ATLAS Offline Software
Loading...
Searching...
No Matches
McEventCollectionCnv_p5 Class Referenceabstract

#include <McEventCollectionCnv_p5.h>

Inheritance diagram for McEventCollectionCnv_p5:
Collaboration diagram for McEventCollectionCnv_p5:

Public Types

typedef TRANS Trans_t
typedef PERS Pers_t
typedef PERS PersBase_t
typedef TRANS TransBase_t
typedef ITPConverterFor< TRANS > PolyCnvBase_t
typedef Gaudi::PluginService::Factory< ITPCnvBase *()> Factory

Public Member Functions

 McEventCollectionCnv_p5 ()
 Default constructor:
 McEventCollectionCnv_p5 (const McEventCollectionCnv_p5 &rhs)
 Copy constructor.
McEventCollectionCnv_p5operator= (const McEventCollectionCnv_p5 &rhs)
 Assignement operator.
virtual ~McEventCollectionCnv_p5 ()
 Destructor.
void setPileup ()
virtual void persToTrans (const McEventCollection_p5 *persObj, McEventCollection *transObj, MsgStream &log)
 Method creating the transient representation of McEventCollection from its persistent representation McEventCollection_p5.
virtual void transToPers (const McEventCollection *transObj, McEventCollection_p5 *persObj, MsgStream &log)
 Method creating the persistent representation McEventCollection_p5 from its transient representation McEventCollection.
virtual TPObjRef virt_toPersistent (const TRANS *trans, MsgStream &log)
 Internal interface method that is used to invoke the real conversion method (toPersistent_impl) in the derived converter.
virtual TPObjRef virt_toPersistentWithKey (const TRANS *trans, const std::string &key, MsgStream &log)
 Internal interface method that is used to invoke the real conversion method (toPersistent_impl) in the derived converter.
virtual void pstoreToTrans (unsigned index, TRANS *trans, MsgStream &log)
 Convert persistent representation stored in the storage vector of the top-level object to transient.
virtual TRANS * createTransient (const PERS *persObj, MsgStream &log)
 Create transient representation of a persistent object.
virtual TRANS * createTransientWithKey (const PERS *persObj, const std::string &key, MsgStream &log)
 Create transient representation of a persistent object, with SG key.
virtual TRANS * virt_createTransFromPStore (unsigned index, MsgStream &log)
 Internal interface method that is used to invoke the real conversion method (createTransient)
virtual TRANS * virt_createTransFromPStoreWithKey (unsigned index, const std::string &key, MsgStream &log)
 Internal interface method that is used to invoke the real conversion method (createTransient)
virtual void persToTrans (const PERS *persObj, TRANS *transObj, MsgStream &log)=0
 Convert persistent representation to transient one.
virtual void transToPers (const TRANS *transObj, PERS *persObj, MsgStream &log)=0
 Convert transient representation to persistent one.
virtual void persToTransWithKey (const PERS *persObj, TRANS *transObj, const std::string &, MsgStream &log)
 Convert persistent representation to transient one.
virtual void transToPersWithKey (const TRANS *transObj, PERS *persObj, const std::string &, MsgStream &log)
 Convert transient representation to persistent one.
virtual void persToTransUntyped (const void *pers, void *trans, MsgStream &log)
 Convert persistent object representation to transient.
virtual void transToPersUntyped (const void *trans, void *pers, MsgStream &log)
 Convert transient object representation to persistent.
virtual void persToTransWithKeyUntyped (const void *pers, void *trans, const std::string &key, MsgStream &log)
 Convert persistent object representation to transient.
virtual void transToPersWithKeyUntyped (const void *trans, void *pers, const std::string &key, MsgStream &log)
 Convert transient object representation to persistent.
virtual PERScreatePersistent (const TRANS *transObj, MsgStream &log)
 Create persistent representation of a transient object.
virtual PERScreatePersistentWithKey (const TRANS *transObj, const std::string &key, MsgStream &log)
