string, and with any period (".")
38  replaced with an underscore for technical reasons. Alternatively, "Continuous" may
39  be used if a "continuous tagging" calibration object exists for the tagger under
40  consideration. (Note that the use of this method for "continuous tagging" is not
41  in general to be recommended, as it does not not allow for scale factor rescaling,
42  which is ne
43  unc: enum specifying what uncertainty information is to be retrieved. Recognised values
44  for normal usage are <b>None</b> (retrieval of central values only), <b>Statistical</b>
45  (statistical uncertainty), <b>Systematic</b> (systematic uncertainty), <b>Total</b>
46  (combined statistical and systematic uncertainty). (Other choices exist for more advanced
47  usage and will be described <a href="#ev">below</a>.)
48  mapIndex: index specifying the precise MC efficiency calibration to be used. This is relevant if
49  multiple "efficiency calibration" names are specified for the given flavour label (see
50  the <a href="#configuration">configuration section</a>).
51  </pre>
52  All methods return a pair&lt;double, double&gt; (the stated <b>CalibResult</b> return type is a simple typedef),
53  the first member of which contains the central value and the second the requested uncertainty (or 0 if no
54  uncertainty was requested). Note that central values are retricted to be within the physical region (between 0
55  and 1 for the MC efficiencies, and positive for the scale factors).
56 </p>
57 <p>
58  A few additional methods exist, based on (and internally using) the above methods:
59  <pre>
60  getEfficiency (variables, label, OP, unc, mapIndex): data efficiency calculated as MC efficiency times SF
61  getInefficiency (variables, label, OP, unc, mapIndex): 1 - data efficiency
62  getMCInefficiency (variables, label, OP, unc, mapIndex): 1 - MC efficiency
63  getInefficiencyScaleFactor (variables, label, OP, unc, mapIndex): ratio of data to MC inefficiencies
64  </pre>
65  Especially the last of these methods is likely to be of interest when data/MC scale factors are applied;
66  <a href="http://cdsweb.cern.ch/record/1269912">this note</a> provides more detail. Restrictions to the physical
67  range apply, as is the case for the data/MC scale factor and MC efficiency methods.
68 </p>
69 <a name="speed-up"><h3>Code speed-up using variable caching</h3></a>
70 <p>
71  Internally, pointers to the calibration objects are cached. However, the string matching needed to
72  exploit this feature is slow and leads to a non-negligible CPU overhead. Since internally all pointers
73  are stored in a vector, it is possible to request the position in this vector for a given calibration
74  object. This position can then be used in subsequent alternative calls to retrieve information:
75  <pre>
76  getScaleFactor (variables, indexSF, indexEff, unc)
77  getMCEfficiency (variables, index, unc)
78  </pre>
79  Here the "index" variables replace the specification of the flavour label and operating point. They can
80  be retrieved by calling
81  <pre>
82  retrieveCalibrationIndex(label, OP, author, isSF, index)
83  </pre>
84  where the following additional variables are to be used:
85  <pre>
86  author: jet collection name
87  isSF: set to true (false) if the object concerned is a scale factor object (a MC efficiency object)
88  index: requested information
89  </pre>
90  Note that this method has a boolean return value, indicating whether or not the retrieval succeeded.
91  This return value should be checked by the user, as no checks are carried in the alternative getScaleFactor()
92  etc. methods as to the validity of the index specified. Note also that for all methods except those using
93  only the MC information, both indices need to be provided.
94 </p>
95 <a name="continuous"><h3>Continuous tagging</h3></a>
96 <p>
97  Rather than merely inquiring whether the tag weight discriminant resulting from a given tagger satisfies a
98  given criterion, it may be useful to use more detailed information. In particular, "continuous tagging"
99  information can be made available. This is essentially a calibrated version of the (binned) tag weight
100  discriminant distribution, or to be more precise, the corresponding data/MC ratio.
101 </p>
102 <p>
103  The use of this information differs somewhat from the regular calibration usage, as the "transport" from
104  the calibration sample(s) to the sample used in physics becomes a non-trivial extension of the efficiency
105  and inefficiency scale factors used for the regular calibrations. Therefore, two separate methods exist
106  which should be used for such cases:
107  <pre>
108  getWeightScaleFactor (variables, label, unc, numVariation, mapIndex)
109  getWeightScaleFactor (variables, indexSF, indexEff, unc, numVariation)
110  </pre>
111  The meaning of the variables is as above.
112 </p>
113 <a name="ev"><h2>Eigenvector variations</h2></a>
114 <p>
115  The 'basic usage' described above does not do justice to the fact that data/MC calibration scale factors
116  are derived in kinematic bins, with uncertainties not being fully correlated from bin to bin (indeed, the
117  methods themselves do not know anything about binning to start with). It is however possible to arrive at
118  a statistically more correct approach by considering 'variations'. This exploits the fact that in the case
119  of scale factor calibrations, besides statistical and total systematic uncertainties also individual
120  systematic uncertainties are stored (along with a model of their bin-to-bin correlations). The typical use
121  of this, applicable for a systematic uncertainty that is fully correlated (or anti-correlated) between bins,
122  would be to consider the effect on all calibration scale factors from a &pm; 1 standard deviation of the
123  underlying source of systematic.
124 </p>
125 <p>
126  In practice, this approach is a bit cumbersome due to the sometimes large number of contributions to the
127  systematic uncertainty. In addition, no infrastructure exists at present to deal with uncertainties that are
128  not, or only partially, correlated from bin to bin. An eigenvector decomposition technique allows to address
129  both of these issues at the same time.
130 </p>
131 <p>
132  This method starts from the scale factor covariance matrix that can be constructed on the basis of the
133  available information (uncertainties plus a model of their bin-to-bin correlations). This covariance matrix
134  can be diagonalised and its eigenvectors and corresponding eigenvalues determined. The product of an eigenvector
135  and the square root of its corresponding eigenvalue is what is referred to as an 'eigenvector variation'.
136  The number of such (statistically independent) variations equals the number of calibration bins, and the set
137  of variations is the minimal set needed to (re-)construct the covariance matrix. After this eigenvector
138  decomposition, the eigenvector variations may be used instead of the variations corresponding to the original
139  sources of uncertainty.
140 </p>
141 <p>
142  One further refinement can be made, related to the fact that sometimes sources of uncertainty affecting
143  the calibration analyses also affect the physics analysis in which the calibration results are used.
144  Including these sources of uncertainty in the eigenvector decomposition would not allow to correlate the
145  effect on the calibration properly with the effect on the physics analysis; therefore it is possible to
146  exclude these sources of uncertainty from being used in the construction of the covariance matrix that is
147  diagonalised, and consider their variations separately (note, per the above, that this will be done
148  correctly only in the case of full bin-to-bin correlations).
149 </p>
150 <p>
151  The use of the eigenvector variation is not enabled by default and must be switched on in the configuration
152  file (see <a href="#configuration">Configuration</a>).
153 </p>
154 <p>
155  The above can be used to obtain jet-by-jet information by a slight modification of the arguments to the
156  normal methods for information retrieval also employed for <a href="#basic">basic usage</a>:
157  <pre>
158  getScaleFactor (variables, label, OP, unc, numVariation)
159  </pre>
160  Here, the first three variables function exactly as in the basic usage case. As for the two last arguments:
161  <pre>
162  unc: this should take the value <b>SFEigen</b> or <b>SFNamed</b> for eigenvector variations or named variations, respectively.
163  numVariation: this indicates exactly which eigenvector variation or named variation is to be considered.
164  </pre>
165  In addition, it should be noticed that the methods' return values have a different meaning in this context:
166  while in normal usage they are (value, uncertainty) pairs, here they are (up, down) pairs, with up and down
167  meaning the result of an up- or downward eigenvector variation or named variation.
168 </p>
169 <p>
170  The number of valid variations for each type can be retrieved using
171  <pre>
172  getNumVariations(author, label, OP, Uncertainty unc)
173  </pre>
174  with "unc" set appropriately. Finally, calling
175  <pre>
176  listScaleFactorUncertainties(author, label, OP, named)
177  </pre>
178  can be used to retrieve information about uncertainties in two ways, depending on the value of the last argument:
179  <pre>
180  named = false (default): retrieve an unsorted list of all the uncertainties associated with the relevant scale factor
181  calibration object. This can be used to identify sources of uncertainty to be excluded from
182  the eigenvector decomposition.
183  named = true: the list in this case is restricted to the named uncertainties (these should have been specified
184  in the configuration file by the user) and ordered: the position in the vector constitutes the
185  link between the name and the index to be used as the "numVariation" argument to the
186  getScaleFactor() etc. method.
187  </pre>
188  Note that as in the basic usage case, the code can be sped up by replacing the jet author/label/OP specification by the appropriate
189  integer index (see the <a href="#speed-up">corresponding section</a>).
190 </p>
191 <a name="configuration"><h2>Configuration</h2></a>
192 <p>
193  The configuration file may specify the following settings:
194 </p>
195 <ul>
196  <li>calibration file specification:
197  <pre>
198 
199  filename: common ROOT file for calibration scale factors and MC efficiencies
200  (default: BTaggingPerformanceCalibrations.root)
201  filenameEff: separate ROOT file for MC efficiencies
202  filenameSF: separate ROOT file for calibration scale factors
203  </pre>
204  Note that it is not necessary to specify all three files. The most common use for the specification
205  of more than one file is likely to be the specification of analysis-specific MC efficiencies (the
206  efficiencies provided in the common file are expected to be sufficient for many analysis purposes,
207  but depending on the accuracy needed it may be desirable to add custom efficiencies).
208  </li>
209  <li>choice of calibration:
210  <pre>
211 
212  ScaleFactorCalibrationBName: name for scale factor calibration object to be used for b-jets (default: default)
213  EfficiencyCalibrationBName: name for MC efficiencies object(s) to be used for b-jets (default: default).
214  Note that multiple (semicolon-separated) MC efficiency objects may be specified;
215  internally they will be converted to a vector. The position in the vector can
216  then be used as the 'mapIndex' argument in the methods involving MC information
217  (see e.g. the <a href="#basic">basic usage</a> section).
218  </pre>
219  Analogous keywords (with B replaced with C, T, Light) can be used to specify the objects to be used for
220  charm, tau, and light-flavour jets, respectively. Note that the "default" object should always exist and reflect
221  the recommended choice of object unless analysis-specific needs dictate otherwise.
222  </li>
223  <li>jet aliasing:
224  <pre>
225  aliases: semicolon-separated list of jet collection aliases
226  </pre>
227  The feature of jet aliasing follows the strategy also used in the CalibrationBroker Athena class.
228  It allows for the use of a calibration for different jet collection names than those actually
229  employed in physics analysis (caveat emptor!). Each alias consists of the specification
230  <pre>
231  source-&gt;target
232  </pre>
233  where source indicates the name used in physics analysis, while target is the name to be used for calibration purposes.
234  </li>
235  <li>eigenvector decomposition:
236  <pre>
237  runEigenVectorMethod: if set to true this will carry out an eigenvector decomposition, the results
238  of which can subsequently be used as calibration scale factor "variations"
239  correctly accounting for bin-to-bin correlations. For detailed usage of
240  b-tagging results (e.g. in profile likelihood fits) this is recommended (default: false)
241  excludeFromCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
242  decomposition, for all flavours.
243  excludeFromBCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
244  decomposition for b jets
245  excludeFromCCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
246  decomposition for c jets
247  excludeFromTCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
248  decomposition for tau "jets"
249  excludeFromLightCovMatrix: semicolon-separated list of uncertainties to be excluded from the eigenvector
250  decomposition for light-flavour jets
251  </pre>
252  </li>
253 </ul>
254 End_Html */
255 //
256 // CalibrationDataInterfaceROOT.cxx, (c) ATLAS Detector software //
258 
261 
264 #include <boost/algorithm/string.hpp>
265 
266 #include "TMath.h"
267 #include "TEnv.h"
268 #include "TFile.h"
269 #include "TObjString.h"
270 #include <iostream>
271 #include <iomanip>
272 #include <cmath>
273 #include <cassert>
274 #include <cstring>
275 
276 using std::string;
277 using std::cout;
278 using std::cerr;
279 using std::endl;
280 using std::setw;
281 
286 using boost::trim;
287 
288 #ifndef __CINT__
290 #endif
291 
292 //________________________________________________________________________________
293 Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT(const string& taggerName, const std::string& configname, const std::string& pathname) :
294  m_runEigenVectorMethod(false), m_EVStrategy(SFEigen), m_useRecommendedEVExclusions(false), m_verbose(true),
295  m_absEtaStrategy(GiveUp), m_otherStrategy(Flag)
296 {
297  // Normal constructor.
298  //
299  // taggerName: this should correspond to the tagger name as used in the calibration ROOT file
300  // configname: full name of the configuration file
301  // pathname: directory specification for separate scale factor or efficiency ROOT file
302 
303  m_taggerName = taggerName;
304 
305  TEnv env;
306  env.ReadFile(configname.c_str(),kEnvGlobal);
307 
308 
309  // ROOT file containing the calibrations
310  TString filename = env.GetValue("File", "BTaggingPerformanceCalibrations.root");
311  m_filenameEff = string(env.GetValue("FileEff", "")); trim(m_filenameEff);
312  m_filenameSF = string(env.GetValue("FileSF", "")); trim(m_filenameSF);
313  if (m_filenameEff == "") {
314  m_filenameEff = pathname + filename.Data();
315  }
316  if (m_filenameSF == "") {
317  m_filenameSF = pathname + filename.Data();
318  }
319 
320  if (m_verbose) {
321  cout << "=== CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ===" << endl;
322  cout << " Config name : " << configname << endl;
323  cout << " taggerName : " << taggerName << endl;
324  cout << " Efficiency file name : " << m_filenameEff << endl
325  << " SF file name : " << m_filenameSF << endl;
326  }
327 
328  m_fileEff = TFile::Open(m_filenameEff.c_str(), "READ");
329  if (m_filenameEff == m_filenameSF)
330  m_fileSF = m_fileEff;
331  else
332  m_fileSF = TFile::Open(m_filenameSF.c_str(), "READ");
333 
334  if (m_verbose) {
335  TObjString* s;
336  m_fileSF->GetObject("VersionInfo/BuildNumber", s);
337  if (s) cout << " CDI file build number: " << s->GetName() << endl;
338  cout << endl;
339  }
340 
341  m_flavours = { "B", "C", "T", "Light" };
342  string testPrefix(taggerName); testPrefix += ".";
343 
344  // Since TEnv doesn't allow for straight retrieval of vectors of strings, expect
345  // semicolon-separated entries (semicolon because ROOT considers this as a "special"
346  // token anyway in object names).
347  string::size_type end;
348 
349  // Calibration names for the efficiencies
350  std::map<string, std::vector<string> > effNames;
351  for (auto const& flavour : m_flavours) {
352  string test(testPrefix); test += "EfficiencyCalibration"; test += flavour; test += "Name";
353  effNames[flavour] = split(string(env.GetValue(test.c_str(), "default")));
354  }
355  setEffCalibrationNames(effNames);
356 
357  // Calibration names for the efficiency scale factors
358  std::map<string, string> SFNames;
359  for (auto const& flavour : m_flavours) {
360  string test(testPrefix); test += "ScaleFactorCalibration"; test += flavour; test += "Name";
361  SFNames[flavour] = string(env.GetValue(test.c_str(), "default")); trim(SFNames[flavour]);
362  }
363  setSFCalibrationNames(SFNames);
364 
365  // Since TEnv doesn't allow for straight retrieval of vectors of strings, expect
366  // semicolon-separated entries (semicolon because ROOT considers this as a "special"
367  // token anyway in object names).
368  // Don't prefix this since the aliases are common to all taggers (even if they are read again for each tagger).
369  string AL(env.GetValue("aliases", ""));
370  if (AL.size() > 0) {
371  do {
372  end = AL.find(";");
373  string alias = AL.substr(0, end);
374  // Each alias specification uses an arrow ("->"). Forget about entries
375  // not properly following this specification.
376  // NB: TEnv imposes a maximum string length of 1024 characters -- is this a problem?
377  string::size_type arrow = alias.find("->");
378  if (arrow == string::npos) continue;
379  string target = alias.substr(0,arrow); trim(target);
380  m_aliases[target] = alias.substr(arrow+2); trim(m_aliases[target]);
381  if (end != string::npos) AL = AL.substr(end+1);
382  } while (end != string::npos);
383  }
384 
385  //run egenvector method or not?
386  string test="runEigenVectorMethod";
387  m_runEigenVectorMethod=(bool)env.GetValue(test.c_str(),0);
388 
389  if (m_runEigenVectorMethod) {
390  // Retrieve the list of systematic uncertainties not to be considered when building up
391  // the full covariance matrix used for the eigenvector method.
392  // We do this in two steps: first, for backward compatibility reasons, a flavour-independent list is scanned.
393  // Second, flavour-specific lists are scanned.
394  test = "excludeFromCovMatrix";
395  std::vector<std::string> to_exclude = split(env.GetValue(test.c_str(), ""));
396  // Copy the resulting list to all flavours
397  for (auto const& flavour : m_flavours) {
398  m_excludeFromCovMatrix[flavour] = to_exclude;
399  }
400  for (auto const& flavour : m_flavours) {
401  test = "excludeFrom"; test += flavour; test += "CovMatrix";
402  to_exclude = split(env.GetValue(test.c_str(), ""));
403  // Append to the existing list
404  m_excludeFromCovMatrix[flavour].insert(m_excludeFromCovMatrix[flavour].end(), to_exclude.begin(), to_exclude.end());
405  }
406 
407  unsigned int n_excluded = 0;
408  for (auto const& flavour : m_flavours) {
409  n_excluded += m_excludeFromCovMatrix[flavour].size();
410  }
411  if (m_verbose) {
412  cout << " List of uncertainties to exclude:";
413  if (n_excluded == 0) cout << " none";
414  for (auto const& flavour : m_flavours) {
415  if (m_excludeFromCovMatrix[flavour].size() > 0) {
416  cout << "\n\t" << flavour << ":\t";
417  for (unsigned int i = 0; i < m_excludeFromCovMatrix[flavour].size(); ++i) {
418  cout << m_excludeFromCovMatrix[flavour].at(i);
419  if (i+1 == m_excludeFromCovMatrix[flavour].size()) cout << "; ";
420  }
421  cout << endl;
422  }
423  }
424  cout << endl;
425  }
426 
427  // The following determines whether also pre-determined (recommended) lists of uncertainties are to be excluded from EV decomposition.
428  // These lists are stored with the CalibrationDataContainers, which have not been instantiated yet (so we cannot show them at this point).
