ATLAS Offline Software
Public Member Functions | Protected Member Functions | Protected Attributes | Private Types | Private Member Functions | Private Attributes | List of all members
JetCaloEnergies Class Reference

#include <JetCaloEnergies.h>

Inheritance diagram for JetCaloEnergies:
Collaboration diagram for JetCaloEnergies:

Public Member Functions

 JetCaloEnergies (const std::string &t)
 
virtual StatusCode initialize () override
 Dummy implementation of the initialisation function. More...
 
virtual StatusCode decorate (const xAOD::JetContainer &jets) const override
 Decorate a jet collection without otherwise modifying it. More...
 
virtual void print () const
 Print the state of the tool. More...
 
ServiceHandle< StoreGateSvc > & evtStore ()
 The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc. More...
 
const ServiceHandle< StoreGateSvc > & evtStore () const
 The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc. More...
 
const ServiceHandle< StoreGateSvc > & detStore () const
 The standard StoreGateSvc/DetectorStore Returns (kind of) a pointer to the StoreGateSvc. More...
 
virtual StatusCode sysInitialize () override
 Perform system initialization for an algorithm. More...
 
virtual StatusCode sysStart () override
 Handle START transition. More...
 
virtual std::vector< Gaudi::DataHandle * > inputHandles () const override
 Return this algorithm's input handles. More...
 
virtual std::vector< Gaudi::DataHandle * > outputHandles () const override
 Return this algorithm's output handles. More...
 
Gaudi::Details::PropertyBase & declareProperty (Gaudi::Property< T, V, H > &t)
 
Gaudi::Details::PropertyBase * declareProperty (const std::string &name, SG::VarHandleKey &hndl, const std::string &doc, const SG::VarHandleKeyType &)
 Declare a new Gaudi property. More...
 
Gaudi::Details::PropertyBase * declareProperty (const std::string &name, SG::VarHandleBase &hndl, const std::string &doc, const SG::VarHandleType &)
 Declare a new Gaudi property. More...
 
Gaudi::Details::PropertyBase * declareProperty (const std::string &name, SG::VarHandleKeyArray &hndArr, const std::string &doc, const SG::VarHandleKeyArrayType &)
 
Gaudi::Details::PropertyBase * declareProperty (const std::string &name, T &property, const std::string &doc, const SG::NotHandleType &)
 Declare a new Gaudi property. More...
 
Gaudi::Details::PropertyBase * declareProperty (const std::string &name, T &property, const std::string &doc="none")
 Declare a new Gaudi property. More...
 
void updateVHKA (Gaudi::Details::PropertyBase &)
 
MsgStream & msg () const
 
MsgStream & msg (const MSG::Level lvl) const
 
bool msgLvl (const MSG::Level lvl) const
 
virtual StatusCode modify (xAOD::JetContainer &jets) const override final
 Concrete implementation of the function inherited from IJetModifier. More...
 

Protected Member Functions

void fillEperSamplingCluster (const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
 
void fillEperSamplingPFO (const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
 
void fillEperSamplingFE (const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
 
void fillEperSamplingFEClusterBased (const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
 
bool isInVector (const std::string &key, const std::vector< std::string > &calculations)
 
void renounceArray (SG::VarHandleKeyArray &handlesArray)
 remove all handles from I/O resolution More...
 
std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > renounce (T &h)
 
void extraDeps_update_handler (Gaudi::Details::PropertyBase &ExtraDeps)
 Add StoreName to extra input/output deps as needed. More...
 

Protected Attributes

bool m_doFracSamplingMax = false
 

Private Types

typedef ServiceHandle< StoreGateSvcStoreGateSvc_t
 

Private Member Functions

float getMoment (const xAOD::CaloCluster *cluster, const xAOD::CaloCluster::MomentType &momentType) const
 
Gaudi::Details::PropertyBase & declareGaudiProperty (Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyType &)
 specialization for handling Gaudi::Property<SG::VarHandleKey> More...
 
Gaudi::Details::PropertyBase & declareGaudiProperty (Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyArrayType &)
 specialization for handling Gaudi::Property<SG::VarHandleKeyArray> More...
 
Gaudi::Details::PropertyBase & declareGaudiProperty (Gaudi::Property< T, V, H > &hndl, const SG::VarHandleType &)
 specialization for handling Gaudi::Property<SG::VarHandleBase> More...
 
Gaudi::Details::PropertyBase & declareGaudiProperty (Gaudi::Property< T, V, H > &t, const SG::NotHandleType &)
 specialization for handling everything that's not a Gaudi::Property<SG::VarHandleKey> or a <SG::VarHandleKeyArray> More...
 

Private Attributes

Gaudi::Property< std::vector< std::string > > m_calculationNames {this, "Calculations", {}, "Name of calo quantities to compute and add as decorations"}
 
Gaudi::Property< std::string > m_jetContainerName {this, "JetContainer", "", "SG key for the input jet container"}
 
Gaudi::Property< bool > m_calcClusterBasedVars {this, "calcClusterBasedVars", false, "SG key to decide if cluster-based variables will be calculated for FE-based jets"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_ePerSamplingKey {this, "EPerSamplingName", "EnergyPerSampling", "SG key for the EnergyPerSampling attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_emFracKey {this, "EMFracName", "EMFrac", "SG key for the EMFrac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_hecFracKey {this, "HECFracName", "HECFrac", "SG key for the HECFrac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_psFracKey {this, "PSFracName", "PSFrac", "SG key for the PSFrac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_em3FracKey {this, "EM3FracName", "EM3Frac", "SG key for the EM3Frac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_tile0FracKey {this, "Tile0FracName", "Tile0Frac", "SG key for the Tile0Frac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_effNClustsFracKey {this, "EffNClustsName", "EffNClusts", "SG key for the EffNClusts attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_fracSamplingMaxKey {this, "FracSamplingMaxName", "FracSamplingMax", "SG key for the FracSamplingMax attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_fracSamplingMaxIndexKey {this, "FracSamplingMaxIndexName", "FracSamplingMaxIndex", "SG key for the FracSamplingMaxIndex attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_ePerSamplingClusterKey {this, "EPerSamplingClusterName", "EnergyPerSamplingCaloBased", "SG key for the EnergyPerSampling attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_emFracClusterKey {this, "EMFracClusterName", "EMFracCaloBased", "SG key for the EMFrac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_hecFracClusterKey {this, "HECFracClusterName", "HECFracCaloBased", "SG key for the HECFrac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_psFracClusterKey {this, "PSFracClusterName", "PSFracCaloBased", "SG key for the PSFrac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_em3FracClusterKey {this, "EM3FracClusterName", "EM3FracCaloBased", "SG key for the EM3Frac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_tile0FracClusterKey {this, "Tile0FracClusterName", "Tile0FracCaloBased", "SG key for the Tile0Frac attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_effNClustsFracClusterKey {this, "EffNClustsClusterName", "EffNClustsCaloBased", "SG key for the EffNClusts attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_fracSamplingMaxClusterKey {this, "FracSamplingMaxClusterName", "FracSamplingMaxCaloBased", "SG key for the FracSamplingMax (clus) attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_fracSamplingMaxIndexClusterKey {this, "FracSamplingMaxIndexClusterName", "FracSamplingMaxIndexCaloBased", "SG key for FracSamplingMaxIndex (clus) attribute"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_lambdaLeadingClusterKey {this, "LambdaLeadingClusterName", "LambdaLeadingCluster", "SG key for the longitudinal distance between the leading (highest energy) cluster and the jet’s geometrical center"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_meanRadialDistanceSquaredKey {this, "MeanRadialDistanceSquaredName", "MeanRadialDistanceSquared", "SG key for the weighted mean of the squared radial distances of the clusters from jet’s geometrical center"}
 
SG::WriteDecorHandleKey< xAOD::JetContainerm_meanLongitudinalDistanceSquaredKey {this, "MeanLongitudinalDistanceSquaredName", "MeanLongitudinalDistanceSquared", "SG key for the weighted mean of the squared Longitudinal distances of the clusters from jet’s geometrical center"}
 
StoreGateSvc_t m_evtStore
 Pointer to StoreGate (event store by default) More...
 
StoreGateSvc_t m_detStore
 Pointer to StoreGate (detector store by default) More...
 
std::vector< SG::VarHandleKeyArray * > m_vhka
 
bool m_varHandleArraysDeclared
 

Detailed Description

Definition at line 18 of file JetCaloEnergies.h.

Member Typedef Documentation

◆ StoreGateSvc_t

typedef ServiceHandle<StoreGateSvc> AthCommonDataStore< AthCommonMsg< AlgTool > >::StoreGateSvc_t
privateinherited

Definition at line 388 of file AthCommonDataStore.h.

Constructor & Destructor Documentation

◆ JetCaloEnergies()

JetCaloEnergies::JetCaloEnergies ( const std::string &  t)

Definition at line 22 of file JetCaloEnergies.cxx.

23 : AsgTool(name) { }

Member Function Documentation

◆ declareGaudiProperty() [1/4]

Gaudi::Details::PropertyBase& AthCommonDataStore< AthCommonMsg< AlgTool > >::declareGaudiProperty ( Gaudi::Property< T, V, H > &  hndl,
const SG::VarHandleKeyArrayType  
)
inlineprivateinherited

specialization for handling Gaudi::Property<SG::VarHandleKeyArray>

Definition at line 170 of file AthCommonDataStore.h.