 Create persistent representation of a transient object, with SG key.
TPObjRef toPersistentWithKey_impl (const TRANS *trans, const std::string &key, MsgStream &log)
 Convert transient object to persistent representation.
virtual const std::type_info & transientTInfo () const
 return C++ type id of the transient class this converter is for
virtual const std::type_info & persistentTInfo () const
 return C++ type id of the persistent class this converter is for
void setPStorage (std::vector< PERS > *storage)
 Tell this converter which storage vector it should use to store or retrieve persistent representations.
void setRecursive (bool flag=true)
 Tell the converter if it should work in recursive mode slower but it can safely handle recursion.
void ignoreRecursion (bool flag=false)
 Tell the converter to ignore recursion (do not throw errors) even when recurion is detected.
virtual void reservePStorage (size_t size)
 Reserve 'size' elements for persistent storage.
template<class CNV>
CNV * converterForType (CNV *cnv, const std::type_info &t_info, MsgStream &log) const
 Find converter for a given C++ type ID, that is or ihnerits from CNV type.
template<class CNV>
CNV * converterForRef (CNV *cnv, const TPObjRef &ref, MsgStream &log) const
 Find converter for a TP type ID (passed in a TP Ref), that is or ihnerits from CNV type.
template<class CNV>
TPObjRef baseToPersistent (CNV **cnv, const typename CNV::Trans_t *transObj, MsgStream &log) const
 Persistify bass class of a given object and store the persistent represenation in the storage vector of the top-level persistent object.
template<class CNV>
TPObjRef toPersistent (CNV **cnv, const typename CNV::TransBase_t *transObj, MsgStream &log) const
 Persistify an object and store the persistent represenation in the storage vector of the top-level persistent object.
template<class CNV, class TRANS_T>
void fillTransFromPStore (CNV **cnv, const TPObjRef &ref, TRANS_T *trans, MsgStream &log) const
 Convert persistent object, stored in the the top-level persistent object and referenced by the TP Ref, to transient representation.
template<class CNV>
CNV::Trans_t * createTransFromPStore (CNV **cnv, const TPObjRef &ref, MsgStream &log) const
 Create transient representation of a persistent object, stored in the the top-level persistent object and referenced by the TP Ref.
virtual void initPrivateConverters (TopLevelTPCnvBase *)
virtual TopLevelTPCnvBasetopConverter ()
 return the top-level converter for this elemental TP converter
virtual const TopLevelTPCnvBasetopConverter () const
 return the top-level converter for this elemental TP converter
const std::type_info & transBaseTInfo () const
 return C++ type id of the common base transient type for all converters for a group of polymorphic types
virtual const TPObjRef::typeID_ttypeID () const
 Return TP typeID for persistent objects produced by this converter.
unsigned typeIDvalue () const
 inlined non-virtual version to get the typeID value fast
virtual void setRuntimeTopConverter (TopLevelTPCnvBase *topConverter)
 Set runtime top-level converter - usually it is the owning TL converter, but in case of extended objects it will be the TL converter of the extended object.
virtual void setTopConverter (TopLevelTPCnvBase *topConverter, const TPObjRef::typeID_t &TPtypeID)
 Set which top-level converter owns this elemental converter, and what TPtypeID was assigned to the persistent objects it produces.
void setReadingFlag ()
void clearReadingFlag ()
bool wasUsedForReading ()
virtual void converterNotFound (const std::type_info &converterType, ITPConverter *c, const std::string &typeName, MsgStream &log) const
 method called when the right TP converter was not found during writing
virtual void converterNotFound (unsigned typeID, ITPConverter *c, const std::string &typeName, MsgStream &log) const
 method called when the right TP converter was not found during reading