429  m_useRecommendedEVExclusions = (bool) env.GetValue("ExcludeRecommendedFromEigenVectorTreatment", false);
430 
431  // determine also the eigenvector reduction strategies
432  std::map<string, EVReductionStrategy> mappings;
433  mappings["Loose"] = Loose;
434  mappings["Medium"] = Medium;
435  mappings["Tight"] = Tight;
436  for (auto const& flavour : m_flavours) {
437  test = testPrefix; test += "EigenvectorReduction"; test += flavour;
438  std::string reduction = string(env.GetValue(test.c_str(), "Loose")); trim(reduction);
439  m_EVReductions[flavour] = mappings.find(reduction) == mappings.end() ? mappings["Loose"] : mappings.find(reduction)->second;
440  }
441  }
442 
443  // determine |eta| validity range
444  m_maxAbsEta = env.GetValue("MaxAbsEta", 2.5);
445  if (m_maxAbsEta < 0) m_maxAbsEta = 2.5;
446 
447  // set validation / protection strategy in case an out-of-bounds eta value is specified
448  string strategy = string(env.GetValue("OutOfBoundsEta", "GiveUp")); trim(strategy);
449  if (strategy == "GiveUp") m_absEtaStrategy = GiveUp;
450  else if (strategy == "Flag") m_absEtaStrategy = Flag;
451  else if (strategy == "Ignore") m_absEtaStrategy = Ignore;
452  else {
453  cerr << "unknown |eta| extrapolation strategy: " << strategy << ", setting to GiveUp" << endl;
454  m_absEtaStrategy = GiveUp;
455  }
456 
457  // set validation / protection strategy in case out-of-bounds variables are specified
458  strategy = string(env.GetValue("OutOfBoundsOther", "Flag")); trim(strategy);
459  if (strategy == "GiveUp") m_otherStrategy = GiveUp;
460  else if (strategy == "GiveUpExtrapolated") m_otherStrategy = GiveUpExtrapolated;
461  else if (strategy == "Flag") m_otherStrategy = Flag;
462  else if (strategy == "Ignore") m_otherStrategy = Ignore;
463  else {
464  cerr << "unknown general extrapolation strategy: " << strategy << ", setting to Flag" << endl;
465  m_otherStrategy = Flag;
466  }
467 
468  // maximum tag weight to accept
469  m_maxTagWeight = env.GetValue("MaxTagWeight", 10.0);
470 
471  // MC/MC (hadronisation) scale factors: making this user-steerable is intended to be *temporary* only
472  m_useMCMCSF = (bool) env.GetValue("useMCMCSF", 1);
473  // MC/MC (topology) scale factors: making this user-steerable is intended to be *temporary* only
474  m_useTopologyRescaling = (bool) env.GetValue("useTopologySF", 0);
475 
476  if (m_verbose) cout << "======= end of CalibrationDataInterfaceROOT instantiation ========" << endl;
477 }
478 
479 
480 //________________________________________________________________________________
482  const char* fileSF, const char* fileEff,
483  const std::vector<std::string>& jetAliases,
484  const std::map<std::string, std::string>& SFNames,
485  const std::map<std::string, std::vector<std::string> >& EffNames,
486  const std::map<std::string, std::vector<std::string> >& excludeFromEV,
487  const std::map<std::string, EVReductionStrategy>& EVReductions,
488  bool useEV, Uncertainty strat, bool useMCMCSF, bool useTopologyRescaling,
489  bool useRecommendedEEVExclusions, bool verbose,
490  std::vector<std::string> flavours) :
491  m_filenameSF(fileSF), m_filenameEff(""), m_flavours(std::move(flavours)),
492  m_runEigenVectorMethod(useEV), m_EVStrategy(strat), m_EVReductions(EVReductions),
493  m_useRecommendedEVExclusions(useRecommendedEEVExclusions), m_verbose(verbose),
494  m_useMCMCSF(useMCMCSF), m_useTopologyRescaling(useTopologyRescaling),
495  m_maxAbsEta(2.5), m_absEtaStrategy(GiveUp),
496  m_otherStrategy(Flag), m_maxTagWeight(10.0)
497 {
498  // Normal constructor avoiding the need for a .env file.
499  //
500  // taggerName: this should correspond to the tagger name as used in the calibration ROOT file
501  // fileSF: full path of the calibration ROOT file containing the calibration scale factors
502  // fileEff: optional full path name of a ROOT file containing additional MC efficiency maps
503  // (use a null pointer to disable the use of such additional file)
504  // flavours; This should correspond to the list of flavour labels that's used by a tagger, and
505  // which corresponds to the labels used in internal maps
506  // jetAliases: this can be used to convert jet collection names to the corresponding names in the
507  // calibration ROOT file (this may be useful as e.g. the collection names in the
508  // calibration ROOT file have the JVF criterion attached as a suffix).
509  // Each alias is specified as
510  // nameOrig->nameTarget,
511  // where nameOrig and nameTarget are the names of the input jet collection and the
512  // jet collection name as used in the calibration ROOT file, respectively.
513  // SFNames: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
514  // name of the scale factor calibration object
515  // EffNames: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
516  // names of the possibly relevant efficiency calibration objects
517  // excludeFromEV: map specifying for each of the calibration flavours ("B", "C", "T", "Light") the
518  // systematic uncertainties to be excluded from the Eigenvector variation treatment
519  // (this is used only if Eigenvector variations are used to begin with)
520  // EVReductions: Eigenvector variation reduction strategies for "B", "C", "Light" jets (again,
521  // this is only relevant if Eigenvector variations are used to begin with)
522  // useEV: switch specifying if Eigenvector variations will be used or not
523  // useMCMCSF: switch specifying if generator-dependent scale factors are to be applied or not
524 
525  // Note: at present, the means to change the strategies and maximum values initialized above do not exist
526  // when using this constructor
527 
528  if (m_verbose) {
529  cout << "=== CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT ===" << endl;
530  cout << " taggerName : " << taggerName.c_str() << endl;
531  cout << " Systematic strategy : ";
533  cout << "SFEigen" << endl;
535  cout << "SFGlobalEigen" << endl;
536  } else {
537  cout << " Other" << endl;
538  }
539  if (fileEff) cout << " Efficiency file name : " << fileEff << endl;
540  cout << " SF file name : " << fileSF << endl
541  << endl;
542  }
543 
544  m_taggerName = taggerName;
545 
546  m_fileSF = TFile::Open(fileSF, "READ");
547  if (fileEff && strcmp(fileSF, fileEff) != 0) {
548  m_filenameEff = string(fileEff);
549  m_fileEff = TFile::Open(fileEff, "READ");
550  } else
552 
553  if (m_verbose) {
554  TObjString* s;
555  m_fileSF->GetObject("VersionInfo/BuildNumber", s);
556  if (s) cout << " CDI file build number: " << s->GetName() << endl;
557  cout << endl;
558  }
559 
560  for (unsigned int i = 0; i < jetAliases.size(); ++i) {
561  // Each alias specification uses an arrow ("->"). Forget about entries
562  // not properly following this specification.
563  string::size_type arrow = jetAliases[i].find("->");
564  if (arrow == string::npos) continue;
565  m_aliases[jetAliases[i].substr(0,arrow)] = jetAliases[i].substr(arrow+2);
566  }
567 
568  setEffCalibrationNames(EffNames);
569  setSFCalibrationNames(SFNames);
570 
571  if (m_runEigenVectorMethod) {
572  // if we want to run EV, then decide which one
573  // The following should hold for both eigenvector decomposition methods (SFEigen and SFGlobalEigen)
574  // The global one simply adapts itself to using the m_excludeFromCovMatrix to perform the same task
575 
576  m_excludeFromCovMatrix = excludeFromEV;
577  unsigned int n_excluded = 0;
578  for (auto const& flavour : m_flavours) {
579  n_excluded += m_excludeFromCovMatrix[flavour].size();
580  }
581  if (m_verbose) {
582  cout << " List of uncertainties to exclude:";
583  if (n_excluded == 0) cout << " none";
584  for (auto const& flavour : m_flavours) {
585  if (m_excludeFromCovMatrix[flavour].size() > 0) {
586  cout << "\n\t" << flavour << ":\t";
587  for (unsigned int i = 0; i < m_excludeFromCovMatrix[flavour].size(); ++i) {
588  cout << m_excludeFromCovMatrix[flavour].at(i);
589  if (i+1 == m_excludeFromCovMatrix[flavour].size()) cout << "; ";
590  }
591  cout << endl;
592  }
593  }
594  cout << endl;
595  }
596 
597  }
598 
599  if (m_verbose) cout << "======= end of CalibrationDataInterfaceROOT instantiation ========" << endl;
600 }
601 
602 //________________________________________________________________________________
604 {
605  // Default constructor for PROOF purposes
606 
607  m_fileEff=0;
608  m_fileSF=0;
609 }
610 
611 //________________________________________________________________________________
613  Analysis::CalibrationDataInterfaceBase(other), m_aliases(other.m_aliases), m_objects(), m_objectIndices(),
614  m_filenameSF(other.m_filenameSF), m_filenameEff(other.m_filenameEff),
615  m_eigenVariationsMap(), m_runEigenVectorMethod(other.m_runEigenVectorMethod), m_EVStrategy(other.m_EVStrategy),
616  m_excludeFromCovMatrix(other.m_excludeFromCovMatrix), m_useMCMCSF(other.m_useMCMCSF), m_useTopologyRescaling(other.m_useTopologyRescaling),
617  m_refMap(), m_hadronisationReference(),
618  m_maxAbsEta(other.m_maxAbsEta), m_absEtaStrategy(other.m_absEtaStrategy), m_otherStrategy(other.m_otherStrategy),
619  m_etaCounters(other.m_etaCounters), m_mainCounters(other.m_mainCounters), m_extrapolatedCounters(other.m_extrapolatedCounters),
620  m_checkedWeightScaleFactors(other.m_checkedWeightScaleFactors), m_maxTagWeight(other.m_maxTagWeight)
621 {
622  // Copy constructor. Note that the "cacheable" items aren't copied (they will be re-created if needed)
623 
624  // The TFile objects cannot be copied. Therefore, create duplicate objects starting from the filenames
625  m_fileSF = TFile::Open(m_filenameSF.c_str(), "READ");
628  else
629  m_fileEff = TFile::Open(m_filenameEff.c_str(), "READ");
630 }
631 
632 //________________________________________________________________________________
634 {
635  // Destructor
636  if ((m_fileEff!=0) && (m_fileSF!=0)) {
637  if (m_fileEff == m_fileSF) {
638  m_fileEff->Close();
639  delete m_fileEff; m_fileEff = 0;
640  } else {
641  m_fileEff->Close();
642  m_fileSF->Close();
643  delete m_fileEff; m_fileEff = 0;
644  delete m_fileSF; m_fileSF = 0;
645  }
646  }
647  // delete also the stored objects (these are owned by us)
648  for (std::vector<CalibrationDataContainer*>::iterator it = m_objects.begin(); it != m_objects.end(); ++it) {
649  if (*it) {
650  delete *it; *it = 0;
651  }
652  }
653 
655  it != m_refMap.end(); ++it) {
656  if(it->second)
657  { delete it->second; it->second=nullptr; }
658  }
659 
660  // Print summary output on out-of-bounds issues
661  if (m_absEtaStrategy == Flag && m_verbose) {
662  bool found = false;
663  cout << "\t\tCalibrationDataInterfaceROOT |eta| out-of-bounds summary:" << endl;
664  for (unsigned int index = 0; index < m_mainCounters.size(); ++index)
665  if (m_etaCounters[index] > 0) {
666  found = true;
667  cout << "\t\t\t" << nameFromIndex(index) << ": " << m_etaCounters[index] << endl;
668  }
669  if (!found) cout << "\t\t\tNo issues found" << endl;
670  }
671  if (m_otherStrategy == Flag && m_verbose) {
672  bool found = false;
673  cout << "\t\tCalibrationDataInterfaceROOT object out-of-bounds summary:" << endl;
674  for (unsigned int index = 0; index < m_mainCounters.size(); ++index)
675  if (m_mainCounters[index] + m_extrapolatedCounters[index] > 0) {
676  found = true;
677  cout << "\t\t\t" << nameFromIndex(index)
678  << " general: " << m_mainCounters[index]
679  << ", extrapolated: " << m_extrapolatedCounters[index]
680  << endl;
681  }
682  if (!found) cout << "\t\t\tNo issues found" << endl;
683  }
684 }
685 
686 //________________________________________________________________________________
687 bool
689  const std::string& OP,
690  const std::string& author,
691  bool isSF, unsigned int& index,
692  unsigned int mapIndex)
693 {
694  // Retrieve the integer index corresponding to a given combination of
695  // flavour label / tagger / working point / jet collection name, and separately
696  // for calibration scale factors and MC efficiencies (all these ingredients are needed
697  // to specify fully the calibration object).
698  // In fact this method will also trigger the retrieval of the object itself, if not already
699  // done, and will cache it internally. The absence of the requested calibration object will
700  // be flagged by a false return value.
701  // This method is used internally but should also be called by users in order to exploit the
702  // "code speed-up" features documented above.
703  //
704  // label: jet flavour label
705  // OP: tagger working point
706  // author: jet collection name
707  // isSF: set to true (false) for scale factors (MC efficiencies)
708  // index: resulting index (meaningful only for a 'true' function return value)
709  // mapIndex: index to the MC efficiency map to be used
710 
711  index = 0;
712 
713  // construct the full name from the label, operating point, SF/Eff choice;
714  // then look up this full name
715  string name = fullName(author, OP, label, isSF, mapIndex);
716  std::map<string, unsigned int>::const_iterator it = m_objectIndices.find(name);
717  if (it == m_objectIndices.end()) {
718  // If no container is found, attempt to retrieve it here (this is so that users won't
719  // have to call the named scale factor etc. methods once just to retrieve the container).
720  string flavour = (label == "N/A") ? "Light" : label;
721  string cntname = getContainername(flavour, isSF, mapIndex);
722  if (m_verbose) std::cout << "CalibrationDataInterfaceROOT->retrieveCalibrationIndex : container name is " << cntname << std::endl;
723  retrieveContainer(flavour, OP, author, cntname, isSF, m_verbose); // Only call this if you want to retrieve a currently not available container
724  it = m_objectIndices.find(name);
725  if (it == m_objectIndices.end()) return false;
726  } else {
727  if (m_verbose) std::cout << "CalibrationDataInterfaceROOT->retrieveCalibrationIndex : container " << name << " already cached! " << std::endl;
728  }
729 
730  index = it->second;
731  return true;
732 }
733 
734 //________________________________________________________________________________
737  const string& label, const string& OP,
738  Uncertainty unc, unsigned int numVariation,
739  unsigned int mapIndex) //const
740 {
741  // Scale factor retrieval identifying the requested calibration object by name.
742  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
743  // above, and will be a dummy value in case an error occurs.
744  //
745  // variables: object holding kinematic (and other) information needed to compute the result
746  // label: jet flavour label
747  // OP: tagger operating point
748  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
749  // named variations are to be computed)
750  // numVariation: variation index (in case of eigenvector or named variations)
751  // mapIndex: index to the efficiency map to be used (this is needed for MC/MC scale factor
752  // application)
753  unsigned int indexEff, indexSF;
754  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) && retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
755  cerr << "getScaleFactor: unable to find SF calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << " or SF calibration for object " << fullName(variables.jetAuthor, OP, label, true) << endl;
756  // Return a dummy result if the object is not found
757  return Analysis::dummyResult;
758  }
759 
760  Analysis::CalibResult result; // the following is SF #3
761  return (getScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
763 }
764 
765 //________________________________________________________________________________
768  unsigned int indexSF, unsigned int indexEff,
769  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
770 {
771  // Scale factor retrieval identifying the requested calibration object by index.
772  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
773  // above, and will be a dummy value in case an error occurs.
774  //
775  // variables: object holding kinematic (and other) information needed to compute the result
776  // indexSF: index to scale factor calibration object
777  // indexEff: index to MC efficiency object
778  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
779  // named variations are to be computed)
780  // numVariation: variation index (in case of eigenvector or named variations)
781  Analysis::CalibResult result; // the following is SF #3
782  return (getScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
784 }
785 
786 //________________________________________________________________________________
789  unsigned int indexSF, unsigned int indexEff,
790  Uncertainty unc, unsigned int numVariation,
791  Analysis::CalibResult& result, const string& flavour)
792 {
793  // Scale factor retrieval identifying the requested calibration object by index.
794  //
795  // variables: object holding kinematic (and other) information needed to compute the result
796  // indexSF: index to scale factor calibration object
797  // indexEff: index to MC efficiency object
798  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
799  // named variations are to be computed)
800  // numVariation: variation index (in case of eigenvector or named variations)
801  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
802  // A dummy value will be returned in case of an error.
803 
804  CalibrationDataContainer* container = m_objects[indexSF];
805  if (! container) {
806  cerr << "getScaleFactor: error retrieving container!" << endl;
807  return Analysis::kError;
808  }
809 
810  // perform out-of-bound check of jet eta
811  if (!checkAbsEta(variables, indexSF)) {
812  if (m_verbose)
813  cerr << "Jet |eta| is outside of the boundary!" << endl;
814  return Analysis::kRange;
815  }
816 
817  // retrieve the MC/MC scale factor
818  double MCMCSF = m_useMCMCSF ? getMCMCScaleFactor(variables, indexSF, indexEff) : 1; // if we don't want to switch generator, MCMCSF = 1, as it should be
819 
820  if (!m_runEigenVectorMethod && (unc == SFEigen || unc == SFNamed || unc == SFGlobalEigen))
821  {
822  cerr << " ERROR. Trying to call eigenvector method but initialization not switched on in b-tagging configuration." << endl;
823  cerr << " Please correct your configuration first. Nominal uncertainties used. " << endl;
824  }
825 
826  // Procede with eigenvariations methods i.e. return the SF variations
827  if (unc == SFEigen || unc == SFNamed || unc==SFGlobalEigen) {
828  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
829  try {
830  eigenVariation=m_eigenVariationsMap.at(container);
831  } catch (const std::out_of_range&) {
832  cerr << " Could not retrieve eigenvector variation, while it should have been there." << endl;
833  return Analysis::kError;
834  }
835  TH1* up=0;
836  TH1* down=0;
837  bool extrapolate = false; // store if the numVariation is the extrapolation named uncertainty index
838  if (unc == SFEigen || unc==SFNamed){
839  unsigned int maxVariations = (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
840  if (numVariation > maxVariations-1) {
841  cerr << "Asked for " << ((unc == SFEigen) ? "eigenvariation" : "named variation") << " number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
842  return Analysis::kError;
843  }
844  bool isOK = eigenVariation->getEigenvectorVariation(numVariation,up,down);
845  if (!isOK) {
846  cerr << "Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
847  return Analysis::kError;
848  }
849  // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
850  extrapolate = (unc == SFNamed) ? eigenVariation->isExtrapolationVariation(numVariation) : false;
851 
852  } else if (unc == SFGlobalEigen) {
853  std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation); //dynamic_cast<std::shared_ptr<CalibrationDataGlobalEigenVariations> >(eigenVariation);
854  if (not GEV){
855  cerr << "Analysis::CalibrationDataInterfaceROOT::getScaleFactor: dynamic cast failed\n";
856  return Analysis::kError;
857  }
858  unsigned int maxVariations = GEV->getNumberOfEigenVariations(flavour); // <----- This gets the number of variations of the flavour
859  if (numVariation > maxVariations-1) {
860  cerr << "Asked for global eigenvariation number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
861  return Analysis::kError;
862  }
863  bool isOK = GEV->getEigenvectorVariation(flavour, numVariation,up,down);
864  if (!isOK) {
865  cerr << "Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
866  return Analysis::kError;
867  }
868  // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
869  extrapolate = GEV->isExtrapolationVariation(numVariation, flavour);
870  } else {
871  std::cerr << "ERROR: you requested " << unc << " but that isn't in the set of (SFEigen, SFGlobalEigen, SFNamed) for eigenvariations. " << std::endl;
872  return Analysis::kError;
873  }
874 
875  double valueUp;
876  double valueDown;
877  Analysis::CalibrationStatus statUp = container->getResult(variables, valueUp, up, extrapolate); // This is what actually retrieves results from the container
878  Analysis::CalibrationStatus statDown = container->getResult(variables, valueDown,down, extrapolate);
879 
880  if (statUp == Analysis::kError || statDown == Analysis::kError)
881  return Analysis::kError;
882  if (m_otherStrategy == GiveUp)
883  assert (statUp != Analysis::kRange); // no need to test also statDown
884  else if (m_otherStrategy == GiveUpExtrapolated)
885  assert (statUp != Analysis::kExtrapolatedRange); // no need to test also statDown
886  else if (m_otherStrategy == Flag) {
887  if (statUp == Analysis::kRange)
888  increaseCounter(indexSF);
889  else if (statUp == Analysis::kExtrapolatedRange)
890  increaseCounter(indexSF, Extrapolated);
891  }
892 
893  result.first = MCMCSF*valueUp;
894  result.second = MCMCSF*valueDown;
895 
896  // Prevent negative return values. Should the comparison be against a strict 0?