172  {
173  return *AthCommonDataStore<PBASE>::declareProperty(hndl.name(),
174  hndl.value(),
175  hndl.documentation());
176 
177  }

◆ declareGaudiProperty() [2/4]

Gaudi::Details::PropertyBase& AthCommonDataStore< AthCommonMsg< AlgTool > >::declareGaudiProperty ( Gaudi::Property< T, V, H > &  hndl,
const SG::VarHandleKeyType  
)
inlineprivateinherited

specialization for handling Gaudi::Property<SG::VarHandleKey>

Definition at line 156 of file AthCommonDataStore.h.

158  {
159  return *AthCommonDataStore<PBASE>::declareProperty(hndl.name(),
160  hndl.value(),
161  hndl.documentation());
162 
163  }

◆ declareGaudiProperty() [3/4]

Gaudi::Details::PropertyBase& AthCommonDataStore< AthCommonMsg< AlgTool > >::declareGaudiProperty ( Gaudi::Property< T, V, H > &  hndl,
const SG::VarHandleType  
)
inlineprivateinherited

specialization for handling Gaudi::Property<SG::VarHandleBase>

Definition at line 184 of file AthCommonDataStore.h.

186  {
187  return *AthCommonDataStore<PBASE>::declareProperty(hndl.name(),
188  hndl.value(),
189  hndl.documentation());
190  }

◆ declareGaudiProperty() [4/4]

Gaudi::Details::PropertyBase& AthCommonDataStore< AthCommonMsg< AlgTool > >::declareGaudiProperty ( Gaudi::Property< T, V, H > &  t,
const SG::NotHandleType  
)
inlineprivateinherited

specialization for handling everything that's not a Gaudi::Property<SG::VarHandleKey> or a <SG::VarHandleKeyArray>

Definition at line 199 of file AthCommonDataStore.h.

200  {
201  return PBASE::declareProperty(t);
202  }

◆ declareProperty() [1/6]

Gaudi::Details::PropertyBase* AthCommonDataStore< AthCommonMsg< AlgTool > >::declareProperty ( const std::string &  name,
SG::VarHandleBase hndl,
const std::string &  doc,
const SG::VarHandleType  
)
inlineinherited

Declare a new Gaudi property.

Parameters
nameName of the property.
hndlObject holding the property value.
docDocumentation string for the property.

This is the version for types that derive from SG::VarHandleBase. The property value object is put on the input and output lists as appropriate; then we forward to the base class.

Definition at line 245 of file AthCommonDataStore.h.

249  {
250  this->declare(hndl.vhKey());
251  hndl.vhKey().setOwner(this);
252 
253  return PBASE::declareProperty(name,hndl,doc);
254  }

◆ declareProperty() [2/6]

Gaudi::Details::PropertyBase* AthCommonDataStore< AthCommonMsg< AlgTool > >::declareProperty ( const std::string &  name,
SG::VarHandleKey hndl,
const std::string &  doc,
const SG::VarHandleKeyType  
)
inlineinherited

Declare a new Gaudi property.

Parameters
nameName of the property.
hndlObject holding the property value.
docDocumentation string for the property.

This is the version for types that derive from SG::VarHandleKey. The property value object is put on the input and output lists as appropriate; then we forward to the base class.

Definition at line 221 of file AthCommonDataStore.h.

225  {
226  this->declare(hndl);
227  hndl.setOwner(this);
228 
229  return PBASE::declareProperty(name,hndl,doc);
230  }

◆ declareProperty() [3/6]

Gaudi::Details::PropertyBase* AthCommonDataStore< AthCommonMsg< AlgTool > >::declareProperty ( const std::string &  name,
SG::VarHandleKeyArray hndArr,
const std::string &  doc,
const SG::VarHandleKeyArrayType  
)
inlineinherited

Definition at line 259 of file AthCommonDataStore.h.

263  {
264 
265  // std::ostringstream ost;
266  // ost << Algorithm::name() << " VHKA declareProp: " << name
267  // << " size: " << hndArr.keys().size()
268  // << " mode: " << hndArr.mode()
269  // << " vhka size: " << m_vhka.size()
270  // << "\n";
271  // debug() << ost.str() << endmsg;
272 
273  hndArr.setOwner(this);
274  m_vhka.push_back(&hndArr);
275 
276  Gaudi::Details::PropertyBase* p = PBASE::declareProperty(name, hndArr, doc);
277  if (p != 0) {
278  p->declareUpdateHandler(&AthCommonDataStore<PBASE>::updateVHKA, this);
279  } else {
280  ATH_MSG_ERROR("unable to call declareProperty on VarHandleKeyArray "
281  << name);
282  }
283 
284  return p;
285 
286  }

◆ declareProperty() [4/6]

Gaudi::Details::PropertyBase* AthCommonDataStore< AthCommonMsg< AlgTool > >::declareProperty ( const std::string &  name,
T &  property,
const std::string &  doc,
const SG::NotHandleType  
)
inlineinherited

Declare a new Gaudi property.

Parameters
nameName of the property.
propertyObject holding the property value.
docDocumentation string for the property.

This is the generic version, for types that do not derive from SG::VarHandleKey. It just forwards to the base class version of declareProperty.

Definition at line 333 of file AthCommonDataStore.h.

337  {
338  return PBASE::declareProperty(name, property, doc);
339  }

◆ declareProperty() [5/6]

Gaudi::Details::PropertyBase* AthCommonDataStore< AthCommonMsg< AlgTool > >::declareProperty ( const std::string &  name,
T &  property,
const std::string &  doc = "none" 
)
inlineinherited

Declare a new Gaudi property.

Parameters
nameName of the property.
propertyObject holding the property value.
docDocumentation string for the property.

This dispatches to either the generic declareProperty or the one for VarHandle/Key/KeyArray.

Definition at line 352 of file AthCommonDataStore.h.

355  {
356  typedef typename SG::HandleClassifier<T>::type htype;
357  return declareProperty (name, property, doc, htype());
358  }

◆ declareProperty() [6/6]

Gaudi::Details::PropertyBase& AthCommonDataStore< AthCommonMsg< AlgTool > >::declareProperty ( Gaudi::Property< T, V, H > &  t)
inlineinherited

Definition at line 145 of file AthCommonDataStore.h.

145  {
146  typedef typename SG::HandleClassifier<T>::type htype;
148  }

◆ decorate()

StatusCode JetCaloEnergies::decorate ( const xAOD::JetContainer jets) const
overridevirtual

Decorate a jet collection without otherwise modifying it.

Implements IJetDecorator.

Definition at line 108 of file JetCaloEnergies.cxx.

108  {
109  ATH_MSG_VERBOSE("Begin decorating jets.");
110  for(const xAOD::Jet* jet : jets) {
112  size_t numConstit = jet->numConstituents();
113  ePerSamplingHandle(*jet) = std::vector<float>(CaloSampling::Unknown, 0.);
114  std::vector<float>& ePerSampling = ePerSamplingHandle(*jet);
115  for ( float& e : ePerSampling ) e = 0.0; // re-initialize
116 
117  if ( numConstit == 0 ) {
118  ATH_MSG_VERBOSE("Jet has no constituents.");
119  continue;
120  }
121 
122  // should find a more robust solution than using 1st constit type.
123  xAOD::Type::ObjectType ctype = jet->rawConstituent( 0 )->type();
124  if ( ctype == xAOD::Type::CaloCluster ) {
125  ATH_MSG_VERBOSE(" Constituents are calo clusters.");
126  fillEperSamplingCluster(*jet, ePerSampling);
127 
128  } else if (ctype == xAOD::Type::ParticleFlow) {
129  ATH_MSG_VERBOSE(" Constituents are pflow objects.");
130  fillEperSamplingPFO(*jet, ePerSampling);
131 
132  } else if (ctype == xAOD::Type::FlowElement) {
133  ATH_MSG_VERBOSE(" Constituents are FlowElements.");
134  fillEperSamplingFE(*jet, ePerSampling);
135 
136  // In addition, calculate variables using the underlying cluster rather than
137  // the energy-subtracted FlowElements (improved implementation)
139  ATH_MSG_VERBOSE(" Constituents are FlowElements - Additional calculation");
140 
142  ePerSamplingClusterHandle(*jet) = std::vector<float>(CaloSampling::Unknown, 0.);
143  std::vector<float>& ePerSamplingCluster = ePerSamplingClusterHandle(*jet);
144  for ( float& e : ePerSamplingCluster ) e = 0.0; // re-initialize
145 
146  fillEperSamplingFEClusterBased(*jet, ePerSamplingCluster);
147  }
148 
149  }else {
150  ATH_MSG_VERBOSE("Constituents are not CaloClusters, PFOs, or FlowElements.");
151  }
152 
153  }
154  return StatusCode::SUCCESS;
155 }

◆ detStore()

const ServiceHandle<StoreGateSvc>& AthCommonDataStore< AthCommonMsg< AlgTool > >::detStore ( ) const
inlineinherited

The standard StoreGateSvc/DetectorStore Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 95 of file AthCommonDataStore.h.

95 { return m_detStore; }

◆ evtStore() [1/2]

ServiceHandle<StoreGateSvc>& AthCommonDataStore< AthCommonMsg< AlgTool > >::evtStore ( )
inlineinherited

The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 85 of file AthCommonDataStore.h.