Protected Types

typedef std::unordered_map< HepMC::GenParticlePtr, int > ParticlesMap_t

Protected Member Functions

HepMC::GenVertexPtr createGenVertex (const McEventCollection_p5 &persEvts, const GenVertex_p5 &vtx, ParticlesMap_t &bcToPart, HepMC::DataPool &datapools, HepMC::GenEvent *parent=nullptr) const
 Create a transient GenVertex from a persistent one (version 1) It returns the new GenVertex.
HepMC::GenParticlePtr createGenParticle (const GenParticle_p5 &p, ParticlesMap_t &partToEndVtx, HepMC::DataPool &datapools, const HepMC::GenVertexPtr &parent=nullptr, bool add_to_output=true) const
 Create a transient GenParticle from a persistent one (vers.1) It returns the new GenParticle.
void writeGenVertex (const HepMC::GenVertex &vtx, McEventCollection_p5 &persEvt) const
 Method to write a persistent GenVertex object.
int writeGenParticle (const HepMC::GenParticle &p, McEventCollection_p5 &persEvt) const
 Method to write a persistent GenParticle object It returns the index of the persistent GenParticle into the collection of persistent of GenParticles from the persistent GenEvent.

Protected Attributes

bool m_isPileup
ServiceHandle< IHepMCWeightSvcm_hepMCWeightSvc
std::vector< PERS > * m_pStorage
 the address of the storage vector for persistent representations
int m_curRecLevel
 count recursive invocations, to detect recursion
bool m_recursive
 if true, work in recursion-safe way (slower)
bool m_ignoreRecursion
 if true, do not throw errors in case of recursion.
TPObjRef::typeID_t m_pStorageTID
 TP Ref typeID for the persistent objects this converter is creating.
unsigned m_pStorageTIDvalue
 m_pStorageTID converted to integer value
TopLevelTPCnvBasem_topConverter
 top level converter that owns this elemental TP converter it also holds the storage object
TopLevelTPCnvBasem_topConverterRuntime
 top level converter "owning" this TP converter at runtime (different from m_topConverter in case the top-level converter and object have extensions)
bool m_wasUsedForReading
 flag set when using this converter for reading triggers search for a new converter before writing, to prevent possible use of old version

Private Types

typedef T_AthenaPoolTPCnvBase< McEventCollection, McEventCollection_p5Base_t

Detailed Description

Definition at line 47 of file McEventCollectionCnv_p5.h.

Member Typedef Documentation

◆ Base_t

◆ Factory

typedef Gaudi::PluginService::Factory<ITPCnvBase*()> ITPCnvBase::Factory
inherited

Definition at line 26 of file ITPCnvBase.h.

◆ ParticlesMap_t

typedef std::unordered_map<HepMC::GenParticlePtr,int> McEventCollectionCnv_p5::ParticlesMap_t
protected

Definition at line 98 of file McEventCollectionCnv_p5.h.

◆ Pers_t

typedef PERS TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::Pers_t
inherited

Definition at line 335 of file TPConverter.h.

◆ PersBase_t

typedef PERS TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::PersBase_t
inherited

Definition at line 336 of file TPConverter.h.

◆ PolyCnvBase_t

template<class TRANS>
typedef ITPConverterFor< TRANS > ITPConverterFor< TRANS >::PolyCnvBase_t
inherited

Definition at line 41 of file TPConverter.h.

◆ Trans_t

typedef TRANS TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::Trans_t
inherited

Definition at line 334 of file TPConverter.h.

◆ TransBase_t

template<class TRANS>
typedef TRANS ITPConverterFor< TRANS >::TransBase_t
inherited

Definition at line 39 of file TPConverter.h.

Constructor & Destructor Documentation

◆ McEventCollectionCnv_p5() [1/2]

McEventCollectionCnv_p5::McEventCollectionCnv_p5 ( )

Default constructor:

Definition at line 30 of file McEventCollectionCnv_p5.cxx.

30 :
31 Base_t( ),
32 m_isPileup(false),m_hepMCWeightSvc("HepMCWeightSvc","McEventCollectionCnv_p5")
33{}
T_AthenaPoolTPCnvBase< McEventCollection, McEventCollection_p5 > Base_t
ServiceHandle< IHepMCWeightSvc > m_hepMCWeightSvc

◆ McEventCollectionCnv_p5() [2/2]

McEventCollectionCnv_p5::McEventCollectionCnv_p5 ( const McEventCollectionCnv_p5 & rhs)

Copy constructor.

Definition at line 35 of file McEventCollectionCnv_p5.cxx.

35 :
36 Base_t( rhs ),
37 m_isPileup(false),m_hepMCWeightSvc("HepMCWeightSvc","McEventCollectionCnv_p5")
38{}

◆ ~McEventCollectionCnv_p5()

McEventCollectionCnv_p5::~McEventCollectionCnv_p5 ( )
virtualdefault

Destructor.