897  result.first = std::max(Analysis::CalibZERO, result.first);
898  result.second = std::max(Analysis::CalibZERO, result.second);
899 
900  return statUp; // end of getScaleFactor if SFEigen, SFGlobalEigen, or SFNamed is set
901 
902 
903  } // The above returns the up/down varied scale factor
904  //Proceed with no-eigenvector result
905 
906  // always retrieve the result itself
907  double value;
909  if (status == Analysis::kError) {
910  cerr << "getScaleFactor: error retrieving result in non-EV context!" << endl;
911  return status;
912  }
913  if (m_otherStrategy == GiveUp){
914  assert (status != Analysis::kRange);
915  } else if (m_otherStrategy == GiveUpExtrapolated) {
917  } else if (m_otherStrategy == Flag) {
918  if (status == Analysis::kRange){
919  increaseCounter(indexSF);
920  } else if (status == Analysis::kExtrapolatedRange) {
921  increaseCounter(indexSF, Extrapolated);
922  }
923  }
924 
925  // retrieve the statistical uncertainty if desired
926  double stat(0);
927  if (unc == Total || unc == Statistical) {
928  if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
929  cerr << "getScaleFactor: error retrieving Scale factor parameter covariance matrix!" << endl;
930  return Analysis::kError;
931  }
932  }
933 
934  Analysis::UncertaintyResult resSyst(0,0);
935  if (unc == Total || unc == Systematic) {
936  if (container->getSystUncertainty(variables, resSyst) == Analysis::kError) {
937  cerr << "getScaleFactor: error retrieving Scale factor parameter systematic uncertainty!" << endl;
938  return Analysis::kError;
939  }
940  } else if (unc == Extrapolation) {
941  // this uncertainty is special, since it is not normally to be combined into the overall systematic uncertainty
942  if (container->getUncertainty("extrapolation", variables, resSyst) == Analysis::kError)
943  cerr << "getScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
944  } else if (unc == TauExtrapolation) {
945  // also this uncertainty is special, since it it singles out an uncertainty relevant only for tau "jets",
946  // and some care has to be taken not to duplicate or omit uncertainties
947  if (container->getUncertainty("extrapolation from charm", variables, resSyst) == Analysis::kError)
948  cerr << "getScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
949  }
950 
951  double uncertainty = combinedUncertainty(stat, resSyst);
952  result.first = MCMCSF*value;
953  result.second = MCMCSF*uncertainty;
954 
955  // Prevent negative return values. Should the comparison be against a strict 0?
956  result.first = std::max(Analysis::CalibZERO, result.first);
957  return status;
958 
959 }
960 
961 //________________________________________________________________________________
964  const string& label, const string& OP,
965  Uncertainty unc, unsigned int mapIndex)
966 {
967  // MC efficiency retrieval identifying the requested calibration object by name.
968  // The return value is a (value, uncertainty) pair, as documented above, and will
969  // be a dummy value in case an error occurs.
970  //
971  // variables: object holding kinematic (and other) information needed to compute the result
972  // label: jet flavour label
973  // OP: tagger operating point
974  // unc: keyword indicating what uncertainties to evaluate
975  // mapIndex: index to the efficiency map to be used
976 
977  unsigned int index;
978  if (! retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, index, mapIndex)) {
979  cerr << "getMCEfficiency: unable to find Eff calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << endl;
980  // Return a dummy result if the object is not found
981  return Analysis::dummyResult;
982  }
983 
985  return (getMCEfficiency(variables, index, unc, result) == Analysis::kError) ?
987 }
988 
989 //________________________________________________________________________________
992  unsigned int index, Uncertainty unc) //const
993 {
994  // MC efficiency retrieval identifying the requested calibration object by index.
995  // The return value is a (value, uncertainty) pair, as documented above, and will
996  // be a dummy value in case an error occurs.
997  //
998  // variables: object holding kinematic (and other) information needed to compute the result
999  // index: index to calibration object
1000  // unc: keyword indicating what uncertainties to evaluate
1001 
1003  return (getMCEfficiency(variables, index, unc, result) == Analysis::kError) ?
1005 }
1006 
1007 //________________________________________________________________________________
1010  unsigned int index, Uncertainty unc,
1012 {
1013  // MC efficiency retrieval identifying the requested calibration object by index.
1014  //
1015  // variables: object holding kinematic (and other) information needed to compute the result
1016  // index: index to calibration object
1017  // unc: keyword indicating what uncertainties to evaluate
1018  // result: (value, uncertainty) variation pair.
1019  // A dummy value will be returned in case of an error.
1020 
1021  CalibrationDataContainer* container = m_objects[index];
1022  if (! container) return Analysis::kError;
1023 
1024  // perform out-of-bound check of jet eta
1025  if (!checkAbsEta(variables, index)) {
1026  if (m_verbose)
1027  cerr << "Jet |eta| is outside of the boundary!" << endl;
1028  return Analysis::kRange;
1029  }
1030 
1031 
1032  // always retrieve the result itself
1033  double value;
1035  if (status == Analysis::kError) return status;
1036  if (m_otherStrategy == GiveUp)
1037  assert (status != Analysis::kRange); // no need to test also statDown
1038  else if (m_otherStrategy == Flag)
1039  if (status == Analysis::kRange)
1040  this->increaseCounter(index);
1041 
1042  // retrieve the statistical uncertainty if desired
1043  double stat(0);
1044  if (unc == Total || unc == Statistical) {
1045  if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
1046  cerr << "getMCEfficiency: error retrieving MC efficiency parameter covariance matrix!" << endl;
1047  return Analysis::kError;
1048  }
1049  }
1050 
1051  // Temporary(?) hack: comment this out since the present MC results don't have "systematics" contributions
1052  // Analysis::UncertaintyResult resSyst(0,0);
1053  // if (unc == Total || unc == Systematic) {
1054  // if (container->getSystUncertainty(variables, resSyst) == Analysis::kError)
1055  // cerr << "getScaleFactor: error retrieving Scale factor parameter covariance matrix!"
1056  // << endl;
1057  // }
1058 
1059  // since there is no combination of stat/syst uncertainties to be made, comment this out too
1060  double uncertainty = stat; // combinedUncertainty(stat, resSyst);
1061  result.first = std::max(0., std::min(1., value));
1062  result.second = uncertainty;
1063 
1064  return status;
1065 }
1066 
1067 //====================== efficiency retrieval ==========================================
1068 
1069 //________________________________________________________________________________
1072  const string& label,
1073  const string& OP, Uncertainty unc, const std::string& flavour,
1074  unsigned int numVariation, unsigned int mapIndex)
1075 {
1076  // Data efficiency retrieval identifying the requested calibration objects by name.
1077  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor.
1078  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1079  // above, and will be a dummy value in case an error occurs.
1080  //
1081  // variables: object holding kinematic (and other) information needed to compute the result
1082  // label: jet flavour label
1083  // OP: tagger operating point
1084  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1085  // named variations are to be computed)
1086  // numVariation: variation index (in case of eigenvector or named variations)
1087  // mapIndex: index to the efficiency map to be used
1088 
1089  unsigned int indexSF, indexEff;
1090  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1091  retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1092  cerr << "getEfficiency: unable to find Eff calibration for object " << fullName(variables.jetAuthor, OP, label, false, mapIndex) << " or SF calibration for object " << fullName(variables.jetAuthor, OP, label, true) << endl;
1093  // Return a dummy result if the object is not found
1094  return Analysis::dummyResult;
1095  }
1096 
1098  return (getEfficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ? Analysis::dummyResult : result;
1099 }
1100 
1101 //________________________________________________________________________________
1104  unsigned int indexSF, unsigned int indexEff,
1105  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
1106 {
1107  // Data efficiency retrieval identifying the requested calibration objects by index.
1108  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor.
1109  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1110  // above, and will be a dummy value in case an error occurs.
1111  //
1112  // variables: object holding kinematic (and other) information needed to compute the result
1113  // indexSF: index to scale factor calibration object
1114  // indexEff: index to MC efficiency object
1115  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1116  // named variations are to be computed)
1117  // numVariation: variation index (in case of eigenvector or named variations)
1118 
1120  return (getEfficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1122 }
1123 
1124 //________________________________________________________________________________
1127  unsigned int indexSF, unsigned int indexEff,
1128  Uncertainty unc, unsigned int numVariation,
1129  Analysis::CalibResult& result, const std::string& flavour)
1130 {
1131  // Data efficiency retrieval identifying the requested calibration objects by index.
1132  //
1133  // variables: object holding kinematic (and other) information needed to compute the result
1134  // indexSF: index to scale factor calibration object
1135  // indexEff: index to MC efficiency object
1136  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1137  // named variations are to be computed)
1138  // numVariation: variation index (in case of eigenvector or named variations)
1139  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1140  // A dummy value will be returned in case of an error.
1141 
1142  Analysis::CalibResult sfResult;
1143  Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1144  if (sfStatus == Analysis::kError) return sfStatus;
1145  Analysis::CalibResult effResult;
1146  Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1147  if (effStatus == Analysis::kError) return effStatus;
1148 
1149  double relative = 0;
1150  double value = effResult.first;
1151  if (TMath::Abs(sfResult.first) > Analysis::CalibZERO) {
1152  value = std::min(effResult.first*sfResult.first, 1.);
1153 
1154  // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1155  // (e.g. 'value' above contains the upward variation)
1156  if (unc == SFEigen || unc == SFNamed) {
1157  double valueDown = effResult.first*sfResult.second;
1158  result.first = value; // up/down variataions of data-efficiency
1159  result.second = valueDown;
1160  return sfStatus;
1161  }
1162  if (value > 0.) {
1163  relative = effResult.second/effResult.first;
1164  double sfRelative = sfResult.second/sfResult.first;
1165  /*
1166  cout << "sferr=" << sfResult.second
1167  << "btag Calib relative=" << relative << " sfRelative=" << sfRelative << endl;
1168  */
1169  relative = TMath::Sqrt(sfRelative*sfRelative + relative*relative);
1170  }
1171  } else {
1172  // now never happens due to protection of SF return value:
1173  cerr << "ERROR: CalibrationDataInterfaceROOT::getEfficiency: SF null result, SF=" << sfResult.first << " MC eff=" << effResult.first << "; setting SF=1." << endl;
1174  relative = Analysis::dummyValue;
1175  }
1176 
1177  result.first = value;
1178  result.second = value*relative;
1179  // "Select" the status code for the actual calibration (it is subject to more constraints)
1180  return sfStatus;
1181 }
1182 
1183 
1184 //________________________________________________________________________________
1187  const string& label,
1188  const string& OP, Uncertainty unc,
1189  unsigned int numVariation, unsigned int mapIndex)
1190 {
1191  // Inefficiency scale factor retrieval identifying the requested calibration objects by name.
1192  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1193  // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1194  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1195  // above, and will be a dummy value in case an error occurs.
1196  //
1197  // variables: object holding kinematic (and other) information needed to compute the result
1198  // label: jet flavour label
1199  // OP: tagger operating point
1200  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1201  // named variations are to be computed)
1202  // numVariation: variation index (in case of eigenvector or named variations)
1203  // mapIndex: index to the efficiency map to be used
1204 
1205  unsigned int indexSF, indexEff;
1206  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1207  retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1208  cerr << "getInefficiencyScaleFactor: unable to find Eff calibration for object "
1209  << fullName(variables.jetAuthor, OP, label, false, mapIndex)
1210  << " or SF calibration for object "
1211  << fullName(variables.jetAuthor, OP, label, true) << endl;
1212  // Return a dummy result if the object is not found
1213  return Analysis::dummyResult;
1214  }
1215 
1217  return (getInefficiencyScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
1219 }
1220 
1221 //________________________________________________________________________________
1224  unsigned int indexSF, unsigned int indexEff,
1225  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
1226 {
1227  // Inefficiency scale factor retrieval identifying the requested calibration objects by index.
1228  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1229  // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1230  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1231  // above, and will be a dummy value in case an error occurs.
1232  //
1233  // variables: object holding kinematic (and other) information needed to compute the result
1234  // indexSF: index to scale factor calibration object
1235  // indexEff: index to MC efficiency object
1236  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1237  // named variations are to be computed)
1238  // numVariation: variation index (in case of eigenvector or named variations)
1239 
1241  return (getInefficiencyScaleFactor(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1243 }
1244 
1245 //________________________________________________________________________________
1248  unsigned int indexSF, unsigned int indexEff,
1249  Uncertainty unc, unsigned int numVariation,
1250  Analysis::CalibResult& result, const std::string& flavour)
1251 {
1252  // Inefficiency scale factor retrieval identifying the requested calibration objects by index.
1253  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1254  // the inefficiency scale factor is then computed as the ratio of data to MC inefficiencies.
1255  //
1256  // variables: object holding kinematic (and other) information needed to compute the result
1257  // indexSF: index to scale factor calibration object
1258  // indexEff: index to MC efficiency object
1259  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1260  // named variations are to be computed)
1261  // numVariation: variation index (in case of eigenvector or named variations)
1262  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1263  // A dummy value will be returned in case of an error.
1264 
1265  Analysis::CalibResult sfResult;
1266  Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1267  if (sfStatus == Analysis::kError) return sfStatus;
1268  Analysis::CalibResult effResult;
1269  Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1270  if (effStatus == Analysis::kError) return effStatus;
1271 
1272  double eff = std::min(effResult.first, 1.);
1273  // double efferr = effResult.second; // not needed as (per the code change indicated below) we are not doing anything with MC statistical uncertainties
1274  double sf = sfResult.first;
1275  double sferr = sfResult.second;
1276 
1277  double val = 0.; // Analysis::dummyValue;
1278  double err = 0.; // Analysis::dummyValue;
1279  if (1. - eff > CalibZERO) {
1280  // Protect against negative scale factors
1281  val = std::max((1. - eff*sf), CalibZERO) / (1. - eff);
1282  // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1283  // ('sf' and 'sferr' above contain the upward and downward variations, respectively).
1284  if (unc == SFEigen || unc == SFNamed) {
1285  double valDown = std::max((1. - eff*sferr), CalibZERO) / (1. - eff);
1286  result.first = val;
1287  result.second = valDown;
1288  return sfStatus;
1289  }
1290  // When using eigenvector (or named) variations (as above), only scale factor variations are considered.
1291  // For the sake of consistency, it has been decided (see https://its.cern.ch/jira/browse/AFT-350) to remove them also when EV variations aren't used
1292  //err = pow((1. - sf) / (1. - eff) * efferr, 2) + pow(eff*sferr, 2);
1293  err = pow(eff*sferr, 2);
1294  if (err > 0.)
1295  err = 1./(1. - eff) * TMath::Sqrt(err);
1296  // cout << "btag Calib Ineff err=" << err << endl;
1297  }
1298 
1299  result.first = std::max(CalibZERO, val);
1300  result.second = err;
1301  // "Select" the status code for the actual calibration (it is subject to more constraints)
1302  return sfStatus;
1303 }
1304 
1305 //________________________________________________________________________________
1308  const string& label,
1309  const string& OP, Uncertainty unc,
1310  unsigned int numVariation, unsigned int mapIndex)
1311 {
1312  // Data inefficiency retrieval identifying the requested calibration objects by name.
1313  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1314  // the inefficiency is then computed as the 1 minus the efficiency.
1315  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1316  // above, and will be a dummy value in case an error occurs.
1317  //
1318  // variables: object holding kinematic (and other) information needed to compute the result
1319  // label: jet flavour label
1320  // OP: tagger operating point
1321  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1322  // named variations are to be computed)
1323  // numVariation: variation index (in case of eigenvector or named variations)
1324  // mapIndex: index to the efficiency map to be used
1325 
1326  unsigned int indexSF, indexEff;
1327  if (! (retrieveCalibrationIndex (label, OP, variables.jetAuthor, false, indexEff, mapIndex) &&
1328  retrieveCalibrationIndex (label, OP, variables.jetAuthor, true, indexSF))) {
1329  cerr << "getInefficiency: unable to find Eff calibration for object "
1330  << fullName(variables.jetAuthor, OP, label, false, mapIndex)
1331  << " or SF calibration for object "
1332  << fullName(variables.jetAuthor, OP, label, true) << endl;
1333  // Return a dummy result if the object is not found
1334  return Analysis::dummyResult;
1335  }
1336 
1338  return (getInefficiency(variables, indexSF, indexEff, unc, numVariation, result, label) == Analysis::kError) ?
1340 }
1341 
1342 //________________________________________________________________________________
1345  unsigned int indexSF, unsigned int indexEff,
1346  Uncertainty unc, const std::string& flavour, unsigned int numVariation)
1347 {
1348  // Data inefficiency retrieval identifying the requested calibration objects by index.
1349  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1350  // the inefficiency is then computed as the 1 minus the efficiency.
1351  // The return value is either a (value, uncertainty) or an (up, down) variation pair, as documented
1352  // above, and will be a dummy value in case an error occurs.
1353  //
1354  // variables: object holding kinematic (and other) information needed to compute the result
1355  // indexSF: index to scale factor calibration object
1356  // indexEff: index to MC efficiency object
1357  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1358  // named variations are to be computed)
1359  // numVariation: variation index (in case of eigenvector or named variations)
1360 
1362  return (getInefficiency(variables, indexSF, indexEff, unc, numVariation, result, flavour) == Analysis::kError) ?
1364 }
1365 
1366 //________________________________________________________________________________
1369  unsigned int indexSF, unsigned int indexEff,
1370  Uncertainty unc, unsigned int numVariation,
1371  Analysis::CalibResult& result, const std::string& flavour)
1372 {
1373  // Data inefficiency retrieval identifying the requested calibration objects by index.