85 { return m_evtStore; }

◆ evtStore() [2/2]

const ServiceHandle<StoreGateSvc>& AthCommonDataStore< AthCommonMsg< AlgTool > >::evtStore ( ) const
inlineinherited

The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 90 of file AthCommonDataStore.h.

90 { return m_evtStore; }

◆ extraDeps_update_handler()

void AthCommonDataStore< AthCommonMsg< AlgTool > >::extraDeps_update_handler ( Gaudi::Details::PropertyBase &  ExtraDeps)
protectedinherited

Add StoreName to extra input/output deps as needed.

use the logic of the VarHandleKey to parse the DataObjID keys supplied via the ExtraInputs and ExtraOuputs Properties to add the StoreName if it's not explicitly given

◆ fillEperSamplingCluster()

void JetCaloEnergies::fillEperSamplingCluster ( const xAOD::Jet jet,
std::vector< float > &  ePerSampling 
) const
protected

Definition at line 157 of file JetCaloEnergies.cxx.

157  {
158  // loop over raw constituents
159  size_t numConstit = jet.numConstituents();
160  for ( size_t i=0; i<numConstit; i++ ) {
161  if(jet.rawConstituent(i)->type()!=xAOD::Type::CaloCluster) {
162  ATH_MSG_WARNING("Tried to call fillEperSamplingCluster with a jet constituent that is not a cluster!");
163  continue;
164  }
165  const xAOD::CaloCluster* constit = static_cast<const xAOD::CaloCluster*>(jet.rawConstituent(i));
166  for ( size_t s= CaloSampling::PreSamplerB; s< CaloSampling::Unknown; s++ ) {
167  ePerSampling[s] += constit->eSample( (xAOD::CaloCluster::CaloSample) s );
168  }
169  }
170 
171  double fracSamplingMax = -999999999.;
172  int fracSamplingMaxIndex = -1;
173  double sumE_samplings = 0.0;
174 
176  for(unsigned int i = 0; i < ePerSampling.size(); ++i){
177  double e = ePerSampling[i];
178  sumE_samplings += e;
179  if (e>fracSamplingMax){
180  fracSamplingMax=e;
181  fracSamplingMaxIndex = i;
182  }
183  }
184  }
185 
189 
190  emFracHandle(jet) = jet::JetCaloQualityUtils::emFraction( ePerSampling );
191  hecFracHandle(jet) = jet::JetCaloQualityUtils::hecF( &jet );
193 
196  fracSamplingMaxHandle(jet) = sumE_samplings != 0. ? fracSamplingMax/sumE_samplings : 0.;
198  fracSamplingMaxIndexHandle(jet) = fracSamplingMaxIndex;
199  }
200 }

◆ fillEperSamplingFE()

void JetCaloEnergies::fillEperSamplingFE ( const xAOD::Jet jet,
std::vector< float > &  ePerSampling 
) const
protected

Definition at line 293 of file JetCaloEnergies.cxx.

293  {
294  float emTot = 0.;
295  float em3Tot = 0.;
296  float hecTot = 0.;
297  float psTot = 0.;
298  float tile0Tot = 0.;
299  float eTot = 0.;
300  float e2Tot = 0.;
301  size_t numConstit = jet.numConstituents();
302 
303  std::vector<int> indicesNeutralFE;
304  std::vector<int> indicesChargedFE;
305 
306  for ( size_t i=0; i<numConstit; i++ ) {
307  if(jet.rawConstituent(i)->type()!=xAOD::Type::FlowElement) {
308  ATH_MSG_WARNING("Tried to call fillEperSamplingFE with a jet constituent that is not a FlowElement!");
309  continue;
310  }
311  const xAOD::FlowElement* constit = static_cast<const xAOD::FlowElement*>(jet.rawConstituent(i));
312 
313  // Need to distinguish two cases:
314  // (1) Jet is a PFlow jet (constituents are charged or neutral FEs) or
315  // (2) Jet is a UFO jet (need to get the underlying charged and neutral FEs first)
316 
317  //For PFlow jets, we can directly get the information from the constituent
318  if(constit->signalType() & xAOD::FlowElement::PFlow){
319 
320  //Charged FlowElements:
321  if(constit->isCharged()){
322  eTot += constit->chargedObject(0)->e();
323  e2Tot += constit->chargedObject(0)->e()*constit->chargedObject(0)->e();
324  }
325  //Neutral FlowElements
326  else{
327  eTot += constit->e();
328  e2Tot += constit->e()*constit->e();
329  //Get the energy-per-layer information from the FE, not the underlying cluster (i.e. after subtraction)
330  std::vector<float> constitEPerSampling = FEHelpers::getEnergiesPerSampling(*constit);
331  for ( size_t s = CaloSampling::PreSamplerB; s < CaloSampling::Unknown; s++ ) {
332  ePerSampling[s] += constitEPerSampling[s];
333  }
334  emTot += (constitEPerSampling[CaloSampling::PreSamplerB] + constitEPerSampling[CaloSampling::EMB1]
335  + constitEPerSampling[CaloSampling::EMB2] + constitEPerSampling[CaloSampling::EMB3]
336  + constitEPerSampling[CaloSampling::PreSamplerE] + constitEPerSampling[CaloSampling::EME1]
337  + constitEPerSampling[CaloSampling::EME2] + constitEPerSampling[CaloSampling::EME3]
338  + constitEPerSampling[CaloSampling::FCAL0]);
339 
340  hecTot += (constitEPerSampling[CaloSampling::HEC0] + constitEPerSampling[CaloSampling::HEC1]
341  + constitEPerSampling[CaloSampling::HEC2] + constitEPerSampling[CaloSampling::HEC3]);
342 
343  psTot += (constitEPerSampling[CaloSampling::PreSamplerB] + constitEPerSampling[CaloSampling::PreSamplerE]);
344 
345  em3Tot += (constitEPerSampling[CaloSampling::EMB3] + constitEPerSampling[CaloSampling::EME3]);
346 
347  tile0Tot += (constitEPerSampling[CaloSampling::TileBar0] + constitEPerSampling[CaloSampling::TileExt0]);
348  }
349  }
350  else{
351  //For UFO jets, we first need to get the charged and neutral FE + corresponding energy from combined UFOs
352 
353  // UFO is simply a charged FlowElement
354  if(constit->signalType() == xAOD::FlowElement::Charged){
355  eTot += constit->chargedObject(0)->e();
356  e2Tot += constit->chargedObject(0)->e()*constit->chargedObject(0)->e();
357  }
358  //UFO is simply a neutral Flowelement
359  else if(constit->signalType() == xAOD::FlowElement::Neutral){
360  // For neutral UFOs, there is only one "other object" stored which is the neutral FE
361  // Protection in case there is something wrong with this FE
362  if(constit->otherObjects().size() != 1 || !constit->otherObject(0)){
363  continue;
364  }
365 
366  // Cast other object as FlowElement
367  const xAOD::FlowElement* nFE = static_cast<const xAOD::FlowElement*>(constit->otherObject(0));
368 
369  eTot += nFE->e();
370  e2Tot += nFE->e()*nFE->e();
371 
372  std::vector<float> neutralEPerSampling = FEHelpers::getEnergiesPerSampling(*nFE);
373  for ( size_t s = CaloSampling::PreSamplerB; s < CaloSampling::Unknown; s++ ) {
374  ePerSampling[s] += neutralEPerSampling[s];
375  }
376  emTot += (neutralEPerSampling[CaloSampling::PreSamplerB] + neutralEPerSampling[CaloSampling::EMB1]
377  + neutralEPerSampling[CaloSampling::EMB2] + neutralEPerSampling[CaloSampling::EMB3]
378  + neutralEPerSampling[CaloSampling::PreSamplerE] + neutralEPerSampling[CaloSampling::EME1]
379  + neutralEPerSampling[CaloSampling::EME2] + neutralEPerSampling[CaloSampling::EME3]
380  + neutralEPerSampling[CaloSampling::FCAL0]);
381 
382  hecTot += (neutralEPerSampling[CaloSampling::HEC0] + neutralEPerSampling[CaloSampling::HEC1]
383  + neutralEPerSampling[CaloSampling::HEC2] + neutralEPerSampling[CaloSampling::HEC3]);
384 
385  psTot += (neutralEPerSampling[CaloSampling::PreSamplerB] + neutralEPerSampling[CaloSampling::PreSamplerE]);
386 
387  em3Tot += (neutralEPerSampling[CaloSampling::EMB3] + neutralEPerSampling[CaloSampling::EME3]);
388 
389  tile0Tot += (neutralEPerSampling[CaloSampling::TileBar0] + neutralEPerSampling[CaloSampling::TileExt0]);
390  }
391  else if(constit->signalType() == xAOD::FlowElement::Combined){
392  // For the combined UFOs, otherObjects are neutral or charged FEs
393  // matched to this tracks (via track-to-cluster extrapolation)
394  for (size_t n = 0; n < constit->otherObjects().size(); ++n) {
395  if(! constit->otherObject(n)) continue;
396  const xAOD::FlowElement* FE_from_combined = static_cast<const xAOD::FlowElement*>(constit->otherObject(n));
397 
398  //Charged FE (add energy to total energy only)
399  if(FE_from_combined->isCharged()){
400  if(std::find(indicesChargedFE.begin(), indicesChargedFE.end(), FE_from_combined->index()) == indicesChargedFE.end()){
401  eTot += FE_from_combined->e();
402  e2Tot += FE_from_combined->e()*FE_from_combined->e();
403  indicesChargedFE.push_back(FE_from_combined->index());
404  }
405  continue;
406  }
407  //Neutral FE:
408  //One neutral FE can be matched to various tracks and therefore be used for several UFOs
409  //We do not want to double count the energy and only add it once
410  if(std::find(indicesNeutralFE.begin(), indicesNeutralFE.end(), FE_from_combined->index()) == indicesNeutralFE.end()){
411  eTot += FE_from_combined->e();
412  e2Tot += FE_from_combined->e()*FE_from_combined->e();
413  std::vector<float> neutralFromCombEPerSampling = FEHelpers::getEnergiesPerSampling(*FE_from_combined);
414  for ( size_t s = CaloSampling::PreSamplerB; s < CaloSampling::Unknown; s++ ) {
415  ePerSampling[s] += neutralFromCombEPerSampling[s];
416  }
417  emTot += (neutralFromCombEPerSampling[CaloSampling::PreSamplerB] + neutralFromCombEPerSampling[CaloSampling::EMB1]
418  + neutralFromCombEPerSampling[CaloSampling::EMB2] + neutralFromCombEPerSampling[CaloSampling::EMB3]
419  + neutralFromCombEPerSampling[CaloSampling::PreSamplerE] + neutralFromCombEPerSampling[CaloSampling::EME1]
420  + neutralFromCombEPerSampling[CaloSampling::EME2] + neutralFromCombEPerSampling[CaloSampling::EME3]
421  + neutralFromCombEPerSampling[CaloSampling::FCAL0]);
422 
423  hecTot += (neutralFromCombEPerSampling[CaloSampling::HEC0] + neutralFromCombEPerSampling[CaloSampling::HEC1]
424  + neutralFromCombEPerSampling[CaloSampling::HEC2] + neutralFromCombEPerSampling[CaloSampling::HEC3]);
425 
426  psTot += (neutralFromCombEPerSampling[CaloSampling::PreSamplerB] + neutralFromCombEPerSampling[CaloSampling::PreSamplerE]);
427 
428  em3Tot += (neutralFromCombEPerSampling[CaloSampling::EMB3] + neutralFromCombEPerSampling[CaloSampling::EME3]);
429 
430  tile0Tot += (neutralFromCombEPerSampling[CaloSampling::TileBar0] + neutralFromCombEPerSampling[CaloSampling::TileExt0]);
431 
432  indicesNeutralFE.push_back(FE_from_combined->index());
433  }
434  }
435  }
436  }
437  }
438 
439  double fracSamplingMax = -999999999.;
440  int fracSamplingMaxIndex = -1;
441  double sumE_samplings = 0.0;
442 
444  for(unsigned int i = 0; i < ePerSampling.size(); ++i){
445  double e = ePerSampling[i];
446  sumE_samplings += e;
447  if (e>fracSamplingMax){
448  fracSamplingMax=e;
449  fracSamplingMaxIndex = i;
450  }
451  }
452  }
453 
454  for( const std::string & calcN : m_calculationNames){
455  if ( calcN == "EMFrac" ) {
457  emFracHandle(jet) = eTot != 0. ? emTot/eTot : 0.;
458  } else if ( calcN == "HECFrac" ) {
460  hecFracHandle(jet) = eTot != 0. ? hecTot/eTot : 0.;
461  } else if ( calcN == "PSFrac" ) {
463  psFracHandle(jet) = eTot != 0. ? psTot/eTot : 0.;
464  } else if ( calcN == "EM3Frac" ) {
466  em3FracHandle(jet) = eTot != 0. ? em3Tot/eTot : 0.;
467  } else if ( calcN == "Tile0Frac" ) {
469  tile0FracHandle(jet) = eTot != 0. ? tile0Tot/eTot : 0.;
470  } else if ( calcN == "EffNClusts" ) {
472  effNClustsFracHandle(jet) = eTot != 0. ? std::sqrt(eTot*eTot/e2Tot) : 0.;
473  } else if ( calcN == "FracSamplingMax" ){
475  fracSamplingMaxHandle(jet) = sumE_samplings != 0. ? fracSamplingMax/sumE_samplings : 0.;
477  fracSamplingMaxIndexHandle(jet) = fracSamplingMaxIndex;
478  }
479  }
480 }