Member Function Documentation

◆ baseToPersistent()

template<class TRANS>
template<class CNV>
TPObjRef ITPConverterFor< TRANS >::baseToPersistent ( CNV ** cnv,
const typename CNV::Trans_t * transObj,
MsgStream & log ) const
inlineinherited

Persistify bass class of a given object and store the persistent represenation in the storage vector of the top-level persistent object.

The converter is located using the transient type from the CNV parameter, not from the object itself (because we need the base type, not the actual type)

Parameters
cnv[IN/OUT] type of this parameter decides which converter will be used. Once the converter is found, this pointer will be set so the search is done only once
transObj[IN] transient object
log[IN] output message stream
Returns
TPObjRef TP reference to the persistent representation stored in the storage vector of the top-level persistent object

Definition at line 97 of file TPConverter.h.

97 {
98 if( !*cnv || (*cnv)->wasUsedForReading() ) {
99 // don't trust the converter if it was used for reading, find again
100 *cnv = converterForType( *cnv, typeid(typename CNV::Trans_t), log );
101 if( !*cnv ) return TPObjRef();
102 (*cnv)->clearReadingFlag();
103 }
104// return (**cnv).toPersistent_impl(transObj, log);
105 return (**cnv).virt_toPersistent(transObj, log);
106 }
Common base class for all TP converters, specialized for a given transient type.
Definition TPConverter.h:37
CNV * converterForType(CNV *cnv, const std::type_info &t_info, MsgStream &log) const
Find converter for a given C++ type ID, that is or ihnerits from CNV type.
Definition TPConverter.h:58
bool wasUsedForReading()

◆ clearReadingFlag()

template<class TRANS>
void ITPConverterFor< TRANS >::clearReadingFlag ( )
inlineinherited

Definition at line 235 of file TPConverter.h.

235{ m_wasUsedForReading = false; }
bool m_wasUsedForReading
flag set when using this converter for reading triggers search for a new converter before writing,...

◆ converterForRef()

template<class TRANS>
template<class CNV>
CNV * ITPConverterFor< TRANS >::converterForRef ( CNV * cnv,
const TPObjRef & ref,
MsgStream & log ) const
inlineinherited

Find converter for a TP type ID (passed in a TP Ref), that is or ihnerits from CNV type.

Parameters
cnv[IN] parameter specifying the converter type
ref[IN] TP Ref to an object for which a converter is sought
log[IN] output message stream
Returns
CNV* pointer to the converter, if found

Definition at line 74 of file TPConverter.h.

74 {
75 ITPConverter *c = m_topConverterRuntime->converterForRef( ref );
76 cnv = dynamic_cast<CNV*>(c);
77 if( !cnv )
78 this->converterNotFound( ref.typeID(), c, typeid(CNV).name(), log );
79 return cnv;
80 }
TopLevelTPCnvBase * m_topConverterRuntime
top level converter "owning" this TP converter at runtime (different from m_topConverter in case the ...
virtual const TPObjRef::typeID_t & typeID() const
Return TP typeID for persistent objects produced by this converter.
virtual void converterNotFound(const std::type_info &converterType, ITPConverter *c, const std::string &typeName, MsgStream &log) const
method called when the right TP converter was not found during writing

◆ converterForType()

template<class TRANS>
template<class CNV>
CNV * ITPConverterFor< TRANS >::converterForType ( CNV * cnv,
const std::type_info & t_info,
MsgStream & log ) const
inlineinherited

Find converter for a given C++ type ID, that is or ihnerits from CNV type.

Parameters
cnv[IN] parameter specifying the converter type
t_info[IN] C++ type id for which a converter is sought
log[IN] output message stream
Returns
CNV* pointer to the converter, if found

Definition at line 58 of file TPConverter.h.

58 {
59 ITPConverter *c = m_topConverterRuntime->converterForType( t_info );
60 cnv = dynamic_cast< CNV* >( c );
61 if( !cnv )
62 this->converterNotFound( typeid(CNV), c, t_info.name(), log );
63 return cnv;
64 }

◆ converterNotFound() [1/2]

void ITPConverter::converterNotFound ( const std::type_info & converterType,
ITPConverter * c,
const std::string & typeName,
MsgStream & log ) const
virtualinherited

method called when the right TP converter was not found during writing

  • useful as a debugging hook, prints a detailed error message
Parameters
converterType[IN] converterType that was requested
c[IN] converter that was actually found (0 if not)
typeName[IN] the C++ type name of the type for which converter was searched for
log[IN] output message stream

Definition at line 22 of file ITPConverter.cxx.