1374  // The data efficiency is computed as the product of MC efficiency and data/MC efficiency scale factor;
1375  // the inefficiency is then computed as the 1 minus the efficiency.
1376  //
1377  // variables: object holding kinematic (and other) information needed to compute the result
1378  // indexSF: index to scale factor calibration object
1379  // indexEff: index to MC efficiency object
1380  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1381  // named variations are to be computed)
1382  // numVariation: variation index (in case of eigenvector or named variations)
1383  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1384  // A dummy value will be returned in case of an error.
1385 
1386  Analysis::CalibResult sfResult;
1387  Analysis::CalibrationStatus sfStatus = getScaleFactor(variables, indexSF, indexEff, unc, numVariation, sfResult, flavour);
1388  if (sfStatus == Analysis::kError) return sfStatus;
1389  Analysis::CalibResult effResult;
1390  Analysis::CalibrationStatus effStatus= getMCEfficiency(variables, indexEff, unc, effResult);
1391  if (effStatus == Analysis::kError) return effStatus;
1392 
1393  double val = std::max(0., 1. - effResult.first * sfResult.first);
1394  double err = 0.; // Analysis::dummyValue;
1395 
1396  // Bail out here if not both results are strictly positive
1397  if (effResult.first <= 0. || sfResult.first <= 0.) return Analysis::kError;
1398 
1399  // Treat the scale factor variation cases separately since the contents of the CalibResult are different
1400  // (e.g. 'val' above contains the upward variation)
1401  if (unc == SFEigen || unc == SFNamed) {
1402  double valDown = std::max(0., 1. - effResult.first*sfResult.second);
1403 
1404  result.first = val;
1405  result.second = valDown;
1406  } else {
1407  // safer than pow(x, 2):
1408  err = effResult.second/effResult.first*effResult.second/effResult.first
1409  + sfResult.second/sfResult.first*sfResult.second/sfResult.first;
1410  err = val*TMath::Sqrt(err);
1411 
1412  result.first = std::max(0., std::min(1., val));
1413  result.second = err;
1414  }
1415 
1416  // "Select" the status code for the actual calibration (it is subject to more constraints)
1417  return sfStatus;
1418 }
1419 
1420 //________________________________________________________________________________
1423  const string& label, const string& OP,
1424  Uncertainty unc, unsigned int mapIndex)
1425 {
1426  // Data inefficiency retrieval identifying the requested calibration objects by name.
1427  // The inefficiency is computed as the 1 minus the efficiency.
1428  // The return value is a (value, uncertainty), as documented above, and will be a dummy value
1429  // in case an error occurs.
1430  //
1431  // variables: object holding kinematic (and other) information needed to compute the result
1432  // label: jet flavour label
1433  // OP: tagger operating point
1434  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1435  // named variations are to be computed)
1436  // numVariation: variation index (in case of eigenvector or named variations)
1437  // mapIndex: index to the efficiency map to be used
1438 
1439  Analysis::CalibResult effResult = getMCEfficiency(variables, label, OP, unc, mapIndex);
1440  return std::make_pair(std::max(0., 1. - effResult.first), effResult.second);
1441 }
1442 
1443 //________________________________________________________________________________
1446  unsigned int index, Uncertainty unc)
1447 {
1448  // MC inefficiency retrieval identifying the requested calibration object by index.
1449  // The inefficiency is computed as the 1 minus the efficiency.
1450  // The return value is a (value, uncertainty), as documented above, and will be a dummy value
1451  // in case an error occurs.
1452  //
1453  // variables: object holding kinematic (and other) information needed to compute the result
1454  // index: index to MC efficiency object
1455  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1456  // named variations are to be computed)
1457  // numVariation: variation index (in case of eigenvector or named variations)
1458 
1459  Analysis::CalibResult effResult = getMCEfficiency(variables, index, unc);
1460  return std::make_pair(std::max(0., 1. - effResult.first), effResult.second);
1461 }
1462 
1463 //________________________________________________________________________________
1464 double
1466  unsigned indexSF, unsigned int indexEff) const
1467 {
1468  // Retrieve the MC/MC scale factor given the set of scale factor and efficiency indices.
1469  // variables: object holding kinematic (and other) information needed to compute the result
1470  // indexSF: index to scale factor calibration object
1471  // indexEff: index to MC efficiency object
1472 
1473  // If either reference doesn't exist, or if they are the same, nothing can / needs to be done.
1474  int indexSFRef = m_hadronisationReference[indexSF], indexEffRef = m_hadronisationReference[indexEff];
1475  if (indexSFRef < 0 || indexEffRef < 0 || indexSFRef == indexEffRef) return 1;
1476 
1477  // Verify also that the individual efficiencies are physically meaningful.
1478  double effSFRef; m_objects[indexSFRef]->getResult(variables, effSFRef);
1479  double effEffRef; m_objects[indexEffRef]->getResult(variables, effEffRef);
1480  return (effSFRef > 0 && effEffRef > 0) ? effSFRef/effEffRef : 1;
1481 }
1482 
1483 //________________________________________________________________________________
1486  const string& label, Uncertainty unc,
1487  unsigned int numVariation, unsigned int mapIndex)
1488 {
1489  // #1
1490  // Tag weight fraction scale factor retrieval identifying the requested calibration object by name.
1491  // The return value is either a (value, uncertainty) or (if eigenvector or named variations are specified)
1492  // an (up, down) variation pair, and will be a dummy value in case an error occurs.
1493  // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1494  // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1495  // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1496  // unity for each given kinematic bin.
1497  //
1498  // variables: object holding kinematic (and other) information needed to compute the result
1499  // label: jet flavour label
1500  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1501  // named variations are to be computed)
1502  // numVariation: variation index (in case of eigenvector or named variations)
1503  // mapIndex: index to the MC efficiency map to be used for scale factor rescaling
1504 
1505  static const string cont("Continuous");
1506 
1507  unsigned int indexSF, indexEff;
1508  if (! (retrieveCalibrationIndex (label, cont, variables.jetAuthor, false, indexEff, mapIndex) &&
1509  retrieveCalibrationIndex (label, cont, variables.jetAuthor, true, indexSF))) {
1510  cerr << "getWeightScaleFactor: unable to find Eff calibration for object "
1511  << fullName(variables.jetAuthor, cont, label, false, mapIndex)
1512  << " or SF calibration for object "
1513  << fullName(variables.jetAuthor, cont, label, true) << endl;
1514  return Analysis::dummyResult;
1515  }
1516 
1518  return (getWeightScaleFactor(variables, indexSF, indexEff, unc, numVariation, result) == Analysis::kError) ? Analysis::dummyResult : result;
1519 }
1520 
1521 //________________________________________________________________________________
1524  unsigned int indexSF, unsigned int indexEff,
1525  Uncertainty unc, unsigned int numVariation)
1526 {
1527  // #2
1528  // Tag weight fraction scale factor retrieval identifying the requested calibration object by index.
1529  // The return value is either a (value, uncertainty) or (if eigenvector or named variations are specified)
1530  // an (up, down) variation pair, and will be a dummy value in case an error occurs.
1531  // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1532  // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1533  // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1534  // unity for each given kinematic bin.
1535  //
1536  // variables: object holding kinematic (and other) information needed to compute the result
1537  // indexSF: index to calibration object
1538  // indexEff: index to MC tag weight
1539  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1540  // named variations are to be computed)
1541  // numVariation: variation index (in case of eigenvector or named variations)
1542 
1544  return (getWeightScaleFactor(variables, indexSF, indexEff, unc, numVariation, result) == Analysis::kError) ?
1546 }
1547 
1548 //________________________________________________________________________________
1551  unsigned int indexSF, unsigned int indexEff,
1552  Uncertainty unc, unsigned int numVariation,
1554 {
1555  // #3
1556  // Tag weight fraction scale factor retrieval identifying the requested calibration object by index.
1557  // Note that in contrast to the "regular" (non-continuous) case, the computation of the scale factor in
1558  // general needs the (selection- or even process-specific) MC tag weight fractions, in order to rescale
1559  // scale factors. This is used to ensure that the tag weight fractions (both in data and in MC) sum up to
1560  // unity for each given kinematic bin.
1561  //
1562  // variables: object holding kinematic (and other) information needed to compute the result
1563  // indexSF: index to calibration object
1564  // indexEff: index to MC tag weight
1565  // unc: keyword indicating what uncertainties to evaluate (or whether eigenvector or
1566  // named variations are to be computed)
1567  // numVariation: variation index (in case of eigenvector or named variations)
1568  // result: (value, uncertainty) or (up, down) variation pair, depending on the unc value.
1569  // A dummy value will be returned in case of an error.
1570  CalibrationDataContainer* container = m_objects[indexSF];
1571  if (! container) return Analysis::kError;
1572  CalibrationDataContainer* effContainer = m_objects[indexEff];
1573  if (! effContainer) return Analysis::kError;
1574 
1575  // the first time this combination of scale factor and "efficiency" objects is given, check on the
1576  // scale factors that will result from their combination (where the computations reproduce those
1577  // shown below)
1578  checkWeightScaleFactors(indexSF, indexEff);
1579 
1580  // perform out-of-bound check of jet eta
1581  if (!checkAbsEta(variables, indexSF)) {
1582  if (m_verbose)
1583  cerr << "Jet |eta| is outside of the boundary!" << endl;
1584  return Analysis::kRange;
1585  }
1586 
1587  // Always retrieve the result itself
1588  double value;
1590  if (status == Analysis::kError) return status;
1591  if (m_otherStrategy == GiveUp) assert (status != Analysis::kRange);
1592  else if (m_otherStrategy == GiveUpExtrapolated) assert (status != Analysis::kExtrapolatedRange);
1593  else if (m_otherStrategy == Flag) {
1594  if (status == Analysis::kRange)
1595  increaseCounter(indexSF);
1597  increaseCounter(indexSF, Extrapolated);
1598  }
1599 
1600  // Retrieve the reference MC tag weight fraction (corresponding to the calibration scale factors)
1601  Analysis::UncertaintyResult refMCResult(0,0);
1602  if (container->getUncertainty("MCreference", variables, refMCResult) == Analysis::kError)
1603  return Analysis::kError;
1604  double fracMCref = refMCResult.first;
1605  // Retrieve the MC reference information, if requested (the initialisation below is to make sure
1606  // that no exceptions in the code will be needed)
1607  double fracSFref = fracMCref, fracEffref = fracMCref;
1608  if (m_useMCMCSF) {
1609  int indexSFref = m_hadronisationReference[indexSF], indexEffref = m_hadronisationReference[indexEff];
1610  if (indexSFref < 0 || indexEffref < 0) {
1611  cerr << "getWeightScaleFactor: error: generator-specific corrections requested but necessary reference containers lacking " << endl;
1612  return Analysis::kError;
1613  } else {
1614  m_objects[indexSFref]->getResult(variables, fracSFref);
1615  m_objects[indexEffref]->getResult(variables, fracEffref);
1616  if (! (fracSFref > 0. && fracEffref > 0.)) {
1617  cerr << "getWeightScaleFactor: error: invalid reference tag weight fraction " <<fracSFref <<" " <<fracEffref << std::endl;
1618  return Analysis::kError;
1619  }
1620  }
1621  }
1622 
1623  // Retrieve the MC tag weight fraction for the sample we need to reweight to
1624  double fracMCnew;
1625  Analysis::CalibrationStatus effStatus = effContainer->getResult(variables, fracMCnew);
1626  if (effStatus == Analysis::kError) return effStatus;
1627  if (m_otherStrategy == GiveUp) assert (effStatus != Analysis::kRange);
1628  else if (m_otherStrategy == Flag)
1629  if (effStatus == Analysis::kRange) increaseCounter(indexEff);
1630  // since we need to divide by this quantity, check that it is well-defined
1631  if (!(fracMCnew > 0.) and m_useTopologyRescaling) {// but we only care if using topology rescaling
1632  cerr << "getWeightScaleFactor: error: null fracMCnew would lead to invalid operation" << endl;
1633  return Analysis::kError;
1634  }
1635 
1636  if (!m_runEigenVectorMethod && (unc == SFEigen || unc == SFNamed)) {
1637  cerr << "getWeightScaleFactor: ERROR. Trying to call eigenvector method but initialization not switched on in b-tagging .env config file." << endl;
1638  cerr << " Please correct your .env config file first. Nominal uncertainties used. " << endl;
1639  }
1640 
1641  if (unc == SFEigen || unc == SFNamed) {
1642  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
1643  try {
1644  eigenVariation = m_eigenVariationsMap.at(container);
1645  } catch (const std::out_of_range&) {
1646  cerr << "getWeightScaleFactor: could not retrieve eigenvector variation, while it should have been there." << endl;
1647  return Analysis::kError;
1648  }
1649  unsigned int maxVariations = (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
1650  if (numVariation > maxVariations-1) {
1651  cerr << "getWeightScaleFactor: asked for " << ((unc == SFEigen) ? "eigenvariation" : "named variation") << " number: " << numVariation << " but overall number of available variations is: " << maxVariations << endl;
1652  return Analysis::kError;
1653  }
1654  TH1* up=0;
1655  TH1* down=0;
1656  bool isOK = (unc == SFEigen) ? eigenVariation->getEigenvectorVariation(numVariation,up,down) : eigenVariation->getNamedVariation(numVariation,up,down);
1657  if (!isOK) {
1658  cerr << "getWeightScaleFactor: Eigenvector object is there but cannot retrieve up and down uncertainty histograms." << endl;
1659  return Analysis::kError;
1660  }
1661  // the 'extrapolation' uncertainty (always a named one) needs a somewhat special treatment
1662  bool extrapolate = ( unc == SFNamed ) ? eigenVariation->isExtrapolationVariation(numVariation) : false;
1663 
1664  double valueUp;
1665  double valueDown;
1666  Analysis::CalibrationStatus statusUp = container->getResult(variables, valueUp, up, extrapolate);
1667  Analysis::CalibrationStatus statusDown = container->getResult(variables, valueDown,down, extrapolate);
1668  if (statusUp == Analysis::kError || statusDown == Analysis::kError) return Analysis::kError;
1669 
1670  // now carry out the rescaling. Protect against unphysical or suspiciously large scale factors
1671  double variationUp = valueUp - value;
1672  double variationDown = valueDown - value;
1673  // First step: from the calibration sample to its reference sample
1674  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracMCref / fracSFref);
1675  // Second step: from the calibration reference sample to the MC object's reference sample
1676  if (m_useMCMCSF) value *= (fracSFref / fracEffref);
1677  // Third step: from the MC object's reference sample to the MC sample itself
1678  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracEffref / fracMCnew);
1679  // Since all transformations of the scale factor itself are linear, the transformation of the variations is simpler.
1680  if (m_useTopologyRescaling) {
1681  double f = (fracMCref / fracMCnew);
1682  variationUp *= f;
1683  variationDown *= f;
1684  } else if (m_useMCMCSF) {
1685  double f = (fracSFref / fracEffref);
1686  variationUp *= f;
1687  variationDown *= f;
1688  }
1689  valueUp = value + variationUp;
1690  valueDown = value + variationDown;
1691  if (valueUp < 0) {
1692  valueUp = 0; increaseCounter(indexSF, TagWeight);
1693  } else if (valueUp > m_maxTagWeight) {
1694  valueUp = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1695  }
1696  if (valueDown < 0) {
1697  valueDown = 0; increaseCounter(indexSF, TagWeight);
1698  } else if (valueDown > m_maxTagWeight) {
1699  valueDown = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1700  }
1701 
1702  result.first = valueUp;
1703  result.second = valueDown;
1704  return statusUp;
1705  } //end eigenvector method
1706 
1707  //Proceed with no-eigenvector result
1708 
1709  // retrieve the statistical uncertainty if desired
1710  double stat(0);
1711  if (unc == Total || unc == Statistical) {
1712  if (container->getStatUncertainty(variables, stat) == Analysis::kError) {
1713  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter covariance matrix!" << endl;
1714  return Analysis::kError;
1715  }
1716  }
1717  Analysis::UncertaintyResult uncertaintyResult(0,0);
1718  if (unc == Total || unc == Systematic) {
1719  if (container->getSystUncertainty(variables, uncertaintyResult) == Analysis::kError) {
1720  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter systematic uncertainty!" << endl;
1721  return Analysis::kError;
1722  }
1723  } else if (unc == Extrapolation) {
1724  // this uncertainty is special, since it is not normally to be combined into the overall systematic uncertainty
1725  if (container->getUncertainty("extrapolation", variables, uncertaintyResult) == Analysis::kError)
1726  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
1727  } else if (unc == TauExtrapolation) {
1728  // also this uncertainty is special, since it it singles out an uncertainty relevant only for tau "jets",
1729  // and some care has to be taken not to duplicate or omit uncertainties
1730  if (container->getUncertainty("extrapolation from charm", variables, uncertaintyResult) == Analysis::kError)
1731  cerr << "getWeightScaleFactor: error retrieving Scale factor parameter extrapolation uncertainty!" << endl;
1732  }
1733 
1734  double uncertainty = combinedUncertainty(stat, uncertaintyResult);
1735 
1736  // Now carry out the rescaling. Again protect against unphysical or suspiciously large scale factors
1737  // First step: from the calibration sample to its reference sample
1738  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracMCref / fracSFref);
1739  // Second step: from the calibration reference sample to the MC object's reference sample
1740  if (m_useMCMCSF) value *= (fracSFref / fracEffref);
1741  // Third step: from the MC object's reference sample to the MC sample itself
1742  if (m_useTopologyRescaling) value = 1.0 + (value - 1.0) * (fracEffref / fracMCnew);
1743  if (value < 0) {
1744  value = 0; increaseCounter(indexSF, TagWeight);
1745  } else if (value > m_maxTagWeight) {
1746  value = m_maxTagWeight; increaseCounter(indexSF, TagWeight);
1747  }
1748  // Since all transformations of the scale factor itself are linear, the transformation of the uncertainty is simpler.
1749  if (m_useTopologyRescaling) {
1750  uncertainty *= (fracMCref / fracMCnew);
1751  } else if (m_useMCMCSF) {
1752  uncertainty *= (fracSFref / fracEffref);
1753  }
1754 
1755  result.first = std::max(0., value);
1756  result.second = uncertainty;
1757  // "Select" the status code for the actual calibration object (it is subject to more constraints)
1758  return status;
1759 }
1760 
1761 //________________________________________________________________________________
1762 void
1764  unsigned int indexEff)
1765 {
1766  // Check the tag weight scale factors that would result from the combination of
1767  // the provided scale factor and MC tag weight objects.
1768  // The way this is done is by determining the binning that would apply to the
1769  // combination of the two individual inputs, and then by explicitly computing
1770  // the scale factors in each of these resulting bins.
1771 
1772  std::vector<std::pair<unsigned int, unsigned int> >::const_iterator it = std::find(m_checkedWeightScaleFactors.begin(), m_checkedWeightScaleFactors.end(), std::make_pair(indexSF, indexEff));
1773  if (it != m_checkedWeightScaleFactors.end()) return;
1774 
1775 
1776  // Assume that only histogram containers are involved here (this should be the case
1777  // as at least a strict tag weight binning should be applied).