◆ fillEperSamplingFEClusterBased()

void JetCaloEnergies::fillEperSamplingFEClusterBased ( const xAOD::Jet jet,
std::vector< float > &  ePerSampling 
) const
protected

Definition at line 485 of file JetCaloEnergies.cxx.

485  {
486  float emTot = 0.;
487  float em3Tot = 0.;
488  float hecTot = 0.;
489  float psTot = 0.;
490  float tile0Tot = 0.;
491  float eTot = 0.;
492  float e2Tot = 0.;
493  float sumRadialDistanceSquared = 0;
494  float sumLongitudinalDistanceSquared = 0;
495  size_t numConstit = jet.numConstituents();
496  std::unique_ptr<std::vector<const xAOD::CaloCluster*> > constitV_tot = std::make_unique<std::vector<const xAOD::CaloCluster*>>();
497  const xAOD::CaloCluster* leadingCluster = nullptr;
498 
499  for ( size_t i=0; i<numConstit; i++ ) {
500  if(jet.rawConstituent(i)->type()!=xAOD::Type::FlowElement) {
501  ATH_MSG_WARNING("Tried to call fillEperSamplingFE with a jet constituent that is not a FlowElement!");
502  continue;
503  }
504  const xAOD::FlowElement* constit = static_cast<const xAOD::FlowElement*>(jet.rawConstituent(i));
505 
506  for (size_t n = 0; n < constit->otherObjects().size(); ++n) {
507  if(! constit->otherObject(n)) continue;
508  int index_pfo = constit->otherObject(n)->index();
509  if(index_pfo<0) continue;
510 
511  const auto* fe = (constit->otherObject(n));
512  const xAOD::CaloCluster* cluster = nullptr;
513 
514  //If we have a cluster, we can directly access the calorimeter information
515  if(fe->type() == xAOD::Type::CaloCluster){
516  cluster = dynamic_cast<const xAOD::CaloCluster*> (fe);
517  }
518  //If we have a PFO, we should still get the associated cluster first
519  else {
520  const xAOD::FlowElement* pfo = dynamic_cast<const xAOD::FlowElement*>(fe);
521  if(!pfo->otherObjects().empty() && pfo->otherObject(0) && pfo->otherObject(0)->type() == xAOD::Type::CaloCluster){
522  cluster = dynamic_cast<const xAOD::CaloCluster*> (pfo->otherObject(0));
523  }
524  }
525  if(!cluster) continue;
526 
527  if (!leadingCluster || (cluster->rawE() > leadingCluster->rawE())){
528  leadingCluster = cluster;
529  }
530 
531 
532  if(std::find(constitV_tot->begin(), constitV_tot->end(), cluster) == constitV_tot->end()){
533  for ( size_t s= CaloSampling::PreSamplerB; s< CaloSampling::Unknown; s++ ) {
534  ePerSampling[s] += cluster->eSample( (xAOD::CaloCluster::CaloSample) s );
535  }
536  eTot += cluster->rawE();
537  e2Tot += cluster->rawE()*cluster->rawE();
538 
539  emTot += (cluster->eSample( CaloSampling::PreSamplerB) + cluster->eSample( CaloSampling::EMB1)
540  + cluster->eSample( CaloSampling::EMB2) + cluster->eSample( CaloSampling::EMB3)
542  + cluster->eSample( CaloSampling::EME2) + cluster->eSample( CaloSampling::EME3)
543  + cluster->eSample( CaloSampling::FCAL0));
544 
545  hecTot += (cluster->eSample( CaloSampling::HEC0) + cluster->eSample( CaloSampling::HEC1)
546  + cluster->eSample( CaloSampling::HEC2) + cluster->eSample( CaloSampling::HEC3));
547 
548  psTot += (cluster->eSample( CaloSampling::PreSamplerB) + cluster->eSample( CaloSampling::PreSamplerE));
549 
550  em3Tot += (cluster->eSample( CaloSampling::EMB3) + cluster->eSample( CaloSampling::EME3));
551 
552  tile0Tot += (cluster->eSample( CaloSampling::TileBar0) + cluster->eSample( CaloSampling::TileExt0));
553 
554  sumRadialDistanceSquared += cluster->rawE() * getMoment(cluster, xAOD::CaloCluster::SECOND_R);
555  sumLongitudinalDistanceSquared += cluster->rawE() * getMoment(cluster, xAOD::CaloCluster::SECOND_LAMBDA);
556 
557  constitV_tot->push_back(cluster);
558  }
559  }
560  }
561 
562  float fracSamplingMax = -999999999.;
563  int fracSamplingMaxIndex = -1;
564  float sumE_samplings = 0.0;
565 
567  for(unsigned int i = 0; i < ePerSampling.size(); ++i){
568  float e = ePerSampling[i];
569  sumE_samplings += e;
570  if (e>fracSamplingMax){
571  fracSamplingMax=e;
572  fracSamplingMaxIndex = i;
573  }
574  }
575  }
576 
577  for( const std::string & calcN : m_calculationNames){
578  if ( calcN == "EMFrac" ) {
580  emFracClusterHandle(jet) = eTot != 0. ? emTot/eTot : 0.;
581  } else if ( calcN == "HECFrac" ) {
583  hecFracClusterHandle(jet) = eTot != 0. ? hecTot/eTot : 0.;
584  } else if ( calcN == "PSFrac" ) {
586  psFracClusterHandle(jet) = eTot != 0. ? psTot/eTot : 0.;
587  } else if ( calcN == "EM3Frac" ) {
589  em3FracClusterHandle(jet) = eTot != 0. ? em3Tot/eTot : 0.;
590  } else if ( calcN == "Tile0Frac" ) {
592  tile0FracClusterHandle(jet) = eTot != 0. ? tile0Tot/eTot : 0.;
593  } else if ( calcN == "EffNClusts" ) {
595  effNClustsFracClusterHandle(jet) = eTot != 0. ? std::sqrt(eTot*eTot/e2Tot) : 0.;
596  } else if ( calcN == "FracSamplingMax" ){
598  fracSamplingMaxClusterHandle(jet) = sumE_samplings != 0. ? fracSamplingMax/sumE_samplings : 0.;
600  fracSamplingMaxIndexClusterHandle(jet) = fracSamplingMaxIndex;
601  }
602  }
603 
605  lambdaLeadingClusterHandle(jet) = getMoment(leadingCluster, xAOD::CaloCluster::CENTER_LAMBDA);
606 
608  meanRadialDistanceSquaredHandle(jet) = eTot != 0. ? sumRadialDistanceSquared/eTot : 0.;
609 
611  meanLongitudinalDistanceSquaredHandle(jet) = eTot != 0. ? sumLongitudinalDistanceSquared/eTot : 0.;
612 }