26{
27 log << MSG::ERROR << ">>>>>> in parent TP converter " << typeid(*this).name()
28 << ": could not find matching TP converter for type " << typeName << endmsg;
29 if( c ) {
30 log << MSG::ERROR << " - found incompatible converter of type "
31 << typeid(*c).name() << endmsg;
32 }
33 log << MSG::ERROR << " Converter handle type was " << converterType.name() << endmsg;
35}
#define endmsg
static void errorHandler()

◆ converterNotFound() [2/2]

void ITPConverter::converterNotFound ( unsigned typeID,
ITPConverter * c,
const std::string & typeName,
MsgStream & log ) const
virtualinherited

method called when the right TP converter was not found during reading

  • useful as a debugging hook, prints a detailed error message
Parameters
typeID[IN] converter ID that was requested
c[IN] converter that was actually found (0 if not)
typeName[IN] the C++ type name of the type for which converter was searched for
log[IN] output message stream

Definition at line 40 of file ITPConverter.cxx.

44{
45 log << MSG::ERROR << ">>>>>> in parent TP converter " << typeid(*this).name()
46 << " requested TP converter for TP type ID " << typeID << " not found " << endmsg;
47 if( c ) {
48 log << MSG::ERROR << " - found converter " << typeid(*c).name()
49 << " for " << c->transientTInfo().name()
50 << " with an incompatible base type " << c->transBaseTInfo().name()
51 << endmsg;
52 }
53 log << MSG::ERROR << " Converter handle type was " << reqCnvTypeName << endmsg;
55}
virtual const TPObjRef::typeID_t & typeID() const =0
Return TP typeID for persistent objects produced by this converter.

◆ createGenParticle()

HepMC::GenParticlePtr McEventCollectionCnv_p5::createGenParticle ( const GenParticle_p5 & p,
ParticlesMap_t & partToEndVtx,
HepMC::DataPool & datapools,
const HepMC::GenVertexPtr & parent = nullptr,
bool add_to_output = true ) const
protected

Create a transient GenParticle from a persistent one (vers.1) It returns the new GenParticle.

Note that the map being passed as an argument is to hold the association of barcodes to particle so that we can reconnect all the particles to their decay vertex (if any).

Definition at line 649 of file McEventCollectionCnv_p5.cxx.