1778  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[indexSF]);
1779  if (! container) {
1780  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: container for object " << nameFromIndex(indexSF) << " not found!" << endl;
1781  return;
1782  } else if (! container->GetValue("MCreference")) {
1783  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: no MCreference histogram for object " << nameFromIndex(indexSF) << "!" << endl;
1784  return;
1785  }
1786  CalibrationDataHistogramContainer* effContainer = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[indexEff]);
1787  if (! effContainer) {
1788  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: error: container for object " << nameFromIndex(indexEff) << " not found!" << endl;
1789  return;
1790  }
1791 
1792  // Retrieve the variable types and corresponding bin boundaries
1793  std::vector<unsigned int> vars = container->getVariableTypes();
1794  std::vector<unsigned int> effVars = effContainer->getVariableTypes();
1795  // Retrieve the corresponding bin boundaries
1796  std::map<unsigned int, std::vector<double> > boundaries, effBoundaries, mergedBoundaries;
1797  for (unsigned int t = 0; t < vars.size(); ++t)
1798  boundaries[vars[t]] = container->getBinBoundaries(vars[t]);
1799  for (unsigned int t = 0; t < effVars.size(); ++t)
1800  effBoundaries[effVars[t]] = effContainer->getBinBoundaries(effVars[t]);
1801 
1802  // Special case: handle |eta| versus eta differences, by transforming to the latter
1803  if (boundaries.find(CalibrationDataContainer::kEta) == boundaries.end() && boundaries.find(CalibrationDataContainer::kAbsEta) != boundaries.end()) {
1805  boundaries.erase(CalibrationDataContainer::kAbsEta);
1806  }
1807  if (effBoundaries.find(CalibrationDataContainer::kEta) == effBoundaries.end() && effBoundaries.find(CalibrationDataContainer::kAbsEta) != effBoundaries.end()) {
1808  effBoundaries[CalibrationDataContainer::kEta] = effBoundaries[CalibrationDataContainer::kAbsEta];
1809  effBoundaries.erase(CalibrationDataContainer::kAbsEta);
1810  }
1811  if (boundaries.find(CalibrationDataContainer::kEta) != boundaries.end() && effBoundaries.find(CalibrationDataContainer::kEta) != effBoundaries.end()) {
1812  std::vector<double>& v = boundaries[CalibrationDataContainer::kEta];
1813  std::vector<double>& vEff = effBoundaries[CalibrationDataContainer::kEta];
1814  if (v[0] < 0 && vEff[0] >= 0) {
1815  // in this case, supplement the positive entries in vEff with their negative analogues
1816  std::vector<double> vtmp(vEff);
1817  for (std::vector<double>::iterator it = vtmp.begin(); it != vtmp.end(); ++it)
1818  if (*it > 0) vEff.insert(vEff.begin(), -(*it));
1819  } else if (v[0] >= 0 && vEff[0] < 0) {
1820  // in this case, supplement the positive entries in v with their negative analogues
1821  std::vector<double> vtmp(v);
1822  for (std::vector<double>::iterator it = vtmp.begin(); it != vtmp.end(); ++it)
1823  if (*it > 0) v.insert(v.begin(), -(*it));
1824  }
1825  }
1826 
1827  // Now that the individual sets of boundaries have been determined, merge these
1828  for (unsigned int t = 0; t < vars.size(); ++t) {
1829  if (effBoundaries.find(vars[t]) == effBoundaries.end())
1830  // Variables not present in the efficiency object can go in unmodified
1831  mergedBoundaries[vars[t]] = boundaries[vars[t]];
1832  else {
1833  // Merge the boundaries for variables existing in both objects.
1834  // Take the MC array as a starting point, as it's likely to be the longest.
1835  mergedBoundaries[vars[t]] = effBoundaries[vars[t]];
1836 
1837  for (std::vector<double>::iterator it = boundaries[vars[t]].begin(); it != boundaries[vars[t]].end(); ++it) {
1838  std::vector<double>::iterator itcmp = mergedBoundaries[vars[t]].begin();
1839  // Iterate until we've found a value in the target array equal to
1840  // or larger than the given element
1841  while (itcmp != mergedBoundaries[vars[t]].end() &&
1843  *itcmp < *it) ++itcmp;
1844  // Nothing needs to be done if the values are "nearly identical"
1845  // (or if we don't find such an element).
1846  if (itcmp == mergedBoundaries[vars[t]].end() || CalibrationDataContainer::isNearlyEqual(*itcmp, *it)) continue;
1847  // Otherwise insert the given element (this can mean adding to the end)
1848  mergedBoundaries[vars[t]].insert(itcmp, *it);
1849  }
1850  }
1851  }
1852  // Variables not present in the scale factor object still need to go in
1853  for (unsigned int t = 0; t < effVars.size(); ++t)
1854  if (boundaries.find(effVars[t]) == boundaries.end())
1855  mergedBoundaries[effVars[t]] = effBoundaries[effVars[t]];
1856 
1857  // Carry out a rudimentary cross-check of the tag weight bin
1858  // (the binning used for the scale factor and MC objects should be identical).
1859  if (boundaries.find(CalibrationDataContainer::kTagWeight) == boundaries.end()) {
1860  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "no tag weight axis found for object " << nameFromIndex(indexSF) << endl;
1861  } else if (effBoundaries.find(CalibrationDataContainer::kTagWeight) == effBoundaries.end()) {
1862  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "no tag weight axis found for object " << nameFromIndex(indexEff) << endl;
1863  } else if (boundaries[CalibrationDataContainer::kTagWeight].size() != effBoundaries[CalibrationDataContainer::kTagWeight].size()) {
1864  cerr << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: " << "different tag weight binning for objects " << nameFromIndex(indexSF) << " (";
1865  std::vector<double>& v = boundaries[CalibrationDataContainer::kTagWeight];
1866  for (unsigned int ib = 0; ib < v.size()-1; ++ib) cerr << v[ib] << ",";
1867  cerr << v[v.size()-1] << ") and " << nameFromIndex(indexEff) << " (";
1868  v = effBoundaries[CalibrationDataContainer::kTagWeight];
1869  for (unsigned int ib = 0; ib < v.size()-1; ++ib) cerr << v[ib] << ",";
1870  cerr << v[v.size()-1] << ") do not match!" << endl;
1871  } else {
1872  // Make sure that (possibly) dummy vectors exist for _all_ known variables
1873  // (this is a mere technicality allowing to loop over all variables explicitly).
1874  mergedBoundaries.try_emplace(CalibrationDataContainer::kPt, std::vector<double>{20.,300.});
1875  mergedBoundaries.try_emplace(CalibrationDataContainer::kEta, std::vector<double>{-2.5, 2.5});
1876 
1877  // Finally, carry out the cross-check that all this is about: recompute the scale factor
1878  // in each pseudo-bin
1879  if (m_verbose){
1880  cout << "CalibrationDataInterfaceROOT::checkWeightScaleFactors: cross-checking scale factors for objects " << nameFromIndex(indexSF) << " and " << nameFromIndex(indexEff) << "\n" << std::setfill('-') << std::setw(100) << "-" << endl;
1881  cout << std::setfill(' ');
1882  }
1884  std::vector<double>& vPt = mergedBoundaries[CalibrationDataContainer::kPt], vEta = mergedBoundaries[CalibrationDataContainer::kEta], vTagWeight = mergedBoundaries[CalibrationDataContainer::kTagWeight];
1885  for (unsigned int ipt = 0; ipt < vPt.size()-1; ++ipt) {
1886  x.jetPt = (vPt[ipt] + vPt[ipt+1]) * 500.; // account for MeV -> GeV conversion
1887  for (unsigned int ieta = 0; ieta < vEta.size()-1; ++ieta) {
1888  x.jetEta = (vEta[ieta] + vEta[ieta+1]) / 2.;
1889  for (unsigned int iwt = 0; iwt < vTagWeight.size()-1; ++iwt) {
1890  x.jetTagWeight = (vTagWeight[iwt] + vTagWeight[iwt+1]) / 2.;
1891  // Retrieve the central scale factor value and the old and new MC tag weight fractions
1892  double value;
1893  container->getResult(x, value);
1894  Analysis::UncertaintyResult uncertaintyResult(0,0);
1895  container->getUncertainty("MCreference", x, uncertaintyResult);
1896  double fracMCref = uncertaintyResult.first;
1897  double fracMCnew;
1898  effContainer->getResult(x, fracMCnew);
1899  // Compute the new scale factor value
1900  if (!(fracMCnew > 0.)) {
1901  cout << "\tfor (pt=" << x.jetPt << ",eta=" << x.jetEta << ",tagweight=" << x.jetTagWeight << "): invalid new MC fraction: " << fracMCnew << endl;
1902  } else {
1903  double newvalue = 1.0 + (value - 1.0) * fracMCref/fracMCnew;
1904  if (newvalue <= 0 || newvalue > m_maxTagWeight) cout << "\tfor (pt=" << x.jetPt << ",eta=" << x.jetEta << ",tagweight=" << x.jetTagWeight << "): old (value=" << value << ",MC=" << fracMCref << "), new (value=" << newvalue << ",MC=" << fracMCnew << ")" << endl;
1905  }
1906  }
1907  }
1908  }
1909  }
1910 
1911  m_checkedWeightScaleFactors.push_back(std::make_pair(indexSF, indexEff));
1912 }
1913 
1914 //________________________________________________________________________________
1915 bool
1917  unsigned int index)
1918 {
1919  // Check whether the jet eta value is outside the range of validity, subject to the strategy
1920  // specified in the configuration file.
1921  bool pass = true;
1922  if (m_absEtaStrategy == Ignore) return pass;
1923 
1924  switch (m_absEtaStrategy) {
1925  case GiveUp:
1926  if (std::fabs(variables.jetEta) > m_maxAbsEta) {
1927  pass = false;
1928  }
1929  break;
1930  case Flag:
1931  default:
1932  if (std::fabs(variables.jetEta) > m_maxAbsEta) {
1933  increaseCounter(index, Eta);
1934  }
1935 
1936  }
1937  return pass;
1938 }
1939 
1940 //________________________________________________________________________________
1941 std::string
1943 {
1944  // Return the object name corresponding to the given index.
1945 
1946  for (std::map<std::string, unsigned int>::const_iterator it = m_objectIndices.begin();
1947  it != m_objectIndices.end(); ++it)
1948  if (it->second == index) return it->first;
1949 
1950  // This should never happen..
1951  return string("");
1952 }
1953 
1954 //________________________________________________________________________________
1955 void
1957  OutOfBoundsType oob)
1958 {
1959  // Internal method bumping the relevant counter out-of-bounds counter for the specified object.
1960  //
1961  // oob: further classification of out-of-bounds case
1962  // index: object index
1963 
1964  // make sure the vectors are appropriately dimensioned
1965  if (index >= m_mainCounters.size()) {
1966  unsigned int minsize = (index == 0) ? 2 : 2*index;
1967  m_mainCounters.resize(minsize, 0);
1968  m_etaCounters.resize(minsize, 0);
1969  m_extrapolatedCounters.resize(minsize, 0);
1970  }
1971  switch (oob) {
1972  case Main:
1973  m_mainCounters[index]++; break;
1974  case Eta:
1975  m_etaCounters[index]++; break;
1976  case Extrapolated:
1977  default:
1978  m_extrapolatedCounters[index]++;
1979  }
1980 }
1981 
1982 //________________________________________________________________________________
1983 std::vector<string>
1985  const string& label,
1986  const string& OP,
1987  bool named)
1988 {
1989  // Retrieve the sources of uncertainty relevant for the given scale factor calibration object,
1990  // identifying the object by name.
1991  //
1992  // author: jet collection name
1993  // label: jet flavour label
1994  // OP: tagger working point
1995  // named: if false, an unsorted list of sources of uncertainties will be returned.
1996  // if true, only 'named' uncertainties will be returned, and the position in
1997  // the vector that is the return value determines the 'numVariation' index
1998  // that is to be used if named variations are to be retrieved.
1999 
2000  unsigned int index;
2001  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2002  // Return a dummy result if the object is not found
2003  cerr << "listScaleFactorUncertainties: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2004  std::vector<string> dummy;
2005  return dummy;
2006  }
2007  return listScaleFactorUncertainties(index, label, named);
2008 }
2009 
2010 //________________________________________________________________________________
2011 std::vector<string>
2013  const std::string& flavour, bool named)
2014 {
2015  // Note: this method already works on a per-flavour basis, so passing flavour in is a simple addition
2016  // Method is called primarily from within the BTaggingEfficiencyTool - W.L.
2017  // Retrieve the sources of uncertainty relevant for the given scale factor calibration object,
2018  // identifying the object by index.
2019  //
2020  // index: index to scale factor calibration object
2021  // named: if false, an unsorted list of sources of uncertainties will be returned.
2022  // if true, only 'named' uncertainties will be returned, and the position in
2023  // the vector that is the return value determines the 'numVariation' index
2024  // that is to be used if named variations are to be retrieved.
2025 
2026  std::vector<string> dummy;
2027  CalibrationDataContainer* container = m_objects[index];
2028 
2029  if (container) {
2030  if (named) {
2031  // Find out which uncertainties are excluded from eigenvector construction
2032  if (! m_runEigenVectorMethod) return dummy;
2033  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation=m_eigenVariationsMap.at(container);
2034  if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
2035  std::vector<string> unordered = eigenVariation->listNamedVariations(); // this is for the regular EV
2036  std::vector<string> ordered(unordered.size());
2037  for (unsigned int i = 0; i < unordered.size(); ++i) {
2038  ordered[eigenVariation->getNamedVariationIndex(unordered[i])] = unordered[i];
2039  }
2040  return ordered;
2041  } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen){
2042  // here we want to get the named uncertainties from the global eigenvariations flavour container specifically...
2043  std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation);
2044  std::vector<std::string> unordered = GEV->listNamedVariations(flavour);
2045  std::vector<std::string> ordered(unordered.size()); // ordered by the NAMED VARIATION (internal) ORDERING
2046  for (unsigned int i = 0; i < unordered.size(); ++i) {
2047  ordered[GEV->getNamedVariationIndex(unordered[i], flavour)] = unordered[i];
2048  }
2049  return ordered;
2050  }
2051  }
2052  return container->listUncertainties(); // return this if not named
2053  }
2054 
2055  return dummy;
2056 }
2057 
2058 //________________________________________________________________________________
2059 unsigned int
2061  const std::string& label,
2062  const std::string& OP,
2063  Uncertainty unc)
2064 {
2065  // Retrieve the number of eigenvector variations or named variations relevant for
2066  // the given scale factor calibration object, identifying the object by name.
2067  //
2068  // author: jet collection name
2069  // label: jet flavour label
2070  // OP: tagger working point
2071  // unc: should be set to SFEigen or SFNamed for the cases of
2072  // eigenvector variations or named variations, respectively
2073 
2074  unsigned int index;
2075 
2076  if (! retrieveCalibrationIndex (label, OP, author, true, index)) return 0;
2077  return getNumVariations(index, unc, label);
2078 }
2079 
2080 //________________________________________________________________________________
2081 unsigned int
2083  Uncertainty unc, const std::string& flavour)
2084 {
2085  // Retrieve the number of eigenvector variations or named variations relevant for
2086  // the given scale factor calibration object, identifying the object by index.
2087  //
2088  // index: index to calibration scale factor object
2089  // unc: should be set to SFEigen or SFNamed for the cases of
2090  // eigenvector variations or named variations, respectively
2091 
2092  if (! (unc == SFEigen || unc == SFNamed || unc == SFGlobalEigen)) return 0;
2093  CalibrationDataContainer* container = m_objects[index];
2094  if (! container) return 0;
2095  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation=m_eigenVariationsMap.at(container);
2096  if (unc == SFGlobalEigen){
2097  std::shared_ptr<CalibrationDataGlobalEigenVariations> GEV = std::dynamic_pointer_cast<CalibrationDataGlobalEigenVariations>(eigenVariation);
2098  return GEV->getNumberOfEigenVariations(flavour);
2099  }
2100  return (unc == SFEigen) ? eigenVariation->getNumberOfEigenVariations() : eigenVariation->getNumberOfNamedVariations();
2101 }
2102 
2103 //________________________________________________________________________________
2104 const TH1*
2106  const std::string& label,
2107  const std::string& OP)
2108 {
2109  // Retrieve the actual histogrammed calibration scale factors, identifying the object by name.
2110  //
2111  // author: jet collection name
2112  // label: jet flavour label
2113  // OP: tagger working point
2114 
2115  unsigned int index;
2116  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2117  // Return a dummy result if the object is not found
2118  cerr << "getBinnedScaleFactors: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2119  return 0;
2120  }
2121  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2122  return (container) ? dynamic_cast<TH1*>(container->GetValue("result")) : 0;
2123 }
2124 
2125 //________________________________________________________________________________
2126 const TObject*
2128  const std::string& label,
2129  const std::string& OP,
2130  unsigned int mapIndex)
2131 {
2132  // Retrieve the actual central values object for the MC efficiences, identifying the object by name.
2133  // The object returned can be either a TH1 or a TF1; it is up to the user to determine which.
2134  //
2135  // author: jet collection name
2136  // label: jet flavour label
2137  // OP: tagger working point
2138  // mapIndex: index to the efficiency map to be used
2139 
2140  unsigned int index;
2141  if (! retrieveCalibrationIndex (label, OP, author, false, index, mapIndex)) {
2142  // Return a dummy result if the object is not found
2143  cerr << "getMCEfficiencyObject: unable to find efficiency calibration for object "
2144  << fullName(author, OP, label, false, mapIndex) << endl;
2145  return 0;
2146  }
2147  CalibrationDataContainer* container = m_objects[index];
2148  return (container) ? container->GetValue("result") : 0;
2149 }
2150 
2151 //====================== retrieval of shifted calibration object ===========================
2152 
2153 //________________________________________________________________________________
2154 const TH1*
2156  const std::string& label,
2157  const std::string& OP,
2158  const std::string& unc,
2159  double sigmas)
2160 {
2161  // Retrieve the actual histogrammed calibration scale factors, identifying the object by name
2162  // and with the scale factors shifted by the uncertainties due to the given source of uncertainty
2163  // (where bin-to-bin correlations are accounted for, i.e., shifts may be either positive or negative).
2164  //
2165  // author: jet collection name
2166  // label: jet flavour label
2167  // OP: tagger working point
2168  // unc: source of uncertainty to consider
2169  // sigmas: number of standard deviations by which to shift the scale factor central values
2170 
2171  // quick sanity check
2172  if (unc == "comment" || unc == "result" || unc == "combined" || unc == "statistics") return 0;
2173 
2174  unsigned int index;
2175  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2176  // Return a null result if the object is not found
2177  cerr << "getShiftedScaleFactors: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2178  return nullptr;
2179  }
2180  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2181  if (! container) return nullptr;
2182 
2183  TH1* result = dynamic_cast<TH1*>(container->GetValue("result"));
2184  TH1* hunc = dynamic_cast<TH1*>(container->GetValue(unc.c_str()));
2185  // another sanity check...