◆ fillEperSamplingPFO()

void JetCaloEnergies::fillEperSamplingPFO ( const xAOD::Jet jet,
std::vector< float > &  ePerSampling 
) const
protected

Definition at line 208 of file JetCaloEnergies.cxx.

208  {
209 
210  float emTot=0;
211  float hecTot=0;
212  float eTot =0;
213  size_t numConstit = jet.numConstituents();
214 
215  for ( size_t i=0; i<numConstit; i++ ) {
216  if (jet.rawConstituent(i)->type()==xAOD::Type::ParticleFlow){
217  const xAOD::PFO* constit = static_cast<const xAOD::PFO*>(jet.rawConstituent(i));
218  if ( fabs(constit->charge())>FLT_MIN ){
219  eTot += constit->track(0)->e();
220  } else {
221  eTot += constit->e();
226 
231 
236 
240 
244 
248 
252 
253  FillESamplingPFO(MINIFCAL0);
254  FillESamplingPFO(MINIFCAL1);
255  FillESamplingPFO(MINIFCAL2);
256  FillESamplingPFO(MINIFCAL3);
257 
258  emTot += ( E_PreSamplerB+E_EMB1+E_EMB2+E_EMB3+
259  E_PreSamplerE+E_EME1+E_EME2+E_EME3+
260  E_FCAL0 );
261  hecTot += ( E_HEC0+E_HEC1+E_HEC2+E_HEC3 );
262 
263  }//only consider neutral PFO
264  } else {
265  ATH_MSG_WARNING("Tried to call fillEperSamplingPFlow with a jet constituent that is not a PFO!");
266  }
267  }
268 
270  if(eTot != 0.0){
271  emFracHandle(jet) = emTot/eTot;
272  /*
273  * Ratio of EM layer calorimeter energy of neutrals to sum of all constituents
274  * at EM scale (note charged PFO have an EM scale at track scale, and charged weights are ignored)
275  * */
276  }
277  else {
278  emFracHandle(jet) = 0.;
279  }
280 
282  if (eTot != 0.0){
283  hecFracHandle(jet) = hecTot/eTot;
284  }
285  else{
286  hecFracHandle(jet) = 0.;
287  }
288 
289 }

◆ getKey()

SG::sgkey_t asg::AsgTool::getKey ( const void *  ptr) const
inherited

Get the (hashed) key of an object that is in the event store.

This is a bit of a special one. StoreGateSvc and xAOD::TEvent both provide ways for getting the SG::sgkey_t key for an object that is in the store, based on a bare pointer. But they provide different interfaces for doing so.

In order to allow tools to efficiently perform this operation, they can use this helper function.

See also
asg::AsgTool::getName
Parameters
ptrThe bare pointer to the object that the event store should know about
Returns
The hashed key of the object in the store. If not found, an invalid (zero) key.

Definition at line 119 of file AsgTool.cxx.

119  {
120 
121 #ifdef XAOD_STANDALONE
122  // In case we use @c xAOD::TEvent, we have a direct function call
123  // for this.
124  return evtStore()->event()->getKey( ptr );
125 #else
126  const SG::DataProxy* proxy = evtStore()->proxy( ptr );
127  return ( proxy == nullptr ? 0 : proxy->sgkey() );
128 #endif // XAOD_STANDALONE
129  }

◆ getMoment()

float JetCaloEnergies::getMoment ( const xAOD::CaloCluster cluster,
const xAOD::CaloCluster::MomentType momentType 
) const
private

Definition at line 614 of file JetCaloEnergies.cxx.

614  {
615  if (cluster){
616  double moment = 0.0;
617  bool isRetrieved = cluster->retrieveMoment(momentType, moment);
618  if (isRetrieved) return (float) moment;
619  }
620  ATH_MSG_WARNING("Can not retrieve moment from cluster");
621  return 0.0;
622 }

◆ getName()

const std::string & asg::AsgTool::getName ( const void *  ptr) const
inherited

Get the name of an object that is / should be in the event store.

This is a bit of a special one. StoreGateSvc and xAOD::TEvent both provide ways for getting the std::string name for an object that is in the store, based on a bare pointer. But they provide different interfaces for doing so.

In order to allow tools to efficiently perform this operation, they can use this helper function.

See also
asg::AsgTool::getKey
Parameters
ptrThe bare pointer to the object that the event store should know about
Returns
The string name of the object in the store. If not found, an empty string.

Definition at line 106 of file AsgTool.cxx.

106  {
107 
108 #ifdef XAOD_STANDALONE
109  // In case we use @c xAOD::TEvent, we have a direct function call
110  // for this.
111  return evtStore()->event()->getName( ptr );
112 #else
113  const SG::DataProxy* proxy = evtStore()->proxy( ptr );
114  static const std::string dummy = "";
115  return ( proxy == nullptr ? dummy : proxy->name() );
116 #endif // XAOD_STANDALONE
117  }

◆ getProperty()

template<class T >
const T* asg::AsgTool::getProperty ( const std::string &  name) const
inherited

Get one of the tool's properties.

◆ initialize()

StatusCode JetCaloEnergies::initialize ( )
overridevirtual

Dummy implementation of the initialisation function.

It's here to allow the dual-use tools to skip defining an initialisation function. Since many are doing so...

Reimplemented from asg::AsgTool.

Definition at line 42 of file JetCaloEnergies.cxx.

42  {
43  ATH_MSG_INFO("Initializing JetCaloEnergies " << name());
44 
45  if(m_jetContainerName.empty()){
46  ATH_MSG_ERROR("JetCaloEnergies needs to have its input jet container configured!");
47  return StatusCode::FAILURE;
48  }
49 
59 
73  }
74 
75  // Init calo based variables if necessary
83 
85 
88 
89  // Init standard variables if necessary
102 
103  return StatusCode::SUCCESS;
104 }

◆ inputHandles()

virtual std::vector<Gaudi::DataHandle*> AthCommonDataStore< AthCommonMsg< AlgTool > >::inputHandles ( ) const
overridevirtualinherited

Return this algorithm's input handles.

We override this to include handle instances from key arrays if they have not yet been declared. See comments on updateVHKA.

◆ isInVector()

bool JetCaloEnergies::isInVector ( const std::string &  key,
const std::vector< std::string > &  calculations 
)
protected

Definition at line 27 of file JetCaloEnergies.cxx.

27  {
28  // Split key to get back the actual handle key
29  std::vector<std::string> split;
30  std::string sub_string;
31  std::istringstream tokenStream(key);
32 
33  while (std::getline(tokenStream, sub_string, '.'))
34  {
35  split.push_back(sub_string);
36  }
37 
38  // Return true if handle key in list of calculations
39  return std::find(calculations.begin(), calculations.end(), split[1]) != calculations.end();
40 }

◆ modify()

virtual StatusCode IJetDecorator::modify ( xAOD::JetContainer jets) const
inlinefinaloverridevirtualinherited

Concrete implementation of the function inherited from IJetModifier.

Implements IJetModifier.

Definition at line 32 of file IJetDecorator.h.

32 {return decorate(jets);};

◆ msg() [1/2]

MsgStream& AthCommonMsg< AlgTool >::msg ( ) const
inlineinherited

Definition at line 24 of file AthCommonMsg.h.

24  {
25  return this->msgStream();
26  }

◆ msg() [2/2]

MsgStream& AthCommonMsg< AlgTool >::msg ( const MSG::Level  lvl) const
inlineinherited

Definition at line 27 of file AthCommonMsg.h.