651{
652 HepMC::GenParticlePtr p(nullptr);
653 if (m_isPileup) {
655 } else {
656 p = datapools.getGenParticle();
657 }
658 if (parent) add_to_output?parent->add_particle_out(p):parent->add_particle_in(p);
659#ifdef HEPMC3
660 p->set_pdg_id( persPart.m_pdgId);
661 p->set_status(HepMC::new_particle_status_from_old(persPart.m_status, persPart.m_barcode)); // UPDATED STATUS VALUE TO NEW SCHEME
662 p->add_attribute("phi",std::make_shared<HepMC3::DoubleAttribute>(persPart.m_phiPolarization));
663 p->add_attribute("theta",std::make_shared<HepMC3::DoubleAttribute>(persPart.m_thetaPolarization));
664 HepMC::suggest_barcode(p,persPart.m_barcode);
665 p->set_generated_mass(persPart.m_generated_mass);
666
667 // Note: do the E calculation in extended (long double) precision.
668 // That happens implicitly on x86 with optimization on; saying it
669 // explicitly ensures that we get the same results with and without
670 // optimization. (If this is a performance issue for platforms
671 // other than x86, one could change to double for those platforms.)
672 if ( 0 == persPart.m_recoMethod ) {
673 double temp_e = std::sqrt( (long double)(persPart.m_px)*persPart.m_px +
674 (long double)(persPart.m_py)*persPart.m_py +
675 (long double)(persPart.m_pz)*persPart.m_pz +
676 (long double)(persPart.m_m) *persPart.m_m );
677 p->set_momentum( HepMC::FourVector(persPart.m_px,persPart.m_py,persPart.m_pz,temp_e));
678 } else {
679 const int signM2 = ( persPart.m_m >= 0. ? 1 : -1 );
680 const double persPart_ene =
681 std::sqrt( std::abs((long double)(persPart.m_px)*persPart.m_px +
682 (long double)(persPart.m_py)*persPart.m_py +
683 (long double)(persPart.m_pz)*persPart.m_pz +
684 signM2* (long double)(persPart.m_m)* persPart.m_m));
685 const int signEne = ( persPart.m_recoMethod == 1 ? 1 : -1 );
686 p->set_momentum(HepMC::FourVector( persPart.m_px,
687 persPart.m_py,
688 persPart.m_pz,
689 signEne * persPart_ene ));
690 }
691
692 // setup flow
693 std::vector<int> flows;
694 const unsigned int nFlow = persPart.m_flow.size();
695 for ( unsigned int iFlow= 0; iFlow != nFlow; ++iFlow ) {
696 flows.push_back(persPart.m_flow[iFlow].second );
697 }
698 //We construct it here as vector w/o gaps.
699 p->add_attribute("flows", std::make_shared<HepMC3::VectorIntAttribute>(flows));
700#else
701 p->m_pdg_id = persPart.m_pdgId;
702 p->m_status = HepMC::new_particle_status_from_old(persPart.m_status, persPart.m_barcode); // UPDATED STATUS VALUE TO NEW SCHEME
703 p->m_polarization.m_theta= static_cast<double>(persPart.m_thetaPolarization);
704 p->m_polarization.m_phi = static_cast<double>(persPart.m_phiPolarization );
705 p->m_production_vertex = 0;
706 p->m_end_vertex = 0;
707 p->m_barcode = persPart.m_barcode;
708 p->m_generated_mass = static_cast<double>(persPart.m_generated_mass);
709
710 // Note: do the E calculation in extended (long double) precision.
711 // That happens implicitly on x86 with optimization on; saying it
712 // explicitly ensures that we get the same results with and without
713 // optimization. (If this is a performance issue for platforms
714 // other than x86, one could change to double for those platforms.)
715 if ( 0 == persPart.m_recoMethod ) {
716
717 p->m_momentum.setPx( persPart.m_px);
718 p->m_momentum.setPy( persPart.m_py);
719 p->m_momentum.setPz( persPart.m_pz);
720 double temp_e = std::sqrt( (long double)(persPart.m_px)*persPart.m_px +
721 (long double)(persPart.m_py)*persPart.m_py +
722 (long double)(persPart.m_pz)*persPart.m_pz +
723 (long double)(persPart.m_m) *persPart.m_m );
724 p->m_momentum.setE( temp_e);
725 } else {
726 const int signM2 = ( persPart.m_m >= 0. ? 1 : -1 );
727 const double persPart_ene =
728 std::sqrt( std::abs((long double)(persPart.m_px)*persPart.m_px +
729 (long double)(persPart.m_py)*persPart.m_py +
730 (long double)(persPart.m_pz)*persPart.m_pz +
731 signM2* (long double)(persPart.m_m)* persPart.m_m));
732 const int signEne = ( persPart.m_recoMethod == 1 ? 1 : -1 );
733 p->m_momentum.set( persPart.m_px,
734 persPart.m_py,
735 persPart.m_pz,
736 signEne * persPart_ene );
737 }
738
739 // setup flow
740 const unsigned int nFlow = persPart.m_flow.size();
741 p->m_flow.clear();
742 for ( unsigned int iFlow= 0; iFlow != nFlow; ++iFlow ) {
743 p->m_flow.set_icode( persPart.m_flow[iFlow].first,
744 persPart.m_flow[iFlow].second );
745 }
746#endif
747
748 if ( persPart.m_endVtx != 0 ) {
749 partToEndVtx[p] = persPart.m_endVtx;
750 }
751
752 return p;
753}
bool suggest_barcode(T &p, int i)
Definition GenEvent.h:672
GenParticlePtr newGenParticlePtr(const HepMC::FourVector &mom=HepMC::FourVector(0.0, 0.0, 0.0, 0.0), int pid=0, int status=0)
Definition GenParticle.h:39
int new_particle_status_from_old(const int oldStatus, const int barcode)
Get particle status in the new scheme from the barcode and status in the old scheme.
GenParticle * GenParticlePtr
Definition GenParticle.h:37
HepMC::GenParticlePtr getGenParticle()

◆ createGenVertex()

HepMC::GenVertexPtr McEventCollectionCnv_p5::createGenVertex ( const McEventCollection_p5 & persEvts,
const GenVertex_p5 & vtx,
ParticlesMap_t & bcToPart,
HepMC::DataPool & datapools,
HepMC::GenEvent * parent = nullptr ) const
protected

Create a transient GenVertex from a persistent one (version 1) It returns the new GenVertex.