2186  if ((! hunc) || (! result)) return nullptr;
2187  if (hunc->GetDimension() != result->GetDimension() || hunc->GetNbinsX() != result->GetNbinsX() ||
2188  hunc->GetNbinsX() != result->GetNbinsX() || hunc->GetNbinsX() != result->GetNbinsX())
2189  return nullptr;
2190  // also check that the uncertainty is to be treated as correlated from bin to bin
2191  // (for the variation is applied coherently, which isn't appropriate for uncertainties
2192  // that aren't correlated from bin to bin)
2193  if (! container->isBinCorrelated(unc)) return 0;
2194 
2195  // if everything is consistent, the actual operation simply consists of adding histograms...
2196  std::string name(container->GetName()); name += "_"; name += unc; name += "_";
2197  TH1* shifted = dynamic_cast<TH1*>(result->Clone(name.c_str()));
2198  if (not shifted) return nullptr;
2199  shifted->Add(hunc, sigmas);
2200  return shifted;
2201 }
2202 //====================== run EigenVectorRecomposition method ===========================
2205  const std::string& label,
2206  const std::string& OP,
2207  unsigned int mapIndex){
2208  // run eigen vector recomposition method. If success, stored the retrieved coefficient map
2209  // in m_coefficientMap and return success. Otherwise return error and keep m_coefficientMap
2210  // untouched.
2211  // author: jet collection name
2212  // label: jet flavour label
2213  // OP: tagger working point
2214  // mapIndex: index to the MC efficiency map to be used. Should be 0?
2215  // Todo: What is mapindex?
2216  // Todo: Check the way xAODBTaggingTool initialize CDI. Check if that is the as how we are initialize CDI.
2217  if(!m_runEigenVectorMethod) {
2218  cerr << "runEigenVectorRecomposition: Recomposition need to be ran with CalibrationDataInterfaceRoot initialized in eigenvector mode" << endl;
2219  return Analysis::kError;
2220  }
2221 
2222  unsigned int indexSF;
2223  if (! retrieveCalibrationIndex (label, OP, author, true, indexSF, mapIndex)) {
2224  cerr << "runEigenVectorRecomposition: unable to find SF calibration for object "
2225  << fullName(author, OP, label, true) << endl;
2226  return Analysis::kError;
2227  }
2228 
2229  return runEigenVectorRecomposition (label, indexSF);
2230 }
2231 
2234  unsigned int indexSF){
2235  // run eigen vector recomposition method. If success, stored the retrieved coefficient map
2236  // in m_coefficientMap and return success. Otherwise return error and keep m_coefficientMap
2237  // untouched.
2238  // label: jet flavour label
2239  // indexSF: index to scale factor calibration object
2240  CalibrationDataContainer* container = m_objects[indexSF];
2241  if (! container) {
2242  cerr << "runEigenVectorRecomposition: error retrieving container!" << endl;
2243  return Analysis::kError;
2244  }
2245 
2246  // Retrieve eigenvariation
2247  std::shared_ptr<CalibrationDataEigenVariations> eigenVariation;
2248  try {
2249  eigenVariation = m_eigenVariationsMap.at(container);
2250  } catch (const std::out_of_range&) {
2251  cerr << "runEigenVectorRecomposition: Could not retrieve eigenvector variation, while it should have been there." << endl;
2252  return Analysis::kError;
2253  }
2254  // Doing eigenvector recomposition
2255  std::map<std::string, std::map<std::string, float>> coefficientMap;
2256  if(!eigenVariation->EigenVectorRecomposition(label, coefficientMap))
2257  return Analysis::kError;
2258 
2259  m_coefficientMap = std::move(coefficientMap);
2260  return Analysis::kSuccess;
2261 }
2262 
2263 std::map<std::string, std::map<std::string, float>>
2265  if(m_coefficientMap.empty())
2266  cerr << "getCoefficientMap: Call runEigenVectorRecomposition() before retrieving coefficient map! " <<endl;
2267  return m_coefficientMap;
2268 }
2269 
2270 
2271 //====================== put some utility functions here ===================================
2272 
2273 namespace {
2274  // Construct the (diagonal) covariance matrix for the statistical uncertainties on the "ref" results
2275  TMatrixDSym getStatCovarianceMatrix(const TH1* hist) {
2276  Int_t nbinx = hist->GetNbinsX()+2, nbiny = hist->GetNbinsY()+2, nbinz = hist->GetNbinsZ()+2;
2277  Int_t rows = nbinx;
2278  if (hist->GetDimension() > 1) rows *= nbiny;
2279  if (hist->GetDimension() > 2) rows *= nbinz;
2280  TMatrixDSym stat(rows);
2281  for (Int_t binx = 1; binx < nbinx; ++binx){
2282  for (Int_t biny = 1; biny < nbiny; ++biny){
2283  for (Int_t binz = 1; binz < nbinz; ++binz) {
2284  Int_t bin = hist->GetBin(binx, biny, binz);
2285  double err = hist->GetBinError(bin);
2286  stat(bin, bin) = err*err;
2287  }
2288  }
2289  }
2290  return stat;
2291  }
2292 
2293  // Construct the covariance matrix assuming that histogram "unc" contains systematic uncertainties
2294  // pertaining to the "ref" results, and that the uncertainties are fully correlated from bin to bin
2295  // (unless option "doCorrelated" is false, in which bins are assumed uncorrelated)
2296  TMatrixDSym getSystCovarianceMatrix(const TH1* ref, const TH1* unc, bool doCorrelated, const std::string& uncname, int tagWeightAxis) {
2297  Int_t nbinx = ref->GetNbinsX()+2, nbiny = ref->GetNbinsY()+2, nbinz = ref->GetNbinsZ()+2;
2298  Int_t rows = nbinx;
2299  if (ref->GetDimension() > 1) rows *= nbiny;
2300  if (ref->GetDimension() > 2) rows *= nbinz;
2301  TMatrixDSym cov(rows);
2302 
2303  for(int i=0 ; i<10 ; i++){
2304  Int_t bin = unc->GetBin(1,i,1);
2305  double uncval = unc->GetBinContent(bin);
2306  cout << uncval << ", ";
2307  } cout << endl;
2308 
2309  // Carry out a minimal consistency check
2310  if (unc->GetNbinsX()+2 != nbinx || unc->GetNbinsY()+2 != nbiny || unc->GetNbinsZ()+2 != nbinz || unc->GetDimension() != ref->GetDimension()) {
2311  std::cout << "getSystCovarianceMatrix: inconsistency found in histograms " << ref->GetName() << " and " << unc->GetName() << " : " << uncname << std::endl;
2312  return cov;
2313  }
2314 
2315  // // the "2" below doesn't actually imply that two bins are used...
2316  // // this is just to make the loops below work
2317  // if (ref->GetDimension() <= 1) nbiny = 2;
2318  // if (ref->GetDimension() <= 2) nbinz = 2;
2319 
2320  // Special case: uncertainties not correlated from bin to bin.
2321  // The exception here is for tag weight bins, which are always assumed to be fully correlated.
2322  if (! doCorrelated) {
2323  if (tagWeightAxis < 0) {
2324  // truly uncorrelated uncertainties
2325  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2326  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2327  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
2328  Int_t bin = ref->GetBin(binx, biny, binz);
2329  double err = unc->GetBinContent(bin);
2330  cov(bin,bin) = err*err;
2331  }
2332  }
2333  }
2334  return cov;
2335  } else if (tagWeightAxis == 0) {
2336  // continuous histogram with tag weight X axis
2337  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2338  for (Int_t binz = 1; binz < nbinz-1; ++binz){
2339  for (Int_t binx = 1; binx < nbinx-1; ++binx) {
2340  Int_t bin = ref->GetBin(binx, biny, binz);
2341  double err = unc->GetBinContent(bin);
2342  for (Int_t binx2 = 1; binx2 < nbinx-1; ++binx2) {
2343  Int_t bin2 = ref->GetBin(binx2, biny, binz);
2344  double err2 = unc->GetBinContent(bin2);
2345  cov(bin,bin2) = err*err2;
2346  }
2347  }
2348  }
2349  }
2350  return cov;
2351  } else if (tagWeightAxis == 1) {
2352  // continuous histogram with tag weight Y axis
2353  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2354  for (Int_t binz = 1; binz < nbinz-1; ++binz){
2355  for (Int_t biny = 1; biny < nbiny-1; ++biny) {
2356  Int_t bin = ref->GetBin(binx, biny, binz);
2357  double err = unc->GetBinContent(bin);
2358  for (Int_t biny2 = 1; biny2 < nbiny-1; ++biny2) {
2359  Int_t bin2 = ref->GetBin(binx, biny2, binz);
2360  double err2 = unc->GetBinContent(bin2);
2361  cov(bin,bin2) = err*err2;
2362  }
2363  }
2364  }
2365  }
2366  return cov;
2367  } else if (tagWeightAxis == 2) {
2368  // continuous histogram with tag weight Z axis
2369  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2370  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2371  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
2372  Int_t bin = ref->GetBin(binx, biny, binz);
2373  double err = unc->GetBinContent(bin);
2374  for (Int_t binz2 = 1; binz2 < nbinz-1; ++binz2) {
2375  Int_t bin2 = ref->GetBin(binx, biny, binz2);
2376  double err2 = unc->GetBinContent(bin2);
2377  cov(bin,bin2) = err*err2;
2378  }
2379  }
2380  }
2381  }
2382  return cov;
2383  }
2384  }
2385 
2386  for (Int_t binx = 1; binx < nbinx-1; ++binx){
2387  for (Int_t biny = 1; biny < nbiny-1; ++biny){
2388  for (Int_t binz = 1; binz < nbinz-1; ++binz) {
2389  Int_t bin = ref->GetBin(binx, biny, binz);
2390  double err = unc->GetBinContent(bin); // <------------- For every bin in the "ref" ("result") TH1*, GetBinContents of the corresponding uncertainty bin
2391  for (Int_t binx2 = 1; binx2 < nbinx-1; ++binx2){
2392  for (Int_t biny2 = 1; biny2 < nbiny-1; ++biny2){
2393  for (Int_t binz2 = 1; binz2 < nbinz-1; ++binz2) {
2394  Int_t bin2 = ref->GetBin(binx2, biny2, binz2);
2395  double err2 = unc->GetBinContent(bin2); // <------- Grab the unc contents of every bin, and compute the covariance matrix element
2396  cov(bin, bin2) = err*err2; // <------- err1 and err2 are the uncertainty content of the bins, so "cov" is real, symmetric
2397  } // <------- "cov" would imply that the "hunc" histogram stores "x - E[x]" differences from the mean. So in the end, it computes the covariance (as a sum of these)
2398  }
2399  }
2400  }
2401  }
2402  }
2403  return cov;
2404  }
2405 
2406 }
2407 
2408 //====================== retrieval of calibration covariance matrix ========================
2409 
2410 //________________________________________________________________________________
2411 TMatrixDSym
2413  const std::string& label,
2414  const std::string& OP,
2415  const std::string& unc)
2416 {
2417  // Return the scale factor covariance matrix for the given calibration object.
2418  // This function is deprecated since its functionality is duplicated in the
2419  // CalibrationDataEigenVariations class.
2420  //
2421  // author: jet collection name
2422  // label: jet flavour label
2423  // OP: tagger working point
2424  // unc: source of uncertainty to consider
2425  // Catch issues with the specified input as early as possible
2426  TMatrixDSym dummy;
2427  if (unc == "comment" || unc == "result" || unc == "combined") return dummy;
2428 
2429  unsigned int index;
2430  if (! retrieveCalibrationIndex (label, OP, author, true, index)) {
2431  // Return a dummy result if the object is not found
2432  cerr << "getScaleFactorCovarianceMatrix: unable to find SF calibration for object " << fullName(author, OP, label, true) << endl;
2433  return dummy;
2434  }
2435  CalibrationDataHistogramContainer* container = dynamic_cast<CalibrationDataHistogramContainer*>(m_objects[index]);
2436  if (!container) return dummy;
2437 
2438  // retrieve the central calibration and its axes
2439  TH1* result = dynamic_cast<TH1*>(container->GetValue("result"));
2440  if (! result) return dummy;
2441  // "normal" case: single source of uncertainty
2442  if (unc != "all") {
2443  if (unc == "statistics") {
2444  return getStatCovarianceMatrix(result);
2445  } else {
2446  TH1* hunc = dynamic_cast<TH1*>(container->GetValue(unc.c_str()));
2447  if (! hunc) {
2448  cout << "getScaleFactorCovarianceMatrix: no uncertainty object found "
2449  << "corresponding to name " << unc << endl;
2450  return dummy;
2451  }
2452  return getSystCovarianceMatrix(result, hunc, container->isBinCorrelated(unc), unc, container->getTagWeightAxis());
2453  }
2454  }
2455 
2456  // special case: complete covariance matrix. This is to be constructed
2457  // as the sum over all individual contributions.
2458  // First, treat the statistics separately (as above)
2459  TMatrixDSym cov = getStatCovarianceMatrix(result);
2460 
2461  // Then loop through the list of (other) uncertainties
2462  std::vector<string> uncs = container->listUncertainties();
2463  for (unsigned int t = 0; t < uncs.size(); ++t) {
2464  if (uncs[t] == "comment" || uncs[t] == "result" || uncs[t] == "combined" ||
2465  uncs[t] == "statistics" || uncs[t]=="extrapolation" || uncs[t]=="MChadronisation" ||
2466  uncs[t]=="ReducedSets" || uncs[t]=="systematics") continue;
2467  TH1* hunc = dynamic_cast<TH1*>(container->GetValue(uncs[t].c_str()));
2468  if (not hunc) {
2469  std::cerr<<"Analysis::CalibrationDataInterfaceROOT::getScaleFactorCovarianceMatrix : dynamic cast failed\n";
2470  continue;
2471  }
2472  TMatrixDSym syst_cov = getSystCovarianceMatrix(result, hunc, container->isBinCorrelated(uncs[t]), uncs[t], container->getTagWeightAxis());
2473  cov += syst_cov;
2474  }
2475 
2476  return cov;
2477 }
2478 
2479 //________________________________________________________________________________
2480 void
2481 Analysis::CalibrationDataInterfaceROOT::initialize(const string& jetauthor, const string& OP, Uncertainty unc)
2482 {
2483  // Preload objects necessary so that the input calibration file can be closed.
2484  // This functionality is only needed when using PROOF.
2485 
2486  if((!m_fileEff)||(!m_fileSF)) {
2487  cerr << "initialize can only be called once per CalibrationDataInterfaceROOT object" << endl;
2488  return;
2489  } else {
2490  cout << "initializing BTagCalibrationDataInterfaceROOT for PROOF with jetAuthor = " << jetauthor << ", tagger = " << m_taggerName << ", operating point = " << OP << ", uncertainty = " << unc << endl;
2491  }
2492 
2494  BTagVars.jetAuthor = jetauthor;
2495  BTagVars.jetPt = 100000.; //Irrelevant, just has to be valid to retrieve objects
2496  BTagVars.jetEta = 1.5; //Irrelevant, just has to be valid to retrieve objects
2497 
2498  for(const auto& flavour : m_flavours){
2499  std::pair<double, double> BTagCalibResult;
2500  BTagCalibResult = getScaleFactor(BTagVars, flavour, OP, unc);
2501  std::cout << "CalibrationDataInterfaceROOT->initialize : BTagCalibResult " << std::endl;
2502 
2503  std::pair<double, double> BTagCalibMCEff;
2504  BTagCalibMCEff = getMCEfficiency(BTagVars, flavour, OP, unc);
2505  std::cout << "CalibrationDataInterfaceROOT->initialize : BTagCalibMCEff " << std::endl;
2506  }
2507 
2508  if (m_fileEff != m_fileSF) {
2509  m_fileEff->Close();
2510  delete m_fileEff;
2511  }
2512  m_fileSF->Close();
2513  delete m_fileSF;
2514  m_fileEff = 0; //prevents repeat deletion in destructor
2515  m_fileSF = 0; //prevents repeat deletion in destructor
2516 }
2517 
2518 //________________________________________________________________________________
2520 Analysis::CalibrationDataInterfaceROOT::retrieveContainer(const string& label, const string& OP, const string& author, const string& cntname, bool isSF, bool doPrint)
2521 {
2522  // Attempt to retrieve the given container from file. Note that also the corresponding
2523  // "hadronisation" reference is retrieved (if possible and not yet done).
2524  //
2525  // dir: name of the directory containing the requested container
2526  // cntname: name of the requested container itself (not including the full path)
2527  // isSF: set to false (true) if the object is to be retrieved from the MC efficiencies
2528  // file (the calibration scale factor file). Note that it is assumed that scale
2529  // factor objects will always be retrieved from the calibration scale factor file.
2530  // doPrint: if true, print out some basic information about the successfully retrieved container
2531  // (note that this is typically steered by the m_verbose setting;
2532  // only for the retrieval of the maps used for MC/MC SF calculations, this printout is always switched off)
2533 
2534  string dir = m_taggerName + "/" + getAlias(author) + "/" + OP + "/" + label;
2535  // construct the full object name
2536  string name = dir + "/" + cntname;
2537 
2538  // If the object cannot be found, then each call will result in a new attempt to
2539  // retrieve the object from the ROOT file. Hopefully this will not happen too often...
2540  unsigned int idx = m_objectIndices[name] = m_objects.size();
2541  // CalibrationDataContainer* cnt =
2542  // dynamic_cast<CalibrationDataContainer*>((isSF ? m_fileSF : m_fileEff) ->Get(name.c_str()));
2544  (isSF ? m_fileSF : m_fileEff)->GetObject(name.c_str(), cnt);
2545  // If the requested object is a MC efficiency container and is not found, make a second attempt
2546  // to retrieve it from the calibration scale factor file. This will avoid the need to duplicate
2547  // efficiency containers so that the MC efficiency file needs to store only those containers
2548  // not already present in the calibration scale factor file. Of course this is meaningful only
2549  // if separate files are used to begin with.
2550  if (!isSF && !cnt && m_fileSF != m_fileEff) m_fileSF->GetObject(name.c_str(), cnt);
2551  m_objects.push_back(cnt);
2552  if (!cnt) {
2553  cerr << "btag Calib: retrieveContainer: failed to retrieve container named " << name.c_str() << " from file" << endl;
2554  return 0;
2555  }
2556 
2557  // For successfully retrieved containers, also print some more information (implemented on user request)
2558  if (doPrint) {
2559  cout << "CalibrationDataInterface: retrieved container " << name << " (with comment: '" << cnt->getComment() << "' and hadronisation setting '" << cnt->getHadronisation() << "')" << endl;
2560  }
2561 
2562 
2563  // If the requested object is a MC efficiency container, make sure to retrieve the corresponding
2564  // calibration scale factor container first (a feature first thought to be necessary, erroneously,
2565  // but left in since this ordering should not hurt in any case).
2566  if (m_refMap.find(dir) == m_refMap.end()) {
2567  if (isSF) {
2568  // Retrieve the mapping objects from both files and merge their information using the 'helper' class.
2569  // The map resulting from this is used to retrieve the information required to compute MC/MC scale factors.