27  {
28  return this->msgStream(lvl);
29  }

◆ msg_level_name()

const std::string & asg::AsgTool::msg_level_name ( ) const
inherited

A deprecated function for getting the message level's name.

Instead of using this, weirdly named function, user code should get the string name of the current minimum message level (in case they really need it...), with:

MSG::name( msg().level() )

This function's name doesn't follow the ATLAS coding rules, and as such will be removed in the not too distant future.

Returns
The string name of the current minimum message level that's printed

Definition at line 101 of file AsgTool.cxx.

101  {
102 
103  return MSG::name( msg().level() );
104  }

◆ msgLvl()

bool AthCommonMsg< AlgTool >::msgLvl ( const MSG::Level  lvl) const
inlineinherited

Definition at line 30 of file AthCommonMsg.h.

30  {
31  return this->msgLevel(lvl);
32  }

◆ outputHandles()

virtual std::vector<Gaudi::DataHandle*> AthCommonDataStore< AthCommonMsg< AlgTool > >::outputHandles ( ) const
overridevirtualinherited

Return this algorithm's output handles.

We override this to include handle instances from key arrays if they have not yet been declared. See comments on updateVHKA.

◆ print()

void asg::AsgTool::print ( ) const
virtualinherited

◆ renounce()

std::enable_if_t<std::is_void_v<std::result_of_t<decltype(&T::renounce)(T)> > && !std::is_base_of_v<SG::VarHandleKeyArray, T> && std::is_base_of_v<Gaudi::DataHandle, T>, void> AthCommonDataStore< AthCommonMsg< AlgTool > >::renounce ( T &  h)
inlineprotectedinherited

Definition at line 380 of file AthCommonDataStore.h.

381  {
382  h.renounce();
383  PBASE::renounce (h);
384  }

◆ renounceArray()

void AthCommonDataStore< AthCommonMsg< AlgTool > >::renounceArray ( SG::VarHandleKeyArray handlesArray)
inlineprotectedinherited

remove all handles from I/O resolution

Definition at line 364 of file AthCommonDataStore.h.

364  {
365  handlesArray.renounce();
366  }

◆ sysInitialize()

virtual StatusCode AthCommonDataStore< AthCommonMsg< AlgTool > >::sysInitialize ( )
overridevirtualinherited

Perform system initialization for an algorithm.

We override this to declare all the elements of handle key arrays at the end of initialization. See comments on updateVHKA.

Reimplemented in DerivationFramework::CfAthAlgTool, AthCheckedComponent< AthAlgTool >, AthCheckedComponent<::AthAlgTool >, and asg::AsgMetadataTool.

◆ sysStart()

virtual StatusCode AthCommonDataStore< AthCommonMsg< AlgTool > >::sysStart ( )
overridevirtualinherited

Handle START transition.

We override this in order to make sure that conditions handle keys can cache a pointer to the conditions container.

◆ updateVHKA()

void AthCommonDataStore< AthCommonMsg< AlgTool > >::updateVHKA ( Gaudi::Details::PropertyBase &  )
inlineinherited

Definition at line 308 of file AthCommonDataStore.h.

308  {
309  // debug() << "updateVHKA for property " << p.name() << " " << p.toString()
310  // << " size: " << m_vhka.size() << endmsg;
311  for (auto &a : m_vhka) {
312  std::vector<SG::VarHandleKey*> keys = a->keys();
313  for (auto k : keys) {
314  k->setOwner(this);
315  }
316  }
317  }

Member Data Documentation

◆ m_calcClusterBasedVars

Gaudi::Property<bool> JetCaloEnergies::m_calcClusterBasedVars {this, "calcClusterBasedVars", false, "SG key to decide if cluster-based variables will be calculated for FE-based jets"}
private

Definition at line 39 of file JetCaloEnergies.h.

◆ m_calculationNames

Gaudi::Property<std::vector<std::string> > JetCaloEnergies::m_calculationNames {this, "Calculations", {}, "Name of calo quantities to compute and add as decorations"}
private

Definition at line 37 of file JetCaloEnergies.h.

◆ m_detStore

StoreGateSvc_t AthCommonDataStore< AthCommonMsg< AlgTool > >::m_detStore
privateinherited

Pointer to StoreGate (detector store by default)

Definition at line 393 of file AthCommonDataStore.h.

◆ m_doFracSamplingMax

bool JetCaloEnergies::m_doFracSamplingMax = false
protected

Definition at line 34 of file JetCaloEnergies.h.

◆ m_effNClustsFracClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_effNClustsFracClusterKey {this, "EffNClustsClusterName", "EffNClustsCaloBased", "SG key for the EffNClusts attribute"}
private

Definition at line 58 of file JetCaloEnergies.h.

◆ m_effNClustsFracKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_effNClustsFracKey {this, "EffNClustsName", "EffNClusts", "SG key for the EffNClusts attribute"}
private

Definition at line 47 of file JetCaloEnergies.h.

◆ m_em3FracClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_em3FracClusterKey {this, "EM3FracClusterName", "EM3FracCaloBased", "SG key for the EM3Frac attribute"}
private

Definition at line 56 of file JetCaloEnergies.h.

◆ m_em3FracKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_em3FracKey {this, "EM3FracName", "EM3Frac", "SG key for the EM3Frac attribute"}
private

Definition at line 45 of file JetCaloEnergies.h.

◆ m_emFracClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_emFracClusterKey {this, "EMFracClusterName", "EMFracCaloBased", "SG key for the EMFrac attribute"}
private

Definition at line 53 of file JetCaloEnergies.h.

◆ m_emFracKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_emFracKey {this, "EMFracName", "EMFrac", "SG key for the EMFrac attribute"}
private

Definition at line 42 of file JetCaloEnergies.h.

◆ m_ePerSamplingClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_ePerSamplingClusterKey {this, "EPerSamplingClusterName", "EnergyPerSamplingCaloBased", "SG key for the EnergyPerSampling attribute"}
private

Definition at line 52 of file JetCaloEnergies.h.

◆ m_ePerSamplingKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_ePerSamplingKey {this, "EPerSamplingName", "EnergyPerSampling", "SG key for the EnergyPerSampling attribute"}
private

Definition at line 41 of file JetCaloEnergies.h.

◆ m_evtStore

StoreGateSvc_t AthCommonDataStore< AthCommonMsg< AlgTool > >::m_evtStore
privateinherited

Pointer to StoreGate (event store by default)

Definition at line 390 of file AthCommonDataStore.h.

◆ m_fracSamplingMaxClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_fracSamplingMaxClusterKey {this, "FracSamplingMaxClusterName", "FracSamplingMaxCaloBased", "SG key for the FracSamplingMax (clus) attribute"}
private

Definition at line 59 of file JetCaloEnergies.h.

◆ m_fracSamplingMaxIndexClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_fracSamplingMaxIndexClusterKey {this, "FracSamplingMaxIndexClusterName", "FracSamplingMaxIndexCaloBased", "SG key for FracSamplingMaxIndex (clus) attribute"}
private

Definition at line 60 of file JetCaloEnergies.h.

◆ m_fracSamplingMaxIndexKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_fracSamplingMaxIndexKey {this, "FracSamplingMaxIndexName", "FracSamplingMaxIndex", "SG key for the FracSamplingMaxIndex attribute"}
private

Definition at line 49 of file JetCaloEnergies.h.

◆ m_fracSamplingMaxKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_fracSamplingMaxKey {this, "FracSamplingMaxName", "FracSamplingMax", "SG key for the FracSamplingMax attribute"}
private

Definition at line 48 of file JetCaloEnergies.h.

◆ m_hecFracClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_hecFracClusterKey {this, "HECFracClusterName", "HECFracCaloBased", "SG key for the HECFrac attribute"}
private

Definition at line 54 of file JetCaloEnergies.h.

◆ m_hecFracKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_hecFracKey {this, "HECFracName", "HECFrac", "SG key for the HECFrac attribute"}
private

Definition at line 43 of file JetCaloEnergies.h.

◆ m_jetContainerName

Gaudi::Property<std::string> JetCaloEnergies::m_jetContainerName {this, "JetContainer", "", "SG key for the input jet container"}
private

Definition at line 38 of file JetCaloEnergies.h.

◆ m_lambdaLeadingClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_lambdaLeadingClusterKey {this, "LambdaLeadingClusterName", "LambdaLeadingCluster", "SG key for the longitudinal distance between the leading (highest energy) cluster and the jet’s geometrical center"}
private

Definition at line 62 of file JetCaloEnergies.h.

◆ m_meanLongitudinalDistanceSquaredKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_meanLongitudinalDistanceSquaredKey {this, "MeanLongitudinalDistanceSquaredName", "MeanLongitudinalDistanceSquared", "SG key for the weighted mean of the squared Longitudinal distances of the clusters from jet’s geometrical center"}
private

Definition at line 64 of file JetCaloEnergies.h.

◆ m_meanRadialDistanceSquaredKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_meanRadialDistanceSquaredKey {this, "MeanRadialDistanceSquaredName", "MeanRadialDistanceSquared", "SG key for the weighted mean of the squared radial distances of the clusters from jet’s geometrical center"}
private

Definition at line 63 of file JetCaloEnergies.h.

◆ m_psFracClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_psFracClusterKey {this, "PSFracClusterName", "PSFracCaloBased", "SG key for the PSFrac attribute"}
private

Definition at line 55 of file JetCaloEnergies.h.