This method calls createGenParticle for each of the out-going particles and only for the in-going particle which are orphans (no production vertex): for optimisation purposes. Note that the map being passed as an argument is to hold the association of barcodes to particle so that we can reconnect all the (non-orphan) particles to their decay vertex (if any).

Note: the reversed order is because of ATLASSIM-5525

Definition at line 558 of file McEventCollectionCnv_p5.cxx.

563{
564 HepMC::GenVertexPtr vtx(nullptr);
565 if(m_isPileup) {
567 } else {
568 vtx = datapools.getGenVertex();
569 }
570 if (parent ) parent->add_vertex(vtx);
571#ifdef HEPMC3
572 vtx->set_position(HepMC::FourVector( persVtx.m_x , persVtx.m_y , persVtx.m_z ,persVtx.m_t ));
573 //AV ID cannot be assigned in HepMC3. And its meaning in HepMC2 is not clear.
574 int persVtxStatus(persVtx.m_id);
575 // GenVertex "status" (id in HepMC2) was not set for some of
576 // MC15/MC16 due to a bug in that production release.
577 if (persVtxStatus == 0 && HepMC::BarcodeBased::is_simulation_vertex(persVtx.m_barcode)) {
578 // Status values for GenVertex objects created during simulation
579 // should have been set to 1000 + Geant4 process in the old
580 // scheme. Overriding the value to 1000, means that status-based
581 // recognition of simulated vertices will work, while still
582 // indicating that the process was not set. (ATLASSIM-6901)
583 persVtxStatus = 1000;
584 }
585 vtx->set_status(HepMC::new_vertex_status_from_old(persVtxStatus, persVtx.m_barcode)); // UPDATED STATUS VALUE TO NEW SCHEME
586 // cast from std::vector<float> to std::vector<double>
587 std::vector<double> weights( persVtx.m_weights.begin(), persVtx.m_weights.end() );
588 vtx->add_attribute("weights",std::make_shared<HepMC3::VectorDoubleAttribute>(weights));
589 HepMC::suggest_barcode(vtx,persVtx.m_barcode);
590 // handle the in-going (orphans) particles
591 const unsigned int nPartsIn = persVtx.m_particlesIn.size();
592 for ( unsigned int i = 0; i != nPartsIn; ++i ) {
593 createGenParticle( persEvt.m_genParticles[persVtx.m_particlesIn[i]], partToEndVtx, datapools, vtx, false );
594 }
595
596 // now handle the out-going particles
597 const unsigned int nPartsOut = persVtx.m_particlesOut.size();
598 for ( unsigned int i = 0; i != nPartsOut; ++i ) {
599 createGenParticle( persEvt.m_genParticles[persVtx.m_particlesOut[i]], partToEndVtx, datapools, vtx );
600 }
601#else
602 vtx->m_position.setX( persVtx.m_x );
603 vtx->m_position.setY( persVtx.m_y );
604 vtx->m_position.setZ( persVtx.m_z );
605 vtx->m_position.setT( persVtx.m_t );
606 vtx->m_particles_in.clear();
607 vtx->m_particles_out.clear();
608 int persVtxStatus(persVtx.m_id);
609 // GenVertex "status" (id in HepMC2) was not set for some of
610 // MC15/MC16 due to a bug in that production release.
611 if (persVtxStatus == 0 && HepMC::BarcodeBased::is_simulation_vertex(persVtx.m_barcode)) {
612 // Status values for GenVertex objects created during simulation
613 // should have been set to 1000 + Geant4 process in the old
614 // scheme. Overriding the value to 1000, means that status-based
615 // recognition of simulated vertices will work, while still
616 // indicating that the process was not set. (ATLASSIM-6901)
617 persVtxStatus = 1000;
618 }
619 vtx->m_id = HepMC::new_vertex_status_from_old(persVtxStatus, persVtx.m_barcode); // UPDATED STATUS VALUE TO NEW SCHEME
620 vtx->m_weights.m_weights.reserve( persVtx.m_weights.size() );
621 vtx->m_weights.m_weights.assign ( persVtx.m_weights.begin(),
622 persVtx.m_weights.end() );
623 vtx->m_event = 0;
624 vtx->m_barcode = persVtx.m_barcode;
625
626 // handle the in-going (orphans) particles
627 const unsigned int nPartsIn = persVtx.m_particlesIn.size();
629 //for ( unsigned int i = 0; i != nPartsIn; ++i ) {
630 for ( int i = nPartsIn - 1; i >= 0; i-- ) {
631 createGenParticle( persEvt.m_genParticles[persVtx.m_particlesIn[i]],
632 partToEndVtx,
633 datapools );
634 }
635
636 // now handle the out-going particles
637 const unsigned int nPartsOut = persVtx.m_particlesOut.size();
638 for ( unsigned int i = 0; i != nPartsOut; ++i ) {
639 vtx->add_particle_out( createGenParticle( persEvt.m_genParticles[persVtx.m_particlesOut[i]],
640 partToEndVtx,
641 datapools ) );
642 }
643#endif
644
645 return vtx;
646}
std::vector< float > m_weights
Weights for this vertex.
int m_id
Id of this vertex.
int m_barcode
barcode of this vertex (uniquely identifying a vertex within an event)
HepMC::GenParticlePtr createGenParticle(const GenParticle_p5 &p, ParticlesMap_t &partToEndVtx, HepMC::DataPool &datapools, const HepMC::GenVertexPtr &parent=nullptr, bool add_to_output=true) const
Create a transient GenParticle from a persistent one (vers.1) It returns the new GenParticle.
bool is_simulation_vertex(const T &v)
Method to establish if the vertex was created during simulation (only to be used in legacy TP convert...
HepMC::GenVertex * GenVertexPtr
Definition GenVertex.h:59
GenVertexPtr newGenVertexPtr(const HepMC::FourVector &pos=HepMC::FourVector(0.0, 0.0, 0.0, 0.0), const int i=0)
Definition GenVertex.h:64
int new_vertex_status_from_old(const int oldStatus, const int barcode)
Get vertex status in the new scheme from the barcode and status in the old scheme.
HepMC::GenVertexPtr getGenVertex()