2570  string hadronisationRefs(dir + "/MChadronisation_ref");
2571  TMap* mapSF = 0; m_fileSF->GetObject(hadronisationRefs.c_str(), mapSF);
2572  TMap* mapEff = 0; if (m_fileEff != m_fileSF) m_fileEff->GetObject(hadronisationRefs.c_str(), mapEff);
2573  m_refMap[dir] = new HadronisationReferenceHelper(mapSF, mapEff);
2574  delete mapSF;
2575  delete mapEff;
2576  } else {
2577  string SFCalibName = getContainername(getBasename(dir), true);
2578  if (m_objectIndices.find(SFCalibName) == m_objectIndices.end()) retrieveContainer(label, OP, author, SFCalibName, true, doPrint);
2579  }
2580  }
2581 
2582  // Attempt to find the corresponding hadronisation reference container needed for the application of
2583  // MC/MC scale factors.
2584  if (idx+1 > m_hadronisationReference.size()) m_hadronisationReference.resize(idx+1, -1);
2585  m_hadronisationReference[idx] = -1;
2586  string spec = cnt->getHadronisation();
2587  if (spec != "") {
2588  std::map<string, HadronisationReferenceHelper*>::const_iterator mapit = m_refMap.find(dir);
2589  if (mapit != m_refMap.end()) {
2590  string ref;
2591  if (mapit->second->getReference(spec, ref)) {
2592  // Retrieve the hadronisation reference if not already done. Note that the "isSF" is left unchanged:
2593  // this allows to retrieve the reference from the same file as the scale factor object. An exception
2594  // is the reference for the calibration scale factor object, which should always be obtained from
2595  // the scale factor file.
2596  // An efficiency container can be its own hadronisation reference (this is not "protected" against).
2597  string refname(dir + "/" + ref);
2598  std::map<string, unsigned int>::const_iterator it = m_objectIndices.find(refname);
2599  // If the reference cannot be found, assume that it hasn't yet been retrieved so attempt it now.
2600  if (it == m_objectIndices.end()) {
2601  // Omit the printout of container information here (the idea being that showing MC/MC SF information would confuse rather than help)
2602  retrieveContainer(label, OP, author, ref, isSF, false); it = m_objectIndices.find(refname);
2603  }
2604  m_hadronisationReference[idx] = it->second;
2605  }
2606  } else if (m_useMCMCSF) {
2607  cerr << "btag Calib: retrieveContainer: MC hadronisation reference map not found -- this should not happen!" << endl;
2608  }
2609  }
2610  if (m_hadronisationReference[idx] == -1 || ! m_objects[m_hadronisationReference[idx]]){
2611  // Not being able to construct the MC/MC scale factors will lead to a potential bias.
2612  // However, this is not considered sufficiently severe that we will flag it as an error.
2613  if (m_useMCMCSF){
2614  cerr << "btag Calib: retrieveContainer: warning: unable to apply MC/MC scale factors for container " << name << " with hadronisation reference = '" << spec << "'" << endl;
2615  }
2616  }
2617 
2618  // Initialize the Eigenvector variation object corresponding to this object, if applicable. Notes:
2619  // - the dual use of "isSF" (both referring to the file and to the object, see above) requires another protection here
2620  // - the constructor's second argument is used to determine whether to exclude a pre-determined set of uncertainties from the EV decomposition
2621  //
2622  // We also want to separate behavior between SFEigen and SFGlobalEigen systematic strategies
2623  // The former requires a CalibrationDataEigenVariations object to be made per flavour.
2624  // The latter combines all corresponding flavours, so once it's been made for a single flavour, it's cached under all the corresponding "flavour containers"
2625  // simulataneously in m_eigenVariationsMap, and is checked for on each subsequent call to this method.
2626  if (m_runEigenVectorMethod && isSF && name.find("_SF") != string::npos) {
2628  if (histoContainer==0) {
2629  cerr << "Could not cast Container to a HistogramContainer. " << endl;
2630  return 0;
2631  }
2632  if (m_EVStrategy == Analysis::Uncertainty::SFEigen){
2634  std::shared_ptr<CalibrationDataEigenVariations> newEigenVariation(new CalibrationDataEigenVariations(m_filenameSF, m_taggerName, OP, author, histoContainer, m_useRecommendedEVExclusions));
2635  newEigenVariation->setVerbose(m_verbose);
2636 
2637  // At this point we may also want to reduce the number of eigenvector variations.
2638  // The choices are stored with the container object; but first we need to know what flavour we are dealing with.
2639  string flavour = dir.substr(dir.find_last_of("/")+1);
2640 
2641  for (auto entry : m_excludeFromCovMatrix[flavour]) {
2642  newEigenVariation->excludeNamedUncertainty(entry, cnt);
2643  }
2644  newEigenVariation->initialize();
2645  int to_retain = histoContainer->getEigenvectorReduction(m_EVReductions[flavour]); // returns the number of eigenvariations to retain as per the EV reduction strategy
2646  if (to_retain > -1) {
2647  if (m_verbose) cout << "btag Calib: reducing number of eigenvector variations for flavour " << flavour << " to " << to_retain << endl;
2648  // The merged variations will end up as the first entry in the specified list, i.e., as the last of the variations to be "retained"
2649  newEigenVariation->mergeVariationsFrom(size_t(to_retain-1)); // All variations stored with indices larger than this are merged
2650  } else if (m_EVReductions[flavour] != Loose) {
2651  cerr << "btag Calib: unable to retrieve eigenvector reduction information for flavour " << flavour << " and scheme " << m_EVReductions[flavour] << "; not applying any reduction" << endl;
2652  }
2653  m_eigenVariationsMap[cnt]=std::move(newEigenVariation);
2654 
2656  } else if (m_EVStrategy == Analysis::Uncertainty::SFGlobalEigen) {
2658  std::map<const CalibrationDataContainer*, std::shared_ptr<CalibrationDataEigenVariations> >::iterator evit = m_eigenVariationsMap.find(cnt);
2659  // The global implementation internally combines all the "flavour containers" (containers that correspond to each other, only with different flavours)
2660  // But the CalibrationDataInterfaceROOT object doesn't need to know that, so we want to get all the flavour containers in one go here
2661  // and map them (with m_eigenVariationsMap) to the same CalibrationDataGlobalEigenVariations pointer.
2662  // Then, in methods like getScaleFactor, we call the virtual methods which will give the proper result e.g. if you want the SF for a b-jet, it'll call the
2663 
2664  if (evit == m_eigenVariationsMap.end()){
2665  // now to see if it's completely empty or not
2666  if (m_eigenVariationsMap.empty()){
2667  std::shared_ptr<CalibrationDataGlobalEigenVariations> newEigenVariation(new CalibrationDataGlobalEigenVariations(m_filenameSF, m_taggerName, OP, author, m_flavours, histoContainer, m_useRecommendedEVExclusions));
2668  for (auto entry : m_excludeFromCovMatrix[label]) {
2669  newEigenVariation->excludeNamedUncertainty(entry, label); // <---- custom exclude named uncertainties method for global variations
2670  }
2671 
2672  newEigenVariation->initialize();
2673 
2674  // flavour loop to get the flavour reduction schemes and apply them
2675  for (std::string& flavour : m_flavours){
2676  int to_retain = histoContainer->getEigenvectorReduction(m_EVReductions[flavour]); // returns the number of eigenvariations to retain as per the EV reduction strategy
2677  if (to_retain > -1) {
2678  if (m_verbose) cout << "btag Calib: reducing number of eigenvector variations for flavour " << flavour << " to " << to_retain << endl;
2679  // The merged variations will end up as the first entry in the specified list, i.e., as the last of the variations to be "retained"
2680  newEigenVariation->mergeVariationsFrom(size_t(to_retain-1), flavour); // All variations stored with indices larger than this are merged
2681  } else if (m_EVReductions[flavour] != Loose) {
2682  cerr << "btag Calib: unable to retrieve eigenvector reduction information for flavour " << flavour << " and scheme " << m_EVReductions[flavour] << "; not applying any reduction" << endl;
2683  }
2684  }
2685 
2686  m_eigenVariationsMap.insert({cnt, newEigenVariation});
2687  } else {
2688  // Need to point to the CDGEV object four times in the m_eigenVariationsMap to appease the CDIROOT backend design...
2689  // Ok, turns out I can't retrieve the containers from CDGEV and insert them directly, because I'd have to use the containers directly instead..
2690  // So the strategy is to just take the CGEV objects that are already in the map, and mpa the present container to it
2691  std::shared_ptr<CalibrationDataEigenVariations> previous_eigenvariation = m_eigenVariationsMap.begin()->second;
2692  m_eigenVariationsMap.insert({cnt, previous_eigenvariation});
2693  }
2694 
2695  } else {
2696  std::cout << "CalibrationDataInterfaceROOT->retrieveContainer : the CDGEV object for " << name << " already exists! " << std::endl;
2697  }
2699  }
2700  }
2701 
2702  return cnt;
2703 }
2704 
2705 //________________________________________________________________________________
2706 string
2708 {
2709  // Return the alias for the given jet collection name, if an alias exists.
2710  // If this is not the case, the return value will simply equal the input jet collection name.
2711 
2712  std::map<string,string>::const_iterator it = m_aliases.find(author);
2713  return (it == m_aliases.end()) ? author : it->second;
2714 }
2715 
2716 //________________________________________________________________________________
2717 string
2719  const string& label, bool isSF,
2720  unsigned mapIndex) const
2721 {
2722  // Construct the full calibration object's pathname within the calibration ROOT file.
2723  //
2724  // author: jet collection name
2725  // OP: tagger working point
2726  // label: jet flavour label
2727  // isSF: set to true (false) for scale factors (MC efficiencies)
2728  // mapIndex: index in the list of MC efficiency calibration objects
2729 
2730  string flavour = (label == "N/A") ? "Light" : label;
2731  string full(m_taggerName + "/" + getAlias(author) + "/" + OP + "/" + flavour + "/");
2732  full += getContainername(flavour, isSF, mapIndex);
2733  // full += getAlias(author); full += "/";
2734  // string name = (isSF) ?
2735  // getBasename(OP, label, "_SF", true) :
2736  // getBasename(OP, label, "_Eff", false, mapIndex);
2737  // full += name;
2738  return full;
2739 }
2740 
2741 //________________________________________________________________________________
2743 {
2744  // Create the map from hadronisation specifications to reference container names for
2745  // a given ROOT file directory.
2746  //
2747  // mapSF: reference specification as extracted from calibration scale factor file
2748  // mapEff: reference specification as extracted from MC efficiency file
2749  // (null if the two files are identical)
2750 
2751  // First take the scale factor file's map
2752  if (mapSF) {
2753  TMapIter next(mapSF); TObjString* spec;
2754  while ((spec = (TObjString*) next())) {
2755  TObjString* ref = (TObjString*) mapSF->GetValue(spec);
2756  m_refs[string(spec->GetName())] = string(ref->GetName());
2757  }
2758  }
2759  // Then do the same with the efficiency file's map. The result will be to override any
2760  // items from the SF file's map. An exception is made for the scale factor calibration object,
2761  // for which (for the sake of consistency) the SF reference must be retained.
2762  if (mapEff) {
2763  TMapIter next(mapEff); TObjString* spec;
2764  while ((spec = (TObjString*) next())) {
2765  TObjString* ref = (TObjString*) mapEff->GetValue(spec);
2766  m_refs[string(spec->GetName())] = string(ref->GetName());
2767  }
2768  }
2769 }
2770 
2771 //________________________________________________________________________________
2772 bool
2774  string& ref) const
2775 {
2776  // Extract the reference histogram name corresponding to the given hadronisation specification (if existing).
2777  // The return value is used to indicate whether the specification could be found.
2778  //
2779  // spec: hadronisation specification
2780  // ref: container name corresponding to this specification
2781 
2782  std::map<string, string>::const_iterator it = m_refs.find(spec);
2783  if (it == m_refs.end()) return false;
2784 
2785  ref = it->second;
2786  return true;
2787 }
Analysis::CalibResult
std::pair< double, double > CalibResult
Definition: CalibrationDataInterfaceBase.h:34
xAOD::iterator
JetConstituentVector::iterator iterator
Definition: JetConstituentVector.cxx:68
xAOD::strategy
strategy
Definition: L2CombinedMuon_v1.cxx:108
Analysis::CalibrationDataEigenVariations::isExtrapolationVariation
bool isExtrapolationVariation(unsigned int nameIndex) const
flag whether the given index corresponds to an extrapolation variation
Definition: CalibrationDataEigenVariations.cxx:1099
Analysis::CalibrationDataHistogramContainer::getUncertainty
virtual CalibrationStatus getUncertainty(const std::string &unc, const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)
retrieve the calibration uncertainty due to the given source.
Definition: CalibrationDataContainer.cxx:622
Analysis::GiveUp
@ GiveUp
Definition: CalibrationDataInterfaceROOT.h:82
LikeEnum::Loose
@ Loose
Definition: LikelihoodEnums.h:12
Analysis::CalibrationDataEigenVariations::getNamedVariationIndex
unsigned int getNamedVariationIndex(const std::string &name) const
retrieve the integer index corresponding to the named variation.
Definition: CalibrationDataEigenVariations.cxx:1088
ClassImp
ClassImp(Analysis::CalibrationDataInterfaceROOT) Analysis
Definition: CalibrationDataInterfaceROOT.cxx:289
Analysis::CalibrationDataContainer::getUncertainty
virtual CalibrationStatus getUncertainty(const std::string &unc, const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)=0
retrieve the calibration uncertainty due to the given source.
Analysis::CalibrationDataInterfaceROOT::nameFromIndex
std::string nameFromIndex(unsigned int index) const
Retrieve the name of the calibration object (container) given its index.
Definition: CalibrationDataInterfaceROOT.cxx:1942
Analysis::CalibrationDataEigenVariations::excludeNamedUncertainty
void excludeNamedUncertainty(const std::string &name, CalibrationDataContainer *cnt)
exclude the source of uncertainty indicated by name from eigenvector calculations
Definition: CalibrationDataEigenVariations.cxx:371
Analysis::dummyResult
const CalibResult dummyResult(dummyValue, dummyValue)
Analysis::CalibrationDataInterfaceROOT::m_EVStrategy
Uncertainty m_EVStrategy
Definition: CalibrationDataInterfaceROOT.h:430
get_generator_info.result
result
Definition: get_generator_info.py:21
Analysis::CalibrationDataContainer
Definition: CalibrationDataContainer.h:51
checkCoolLatestUpdate.variables
variables
Definition: checkCoolLatestUpdate.py:12
Analysis::CalibrationDataInterfaceROOT::CalibrationDataInterfaceROOT
CalibrationDataInterfaceROOT()
default constructor for PROOF object retrieval
Definition: CalibrationDataInterfaceROOT.cxx:603
find
std::string find(const std::string &s)
return a remapped string
Definition: hcg.cxx:135
Analysis::CalibrationDataInterfaceROOT::fullName
std::string fullName(const std::string &author, const std::string &OP, const std::string &label, bool isSF, unsigned mapIndex=0) const
@ brief construct the full object pathname from its individual components
Definition: CalibrationDataInterfaceROOT.cxx:2718
Analysis::CalibrationDataInterfaceBase
Definition: CalibrationDataInterfaceBase.h:47
Analysis::CalibrationDataEigenVariations::getNumberOfEigenVariations
unsigned int getNumberOfEigenVariations()
retrieve the number of eigenvector variations
Definition: CalibrationDataEigenVariations.cxx:1010
Analysis::CalibrationDataHistogramContainer::getTagWeightAxis
virtual int getTagWeightAxis()
Test whether this calibration object is one for "continuous" calibration (this has some subtle conseq...
Definition: CalibrationDataContainer.cxx:935
CalibrationDataContainer.h
CaloCondBlobAlgs_fillNoiseFromASCII.spec
spec
Definition: CaloCondBlobAlgs_fillNoiseFromASCII.py:46
index
Definition: index.py:1
Analysis::CalibrationDataEigenVariations::EigenVectorRecomposition
bool EigenVectorRecomposition(const std::string &label, std::map< std::string, std::map< std::string, float >> &coefficientMap)
Eigenvector recomposition method.
Definition: CalibrationDataEigenVariations.cxx:1109
Analysis::CalibrationDataHistogramContainer::isBinCorrelated
bool isBinCorrelated(const std::string &unc) const
Indicate whether the given uncertainty is correlated from bin to bin or not (note that this function ...
Definition: CalibrationDataContainer.cxx:719
Analysis::SFNamed
@ SFNamed
Definition: CalibrationDataInterfaceROOT.h:70
max
constexpr double max()
Definition: ap_fixedTest.cxx:33
Analysis::CalibrationDataInterfaceROOT::runEigenVectorRecomposition
CalibrationStatus runEigenVectorRecomposition(const std::string &author, const std::string &label, const std::string &OP, unsigned int mapindex=0)
run EigenVector Recomposition method
Definition: CalibrationDataInterfaceROOT.cxx:2204
plotmaker.hist
hist
Definition: plotmaker.py:148
min
constexpr double min()
Definition: ap_fixedTest.cxx:26
Analysis::CalibrationDataInterfaceROOT::getWeightScaleFactor
CalibResult getWeightScaleFactor(const CalibrationDataVariables &variables, const std::string &label, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency scale factor retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1485
WriteCellNoiseToCool.fullName
fullName
Definition: WriteCellNoiseToCool.py:461
Analysis::Statistical
@ Statistical
Definition: CalibrationDataInterfaceROOT.h:70
PlotCalibFromCool.begin
begin
Definition: PlotCalibFromCool.py:94
skel.it
it
Definition: skel.GENtoEVGEN.py:407
plotBeamSpotVxVal.cov
cov
Definition: plotBeamSpotVxVal.py:200
Analysis::TagWeight
@ TagWeight
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::CalibrationDataInterfaceROOT::getShiftedScaleFactors
const TH1 * getShiftedScaleFactors(const std::string &author, const std::string &label, const std::string &OP, const std::string &unc, double sigmas)
retrieve the binned calibration object for the given flavour label and operating point,...
Definition: CalibrationDataInterfaceROOT.cxx:2155
Analysis::CalibrationDataInterfaceROOT::initialize
void initialize(const std::string &jetauthor, const std::string &OP, Uncertainty unc)
initialization for PROOF usage
Definition: CalibrationDataInterfaceROOT.cxx:2481
bin
Definition: BinsDiffFromStripMedian.h:43
PlotCalibFromCool.ib
ib
Definition: PlotCalibFromCool.py:419
Analysis::CalibrationDataEigenVariations::initialize
virtual void initialize(double min_variance=1.0E-20)
carry out the eigenvector computations.
Definition: CalibrationDataEigenVariations.cxx:637
Analysis::CalibrationDataEigenVariations::mergeVariationsFrom
void mergeVariationsFrom(const size_t &index)
merge all variations starting from the given index
Definition: CalibrationDataEigenVariations.cxx:863
athena.value
value
Definition: athena.py:124
Analysis::CalibrationDataGlobalEigenVariations::mergeVariationsFrom
void mergeVariationsFrom(const size_t &index, std::string &flav)
Definition: CalibrationDataEigenVariations.cxx:2045
TrigInDetValidation_Base.test
test
Definition: TrigInDetValidation_Base.py:142
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
Analysis::CalibrationDataContainer::getSystUncertainty
CalibrationStatus getSystUncertainty(const CalibrationDataVariables &x, UncertaintyResult &result, TObject *obj=0)
retrieve the calibration total systematic uncertainty
Definition: CalibrationDataContainer.cxx:101
Analysis::CalibrationDataInterfaceROOT::HadronisationReferenceHelper::HadronisationReferenceHelper
HadronisationReferenceHelper()
Definition: CalibrationDataInterfaceROOT.h:367
x
#define x
Analysis::CalibrationDataContainer::getResult
virtual CalibrationStatus getResult(const CalibrationDataVariables &x, double &result, TObject *obj=0, bool extrapolate=false)=0
retrieve the calibration result.