◆ m_psFracKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_psFracKey {this, "PSFracName", "PSFrac", "SG key for the PSFrac attribute"}
private

Definition at line 44 of file JetCaloEnergies.h.

◆ m_tile0FracClusterKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_tile0FracClusterKey {this, "Tile0FracClusterName", "Tile0FracCaloBased", "SG key for the Tile0Frac attribute"}
private

Definition at line 57 of file JetCaloEnergies.h.

◆ m_tile0FracKey

SG::WriteDecorHandleKey<xAOD::JetContainer> JetCaloEnergies::m_tile0FracKey {this, "Tile0FracName", "Tile0Frac", "SG key for the Tile0Frac attribute"}
private

Definition at line 46 of file JetCaloEnergies.h.

◆ m_varHandleArraysDeclared

bool AthCommonDataStore< AthCommonMsg< AlgTool > >::m_varHandleArraysDeclared
privateinherited

Definition at line 399 of file AthCommonDataStore.h.

◆ m_vhka

std::vector<SG::VarHandleKeyArray*> AthCommonDataStore< AthCommonMsg< AlgTool > >::m_vhka
privateinherited

Definition at line 398 of file AthCommonDataStore.h.


The documentation for this class was generated from the following files:
xAOD::CaloCluster_v1::SECOND_R
@ SECOND_R
Second Moment in .
Definition: CaloCluster_v1.h:126
JetCaloEnergies::m_fracSamplingMaxClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_fracSamplingMaxClusterKey
Definition: JetCaloEnergies.h:59
JetCaloEnergies::isInVector
bool isInVector(const std::string &key, const std::vector< std::string > &calculations)
Definition: JetCaloEnergies.cxx:27
xAOD::CaloCluster_v1::rawE
flt_t rawE() const
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
GetLCDefs::Unknown
@ Unknown
Definition: GetLCDefs.h:21
JetCaloEnergies::m_effNClustsFracKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_effNClustsFracKey
Definition: JetCaloEnergies.h:47
xAOD::FlowElement_v1::Neutral
@ Neutral
Definition: FlowElement_v1.h:37
CaloCell_ID_FCS::TileExt2
@ TileExt2
Definition: FastCaloSim_CaloCell_ID.h:39
constants.EMB1
int EMB1
Definition: Calorimeter/CaloClusterCorrection/python/constants.py:53
StateLessPT_NewConfig.proxy
proxy
Definition: StateLessPT_NewConfig.py:407
JetCaloEnergies::m_jetContainerName
Gaudi::Property< std::string > m_jetContainerName
Definition: JetCaloEnergies.h:38
JetCaloEnergies::fillEperSamplingPFO
void fillEperSamplingPFO(const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
Definition: JetCaloEnergies.cxx:208
xAOD::FlowElement_v1::Charged
@ Charged
Definition: FlowElement_v1.h:38
ATH_MSG_INFO
#define ATH_MSG_INFO(x)
Definition: AthMsgStreamMacros.h:31
find
std::string find(const std::string &s)
return a remapped string
Definition: hcg.cxx:135
ObjectType
ObjectType
Definition: BaseObject.h:11
CaloCell_ID_FCS::TileExt0
@ TileExt0
Definition: FastCaloSim_CaloCell_ID.h:37
xAOD::PFO_v1::track
const TrackParticle * track(unsigned int index) const
Retrieve a const pointer to a Rec::TrackParticle.
Definition: PFO_v1.cxx:691
CaloCell_ID_FCS::TileBar1
@ TileBar1
Definition: FastCaloSim_CaloCell_ID.h:32
JetCaloEnergies::m_em3FracClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_em3FracClusterKey
Definition: JetCaloEnergies.h:56
JetCaloEnergies::m_doFracSamplingMax
bool m_doFracSamplingMax
Definition: JetCaloEnergies.h:34
CaloCell_ID_FCS::FCAL1
@ FCAL1
Definition: FastCaloSim_CaloCell_ID.h:41
AthCommonDataStore< AthCommonMsg< AlgTool > >::m_evtStore
StoreGateSvc_t m_evtStore
Pointer to StoreGate (event store by default)
Definition: AthCommonDataStore.h:390
JetCaloEnergies::m_fracSamplingMaxIndexKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_fracSamplingMaxIndexKey
Definition: JetCaloEnergies.h:49
defineDB.jets
jets
Definition: JetTagCalibration/share/defineDB.py:24
AthCommonDataStore< AthCommonMsg< AlgTool > >::m_vhka
std::vector< SG::VarHandleKeyArray * > m_vhka
Definition: AthCommonDataStore.h:398
xAOD::IParticle::type
virtual Type::ObjectType type() const =0
The type of the object as a simple enumeration.
xAOD::CaloCluster_v1::CENTER_LAMBDA
@ CENTER_LAMBDA
Shower depth at Cluster Centroid.
Definition: CaloCluster_v1.h:139
JetCaloEnergies::fillEperSamplingFE
void fillEperSamplingFE(const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
Definition: JetCaloEnergies.cxx:293
CaloCell_ID_FCS::HEC2
@ HEC2
Definition: FastCaloSim_CaloCell_ID.h:29
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
IDTPM::eTot
float eTot(const U &p)
Accessor utility function for getting the value of Energy.
Definition: TrackParametersHelper.h:118
ATH_MSG_VERBOSE
#define ATH_MSG_VERBOSE(x)
Definition: AthMsgStreamMacros.h:28
SG::VarHandleKey::key
const std::string & key() const
Return the StoreGate ID for the referenced object.
Definition: AthToolSupport/AsgDataHandles/Root/VarHandleKey.cxx:141
dbg::ptr
void * ptr(T *p)
Definition: SGImplSvc.cxx:74
FEHelpers::getEnergiesPerSampling
std::vector< float > getEnergiesPerSampling(const xAOD::FlowElement &fe)
Definition: FEHelpers.cxx:78
CaloCell_ID_FCS::TileGap3
@ TileGap3
Definition: FastCaloSim_CaloCell_ID.h:36
JetCaloEnergies::m_tile0FracKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_tile0FracKey
Definition: JetCaloEnergies.h:46
xAOD::CaloCluster
CaloCluster_v1 CaloCluster
Define the latest version of the calorimeter cluster class.
Definition: Event/xAOD/xAODCaloEvent/xAODCaloEvent/CaloCluster.h:19
JetCaloEnergies::m_ePerSamplingKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_ePerSamplingKey
Definition: JetCaloEnergies.h:41
python.iconfTool.models.loaders.level
level
Definition: loaders.py:20
SG::VarHandleKeyArray::setOwner
virtual void setOwner(IDataHandleHolder *o)=0
xAOD::CaloCluster_v1::SECOND_LAMBDA
@ SECOND_LAMBDA
Second Moment in .
Definition: CaloCluster_v1.h:127
JetCaloEnergies::m_psFracClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_psFracClusterKey
Definition: JetCaloEnergies.h:55
IDTPMcnv.htype
htype
Definition: IDTPMcnv.py:29
JetCaloEnergies::m_ePerSamplingClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_ePerSamplingClusterKey
Definition: JetCaloEnergies.h:52
xAOD::FlowElement_v1::PFlow
@ PFlow
Definition: FlowElement_v1.h:45
xAOD::PFO_v1::e
virtual double e() const
The total energy of the particle.
Definition: PFO_v1.cxx:81
xAOD::FlowElement_v1::isCharged
bool isCharged() const
Definition: FlowElement_v1.cxx:56
AthCommonDataStore::declareGaudiProperty
Gaudi::Details::PropertyBase & declareGaudiProperty(Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyType &)
specialization for handling Gaudi::Property<SG::VarHandleKey>
Definition: AthCommonDataStore.h:156
AthCommonDataStore< AthCommonMsg< AlgTool > >::evtStore
ServiceHandle< StoreGateSvc > & evtStore()
The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.
Definition: AthCommonDataStore.h:85
JetCaloEnergies::m_hecFracClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_hecFracClusterKey
Definition: JetCaloEnergies.h:54
asg::AsgTool::AsgTool
AsgTool(const std::string &name)
Constructor specifying the tool instance's name.
Definition: AsgTool.cxx:58
xAOD::CaloCluster_v1
Description of a calorimeter cluster.
Definition: CaloCluster_v1.h:62
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:209
jet
Definition: JetCalibTools_PlotJESFactors.cxx:23
AthCommonDataStore
Definition: AthCommonDataStore.h:52
CaloCell_ID_FCS::HEC1
@ HEC1
Definition: FastCaloSim_CaloCell_ID.h:28
ATH_MSG_ERROR
#define ATH_MSG_ERROR(x)
Definition: AthMsgStreamMacros.h:33
constants.EMB2
int EMB2
Definition: Calorimeter/CaloClusterCorrection/python/constants.py:54
lumiFormat.i
int i
Definition: lumiFormat.py:85
CaloSampling::CaloSample
CaloSample
Definition: Calorimeter/CaloGeoHelpers/CaloGeoHelpers/CaloSampling.h:22
CaloCell_ID_FCS::TileBar0
@ TileBar0
Definition: FastCaloSim_CaloCell_ID.h:31
beamspotman.n
n
Definition: beamspotman.py:729
CaloCell_ID_FCS::TileGap2
@ TileGap2
Definition: FastCaloSim_CaloCell_ID.h:35