Analysis::TauExtrapolation
@ TauExtrapolation
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::CalibrationDataInterfaceROOT::getNumVariations
unsigned int getNumVariations(const std::string &author, const std::string &label, const std::string &OP, Uncertainty unc)
retrieve the number of variations relevant to the calibration object.
Definition: CalibrationDataInterfaceROOT.cxx:2060
Analysis::dummyValue
const double dummyValue
Definition: CalibrationDataInterfaceBase.h:33
CalibrationDataEigenVariations.h
Analysis::CalibrationDataContainer::kAbsEta
@ kAbsEta
Definition: CalibrationDataContainer.h:66
mergePhysValFiles.end
end
Definition: DataQuality/DataQualityUtils/scripts/mergePhysValFiles.py:92
Analysis::CalibrationDataInterfaceBase::m_taggerName
std::string m_taggerName
tagging algorithm name
Definition: CalibrationDataInterfaceBase.h:94
Analysis::Main
@ Main
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::CalibrationDataInterfaceROOT::HadronisationReferenceHelper
Definition: CalibrationDataInterfaceROOT.h:363
Analysis::kSuccess
@ kSuccess
Definition: CalibrationDataVariables.h:57
Analysis::Total
@ Total
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::CalibrationDataInterfaceROOT::m_excludeFromCovMatrix
std::map< std::string, std::vector< std::string > > m_excludeFromCovMatrix
store the uncertainties which should be excluded from building the full covariance matrix
Definition: CalibrationDataInterfaceROOT.h:436
python.setupRTTAlg.size
int size
Definition: setupRTTAlg.py:39
Analysis::CalibrationDataInterface::split
std::vector< std::string > split(const std::string &str, const char token=';')
local utility function: split string into a vector of substrings separated by a specified separator,...
Definition: CalibrationDataInternals.cxx:9
CalibrationDataInterfaceROOT.h
Analysis::CalibrationDataInterfaceROOT::retrieveContainer
CalibrationDataContainer * retrieveContainer(const std::string &label, const std::string &OP, const std::string &author, const std::string &cntname, bool isSF, bool doPrint=true)
utility function taking care of object retrieval
Definition: CalibrationDataInterfaceROOT.cxx:2520
Analysis::GiveUpExtrapolated
@ GiveUpExtrapolated
Definition: CalibrationDataInterfaceROOT.h:82
Analysis::CalibrationDataContainer::listUncertainties
std::vector< std::string > listUncertainties() const
retrieve the list of "uncertainties" accessible to this object.
Definition: CalibrationDataContainer.cxx:120
Analysis::CalibrationDataInterfaceROOT::getEfficiency
CalibResult getEfficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, const std::string &flavour, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1071
Analysis::CalibrationDataInterfaceROOT::m_verbose
bool m_verbose
if true, allow also for some informational (and not only error/warning) messages
Definition: CalibrationDataInterfaceROOT.h:444
dqt_zlumi_pandas.err
err
Definition: dqt_zlumi_pandas.py:183
fillPileUpNoiseLumi.next
next
Definition: fillPileUpNoiseLumi.py:52
Analysis::kExtrapolatedRange
@ kExtrapolatedRange
Definition: CalibrationDataVariables.h:59
lumiFormat.i
int i
Definition: lumiFormat.py:85
Analysis::CalibrationDataContainer::kEta
@ kEta
Definition: CalibrationDataContainer.h:65
Analysis::Uncertainty
Uncertainty
specification of type information requested by the user
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::kError
@ kError
Definition: CalibrationDataVariables.h:60
Analysis::CalibrationDataInterfaceROOT::m_filenameSF
std::string m_filenameSF
in addition, store also the filenames themselves (needed for the copy constructor)
Definition: CalibrationDataInterfaceROOT.h:417
Analysis::CalibrationDataInterfaceROOT::~CalibrationDataInterfaceROOT
virtual ~CalibrationDataInterfaceROOT()
default destructor
Definition: CalibrationDataInterfaceROOT.cxx:633
Analysis::CalibrationDataInterfaceROOT::m_flavours
std::vector< std::string > m_flavours
Definition: CalibrationDataInterfaceROOT.h:419
Analysis::CalibrationDataEigenVariations
Definition: CalibrationDataEigenVariations.h:27
COOLRates.alias
alias
Definition: COOLRates.py:1172
Analysis::CalibrationDataEigenVariations::getEigenvectorVariation
bool getEigenvectorVariation(unsigned int variation, TH1 *&up, TH1 *&down)
obtain the "up" and "down" variations for the given eigenvector number.
Definition: CalibrationDataEigenVariations.cxx:1018
Analysis::Loose
@ Loose
Definition: CalibrationDataInterfaceROOT.h:73
Analysis::CalibrationDataGlobalEigenVariations
Definition: CalibrationDataEigenVariations.h:145
Analysis::CalibrationDataInterfaceROOT::getMCMCScaleFactor
double getMCMCScaleFactor(const CalibrationDataVariables &variables, unsigned indexSF, unsigned int indexEff) const
MC/MC scale factor retrieval.
Definition: CalibrationDataInterfaceROOT.cxx:1465
CalibCoolCompareRT.up
up
Definition: CalibCoolCompareRT.py:108
add-xsec-uncert-quadrature-N.label
label
Definition: add-xsec-uncert-quadrature-N.py:104
CalibDbCompareRT.dummy
dummy
Definition: CalibDbCompareRT.py:59
Analysis::kRange
@ kRange
Definition: CalibrationDataVariables.h:58
Analysis::SFEigen
@ SFEigen
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::UncertaintyResult
std::pair< double, double > UncertaintyResult
The following typedef is for convenience: most uncertainties can be asymmetric.
Definition: CalibrationDataContainer.h:33
Analysis::CalibrationDataHistogramContainer::getResult
virtual CalibrationStatus getResult(const CalibrationDataVariables &x, double &result, TObject *obj=0, bool extrapolate=false)
retrieve the calibration result.
Definition: CalibrationDataContainer.cxx:539
Analysis::CalibrationDataInterfaceROOT::listScaleFactorUncertainties
std::vector< std::string > listScaleFactorUncertainties(const std::string &author, const std::string &label, const std::string &OP, bool named=false)
retrieve the list of "uncertainties" relevant to the calibration object.
Definition: CalibrationDataInterfaceROOT.cxx:1984
Analysis::CalibrationDataInterfaceROOT::getMCEfficiency
CalibResult getMCEfficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
"MC" efficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:963
hist_file_dump.f
f
Definition: hist_file_dump.py:140
GEV
#define GEV
Definition: PrintPhotonSF.cxx:25
Analysis::CalibrationDataInterfaceROOT::m_aliases
std::map< std::string, std::string > m_aliases
Do not attempt to persistify (PROOF)
Definition: CalibrationDataInterfaceROOT.h:405
beamspotnt.rows
list rows
Definition: bin/beamspotnt.py:1111
Analysis::CalibrationDataInterfaceROOT::retrieveCalibrationIndex
bool retrieveCalibrationIndex(const std::string &label, const std::string &OP, const std::string &author, bool isSF, unsigned int &index, unsigned int mapIndex=0)
Retrieve the index of the calibration object (container) starting from the label and operating point.
Definition: CalibrationDataInterfaceROOT.cxx:688
Analysis::CalibrationDataGlobalEigenVariations::excludeNamedUncertainty
void excludeNamedUncertainty(const std::string &name, const std::string &flavour)
Definition: CalibrationDataEigenVariations.cxx:1515
beamspotman.stat
stat
Definition: beamspotman.py:262
bin2
Definition: KillBinsByStrip.h:34
beamspotman.dir
string dir
Definition: beamspotman.py:619
Analysis::CalibrationDataInterfaceROOT::getMCInefficiency
CalibResult getMCInefficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc=None, unsigned int mapIndex=0)
"MC" inefficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1422
LikeEnum::Tight
@ Tight
Definition: LikelihoodEnums.h:15
Analysis::CalibrationDataInterfaceBase::setEffCalibrationNames
void setEffCalibrationNames(const std::map< std::string, std::vector< std::string > > &names)
Definition: CalibrationDataInterfaceBase.cxx:63
Analysis::CalibrationDataInterfaceROOT::m_filenameEff
std::string m_filenameEff
Definition: CalibrationDataInterfaceROOT.h:418
Analysis::CalibrationDataEigenVariations::listNamedVariations
std::vector< std::string > listNamedVariations() const
list the named variations
Definition: CalibrationDataEigenVariations.cxx:997
GetAllXsec.entry
list entry
Definition: GetAllXsec.py:132
Analysis::CalibrationDataInterfaceROOT::increaseCounter
void increaseCounter(unsigned int index, OutOfBoundsType oob=Main)
Definition: CalibrationDataInterfaceROOT.cxx:1956
Analysis::Extrapolated
@ Extrapolated
Definition: CalibrationDataInterfaceROOT.h:85
Analysis
The namespace of all packages in PhysicsAnalysis/JetTagging.
Definition: BTaggingCnvAlg.h:20
Analysis::CalibrationStatus
CalibrationStatus
Definition: CalibrationDataVariables.h:56
Analysis::CalibrationDataContainer::getVariableTypes
std::vector< unsigned int > getVariableTypes()
utility to retrieve variable types
Definition: CalibrationDataContainer.cxx:408
python.TriggerEDMRun3.BTagVars
BTagVars
Definition: TriggerEDMRun3.py:162
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:240
Analysis::OutOfBoundsType
OutOfBoundsType
counter types (to be used when flagging out-of-bounds cases)
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::Eta
@ Eta
Definition: CalibrationDataInterfaceROOT.h:85
Analysis::CalibrationDataGlobalEigenVariations::initialize
void initialize(double min_variance=1.0E-6)
carry out the eigenvector computations.
Definition: CalibrationDataEigenVariations.cxx:1558
checkTriggerxAOD.found
found
Definition: checkTriggerxAOD.py:328
Analysis::CalibrationDataHistogramContainer
Definition: CalibrationDataContainer.h:247
Analysis::CalibrationDataContainer::kTagWeight
@ kTagWeight
Definition: CalibrationDataContainer.h:67
find_data.full
full
Definition: find_data.py:26
Analysis::CalibrationDataContainer::isNearlyEqual
static bool isNearlyEqual(double a, double b)
utility for comparison of doubles
Definition: CalibrationDataContainer.cxx:1744
python.PyAthena.v
v
Definition: PyAthena.py:154
DeMoScan.index
string index
Definition: DeMoScan.py:362
Analysis::CalibrationDataInterfaceROOT::HadronisationReferenceHelper::getReference
bool getReference(const std::string &spec, std::string &ref) const
Retrieve the (full) name of the reference histogram, given the hadronisation specification.
Definition: CalibrationDataInterfaceROOT.cxx:2773
Analysis::CalibrationDataInterfaceROOT::checkAbsEta
bool checkAbsEta(const CalibrationDataVariables &variables, unsigned int index)
Definition: CalibrationDataInterfaceROOT.cxx:1916
Analysis::CalibrationDataInterfaceROOT::getInefficiency
CalibResult getInefficiency(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
inefficiency retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1307
InDetDD::other
@ other
Definition: InDetDD_Defs.h:16
mapkey::sf
@ sf
Definition: TElectronEfficiencyCorrectionTool.cxx:38
LikeEnum::Medium
@ Medium
Definition: LikelihoodEnums.h:14
trigbs_pickEvents.cnt
cnt
Definition: trigbs_pickEvents.py:71
ref
const boost::regex ref(r_ef)
Analysis::CalibrationDataInterfaceROOT
Definition: CalibrationDataInterfaceROOT.h:88
Analysis::SFGlobalEigen
@ SFGlobalEigen
Definition: CalibrationDataInterfaceROOT.h:70
copySelective.target
string target
Definition: copySelective.py:36
Pythia8_RapidityOrderMPI.val
val
Definition: Pythia8_RapidityOrderMPI.py:14
Analysis::CalibrationDataEigenVariations::setVerbose
void setVerbose(bool)
Definition: CalibrationDataEigenVariations.cxx:1247
Analysis::CalibrationDataInterfaceROOT::m_runEigenVectorMethod
bool m_runEigenVectorMethod
decide whether to run the eigenvector method or not
Definition: CalibrationDataInterfaceROOT.h:429
python.TriggerHandler.verbose
verbose
Definition: TriggerHandler.py:296
Analysis::CalibrationDataInterfaceROOT::getScaleFactor
CalibResult getScaleFactor(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
efficiency scale factor retrieval by name.
Definition: CalibrationDataInterfaceROOT.cxx:736
CaloCondBlobAlgs_fillNoiseFromASCII.author
string author
Definition: CaloCondBlobAlgs_fillNoiseFromASCII.py:25
Analysis::CalibrationDataInterfaceROOT::checkWeightScaleFactors
void checkWeightScaleFactors(unsigned int indexSF, unsigned int indexEff)
Definition: CalibrationDataInterfaceROOT.cxx:1763
Analysis::CalibrationDataVariables
Definition: CalibrationDataVariables.h:42
LArNewCalib_DelayDump_OFC_Cali.idx
idx
Definition: LArNewCalib_DelayDump_OFC_Cali.py:69
CaloCellTimeCorrFiller.filename
filename
Definition: CaloCellTimeCorrFiller.py:23
GRLStrUtil::trim
void trim(std::string &input)
Definition: StrUtil.cxx:12
python.SystemOfUnits.s
float s
Definition: SystemOfUnits.py:147
Analysis::CalibrationDataInterfaceBase::setSFCalibrationNames
void setSFCalibrationNames(const std::map< std::string, std::string > &names)
Definition: CalibrationDataInterfaceBase.cxx:87
Analysis::Ignore
@ Ignore
Definition: CalibrationDataInterfaceROOT.h:82
CalibrationDataInternals.h
MuonHough::extrapolate
float extrapolate(const MuonLayerHough::Maximum &ref, const MuonLayerHough::Maximum &ex, bool doparabolic=false)
Definition: MuonLayerHough.cxx:521
Analysis::CalibrationDataInterfaceROOT::getInefficiencyScaleFactor
CalibResult getInefficiencyScaleFactor(const CalibrationDataVariables &variables, const std::string &label, const std::string &OP, Uncertainty unc, unsigned int numVariation=0, unsigned int mapIndex=0)
"MC" inefficiency scale factor retrieval by name
Definition: CalibrationDataInterfaceROOT.cxx:1186
Analysis::CalibrationDataEigenVariations::getNumberOfNamedVariations
unsigned int getNumberOfNamedVariations() const
retrieve the number of named variations
Definition: CalibrationDataEigenVariations.cxx:988
dqt_zlumi_alleff_HIST.eff
int eff
Definition: dqt_zlumi_alleff_HIST.py:113
Analysis::CalibrationDataContainer::kPt
@ kPt
Definition: CalibrationDataContainer.h:64
merge.status
status
Definition: merge.py:16
Analysis::CalibrationDataEigenVariations::getNamedVariation
bool getNamedVariation(const std::string &name, TH1 *&up, TH1 *&down)
obtain the "up" and "down" variations for the named uncertainty.
Definition: CalibrationDataEigenVariations.cxx:1043
Analysis::CalibrationDataHistogramContainer::getEigenvectorReduction
virtual int getEigenvectorReduction(unsigned int choice) const
Retrieve the number of eigenvectors to be retained for the purpose of eigenvector variation reduction...
Definition: CalibrationDataContainer.cxx:986
Analysis::CalibrationDataInterfaceROOT::m_fileSF
TFile * m_fileSF
Do not attempt to persistify (PROOF)
Definition: CalibrationDataInterfaceROOT.h:401
python.DataFormatRates.env
env
Definition: DataFormatRates.py:32
Analysis::Systematic
@ Systematic
Definition: CalibrationDataInterfaceROOT.h:70
Analysis::Flag
@ Flag
Definition: CalibrationDataInterfaceROOT.h:82
Analysis::Extrapolation
@ Extrapolation
Definition: CalibrationDataInterfaceROOT.h:70
pow
constexpr int pow(int base, int exp) noexcept
Definition: ap_fixedTest.cxx:15
xAOD::bool
setBGCode setTAP setLVL2ErrorBits bool
Definition: TrigDecision_v1.cxx:60
Analysis::CalibrationDataInterfaceROOT::getAlias
std::string getAlias(const std::string &author) const
associated alias retrieval method
Definition: CalibrationDataInterfaceROOT.cxx:2707
Analysis::CalibrationDataInterfaceROOT::getMCEfficiencyObject
const TObject * getMCEfficiencyObject(const std::string &author, const std::string &label, const std::string &OP, unsigned int mapIndex=0)
retrieve the MC efficiency (central values) object for the given flavour label and operating point.
Definition: CalibrationDataInterfaceROOT.cxx:2127
Analysis::CalibrationDataContainer::getStatUncertainty
virtual CalibrationStatus getStatUncertainty(const CalibrationDataVariables &x, double &result)=0
retrieve the calibration statistical uncertainty.
Trk::split
@ split
Definition: LayerMaterialProperties.h:38
Analysis::CalibrationDataInterfaceROOT::getScaleFactorCovarianceMatrix
TMatrixDSym getScaleFactorCovarianceMatrix(const std::string &author, const std::string &label, const std::string &OP, const std::string &unc="all")
retrieve the named covariance matrix element corresponding to the binned calibration object.
Definition: CalibrationDataInterfaceROOT.cxx:2412
Analysis::CalibZERO
const double CalibZERO
Definition: CalibrationDataInterfaceBase.h:32
Analysis::CalibrationDataInterfaceROOT::m_fileEff
TFile * m_fileEff
pointer to the TFile object providing access to the calibrations
Definition: CalibrationDataInterfaceROOT.h:400
Analysis::CalibrationDataInterfaceROOT::getBinnedScaleFactors
const TH1 * getBinnedScaleFactors(const std::string &author, const std::string &label, const std::string &OP)
retrieve the binned calibration object for the given flavour label and operating point.
Definition: CalibrationDataInterfaceROOT.cxx:2105
Analysis::CalibrationDataHistogramContainer::getBinBoundaries
virtual std::vector< double > getBinBoundaries(unsigned int vartype)
Retrieve the bin boundaries for the specified variable type (which should be a CalibrationParametriza...
Definition: CalibrationDataContainer.cxx:952
Analysis::CalibrationDataInterfaceROOT::getEigenVectorRecompositionCoefficientMap
std::map< std::string, std::map< std::string, float > > getEigenVectorRecompositionCoefficientMap()
Get Eigenvector recomposition map after running runEigenVectorRecomposition()
Definition: CalibrationDataInterfaceROOT.cxx:2264