AthCommonDataStore::declareProperty
Gaudi::Details::PropertyBase & declareProperty(Gaudi::Property< T, V, H > &t)
Definition: AthCommonDataStore.h:145
xAOD::FlowElement
FlowElement_v1 FlowElement
Definition of the current "pfo version".
Definition: FlowElement.h:16
JetCaloEnergies::m_fracSamplingMaxKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_fracSamplingMaxKey
Definition: JetCaloEnergies.h:48
SG::WriteDecorHandle
Handle class for adding a decoration to an object.
Definition: StoreGate/StoreGate/WriteDecorHandle.h:100
xAOD::PFO_v1::charge
float charge() const
get charge of PFO
CalibDbCompareRT.dummy
dummy
Definition: CalibDbCompareRT.py:59
xAOD::FlowElement_v1::signalType
signal_t signalType() const
JetCaloEnergies::m_meanLongitudinalDistanceSquaredKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_meanLongitudinalDistanceSquaredKey
Definition: JetCaloEnergies.h:64
JetCaloEnergies::m_fracSamplingMaxIndexClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_fracSamplingMaxIndexClusterKey
Definition: JetCaloEnergies.h:60
constants.EME1
int EME1
Definition: Calorimeter/CaloClusterCorrection/python/constants.py:55
ATH_CHECK
#define ATH_CHECK
Definition: AthCheckMacros.h:40
xAODType::ParticleFlow
@ ParticleFlow
The object is a particle-flow object.
Definition: ObjectType.h:41
MSG::name
const std::string & name(Level lvl)
Convenience function for translating message levels to strings.
Definition: MsgLevel.cxx:19
xAOD::CaloCluster_v1::retrieveMoment
bool retrieveMoment(MomentType type, double &value) const
Retrieve individual moment.
Definition: CaloCluster_v1.cxx:692
AthCommonDataStore< AthCommonMsg< AlgTool > >::m_detStore
StoreGateSvc_t m_detStore
Pointer to StoreGate (detector store by default)
Definition: AthCommonDataStore.h:393
SG::AuxElement::index
size_t index() const
Return the index of this element within its container.
JetCaloEnergies::m_tile0FracClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_tile0FracClusterKey
Definition: JetCaloEnergies.h:57
CaloCell_ID_FCS::TileGap1
@ TileGap1
Definition: FastCaloSim_CaloCell_ID.h:34
FillESamplingPFO
#define FillESamplingPFO(LAYERNAME)
Definition: JetCaloEnergies.cxx:202
SG::VarHandleKeyArray::renounce
virtual void renounce()=0
SG::HandleClassifier::type
std::conditional< std::is_base_of< SG::VarHandleKeyArray, T >::value, VarHandleKeyArrayType, type2 >::type type
Definition: HandleClassifier.h:54
xAOD::FlowElement_v1::chargedObject
const xAOD::IParticle * chargedObject(std::size_t i) const
Definition: FlowElement_v1.cxx:127
JetCaloEnergies::m_meanRadialDistanceSquaredKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_meanRadialDistanceSquaredKey
Definition: JetCaloEnergies.h:63
merge_scale_histograms.doc
string doc
Definition: merge_scale_histograms.py:9
xAOD::PFO_v1
Class describing a particle flow object.
Definition: PFO_v1.h:35
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:240
CaloCell_ID_FCS::TileExt1
@ TileExt1
Definition: FastCaloSim_CaloCell_ID.h:38
CaloCell_ID_FCS::EME3
@ EME3
Definition: FastCaloSim_CaloCell_ID.h:26
xAOD::FlowElement_v1::e
virtual double e() const override
The total energy of the particle.
Definition: FlowElement_v1.cxx:25
JetCaloEnergies::m_effNClustsFracClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_effNClustsFracClusterKey
Definition: JetCaloEnergies.h:58
xAOD::TrackParticle_v1::e
virtual double e() const override final
The total energy of the particle.
Definition: TrackParticle_v1.cxx:110
JetCaloEnergies::m_calculationNames
Gaudi::Property< std::vector< std::string > > m_calculationNames
Definition: JetCaloEnergies.h:37
xAOD::FlowElement_v1::Combined
@ Combined
Definition: FlowElement_v1.h:39
CaloCell_ID_FCS::HEC0
@ HEC0
Definition: FastCaloSim_CaloCell_ID.h:27
JetCaloEnergies::m_emFracKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_emFracKey
Definition: JetCaloEnergies.h:42
JetCaloEnergies::m_emFracClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_emFracClusterKey
Definition: JetCaloEnergies.h:53
JetCaloEnergies::m_calcClusterBasedVars
Gaudi::Property< bool > m_calcClusterBasedVars
Definition: JetCaloEnergies.h:39
xAOD::Jet_v1
Class describing a jet.
Definition: Jet_v1.h:57
jet::JetCaloQualityUtils::hecF
static double hecF(const Jet *jet)
Definition: JetCaloQualityUtils.cxx:67
xAOD::CaloCluster_v1::eSample
float eSample(const CaloSample sampling) const
Definition: CaloCluster_v1.cxx:514
a
TList * a
Definition: liststreamerinfos.cxx:10
SG::WriteDecorHandleKey::initialize
StatusCode initialize(bool used=true)
If this object is used as a property, then this should be called during the initialize phase.
h
IJetDecorator::decorate
virtual StatusCode decorate(const xAOD::JetContainer &jets) const =0
Decorate a jet collection without otherwise modifying it.
ATH_MSG_WARNING
#define ATH_MSG_WARNING(x)
Definition: AthMsgStreamMacros.h:32
CaloCell_ID_FCS::PreSamplerE
@ PreSamplerE
Definition: FastCaloSim_CaloCell_ID.h:23
CaloCell_ID_FCS::PreSamplerB
@ PreSamplerB
Definition: FastCaloSim_CaloCell_ID.h:19
xAOD::FlowElement_v1::otherObject
const xAOD::IParticle * otherObject(std::size_t i) const
Definition: FlowElement_v1.cxx:196
AthCommonMsg< AlgTool >::msg
MsgStream & msg() const
Definition: AthCommonMsg.h:24
JetCaloEnergies::getMoment
float getMoment(const xAOD::CaloCluster *cluster, const xAOD::CaloCluster::MomentType &momentType) const
Definition: JetCaloEnergies.cxx:614
JetCaloEnergies::m_em3FracKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_em3FracKey
Definition: JetCaloEnergies.h:45
JetCaloEnergies::m_lambdaLeadingClusterKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_lambdaLeadingClusterKey
Definition: JetCaloEnergies.h:62
SG::VarHandleBase::vhKey
SG::VarHandleKey & vhKey()
Return a non-const reference to the HandleKey.
Definition: StoreGate/src/VarHandleBase.cxx:629
python.SystemOfUnits.s
float s
Definition: SystemOfUnits.py:147
JetCaloEnergies::m_psFracKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_psFracKey
Definition: JetCaloEnergies.h:44
jet::JetCaloQualityUtils::emFraction
static double emFraction(const std::vector< float > &ePerSampling)
Definition: JetCaloQualityUtils.cxx:56
JetCaloEnergies::fillEperSamplingFEClusterBased
void fillEperSamplingFEClusterBased(const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
Definition: JetCaloEnergies.cxx:485
JetCaloEnergies::m_hecFracKey
SG::WriteDecorHandleKey< xAOD::JetContainer > m_hecFracKey
Definition: JetCaloEnergies.h:43
CaloCell_ID_FCS::FCAL2
@ FCAL2
Definition: FastCaloSim_CaloCell_ID.h:42
python.Bindings.keys
keys
Definition: Control/AthenaPython/python/Bindings.py:801
JetCaloEnergies::fillEperSamplingCluster
void fillEperSamplingCluster(const xAOD::Jet &jet, std::vector< float > &ePerSampling) const
Definition: JetCaloEnergies.cxx:157
CaloCell_ID_FCS::HEC3
@ HEC3
Definition: FastCaloSim_CaloCell_ID.h:30
SG::DataProxy
Definition: DataProxy.h:45
CaloCell_ID_FCS::FCAL0
@ FCAL0
Definition: FastCaloSim_CaloCell_ID.h:40
CaloCell_ID_FCS::EMB3
@ EMB3
Definition: FastCaloSim_CaloCell_ID.h:22
CaloCell_ID_FCS::TileBar2
@ TileBar2
Definition: FastCaloSim_CaloCell_ID.h:33
jet::JetCaloQualityUtils::presamplerFraction
static double presamplerFraction(const Jet *jet)
Definition: JetCaloQualityUtils.cxx:83
Trk::split
@ split
Definition: LayerMaterialProperties.h:38
constants.EME2
int EME2
Definition: Calorimeter/CaloClusterCorrection/python/constants.py:56
xAOD::IParticle::e
virtual double e() const =0
The total energy of the particle.
fitman.k
k
Definition: fitman.py:528
xAOD::FlowElement_v1::otherObjects
std::vector< const xAOD::IParticle * > otherObjects() const
Definition: FlowElement_v1.cxx:163
xAOD::FlowElement_v1
A detector object made of other lower level object(s)
Definition: FlowElement_v1.h:25
mapkey::key
key
Definition: TElectronEfficiencyCorrectionTool.cxx:37