◆ createPersistent()

virtual PERS * TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::createPersistent ( const TRANS * transObj,
MsgStream & log )
virtualinherited

Create persistent representation of a transient object.

Simply creates a new persistent object and calls transToPers()

Parameters
transObj[IN] transient object
log[IN] output message stream
Returns
the created persistent representation

◆ createPersistentWithKey()

virtual PERS * TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::createPersistentWithKey ( const TRANS * transObj,
const std::string & key,
MsgStream & log )
virtualinherited

Create persistent representation of a transient object, with SG key.

Simply creates a new persistent object and calls transToPersWithKey()

Parameters
transObj[IN] transient object
key[IN] SG key of object being written
log[IN] output message stream
Returns
the created persistent representation

◆ createTransFromPStore()

template<class TRANS>
template<class CNV>
CNV::Trans_t * ITPConverterFor< TRANS >::createTransFromPStore ( CNV ** cnv,
const TPObjRef & ref,
MsgStream & log ) const
inlineinherited

Create transient representation of a persistent object, stored in the the top-level persistent object and referenced by the TP Ref.

If a TP converter is not specified, it will be found based on the Ref type.

Parameters
cnv[IN][OUT] pointer to the converter, usually 0 at the start. Once the right converter is found, this pointer will be set so the search is done only once
ref[IN] TP Ref to the persistent object to be converted
log[IN] output message stream
Returns
pointer to the created transient represention

Definition at line 172 of file TPConverter.h.

172 {
173 if( ref.isNull() ) return 0;
174 CNV *temp_cnv_p = 0;
175 if( !cnv ) cnv = &temp_cnv_p;
176 // see if we already have a converter and if it is the right one
177 if( !*cnv || (*cnv)->typeID().value() != ref.typeID() ) {
178 // we don't - find the right converter for ref.typeID()
179 *cnv = converterForRef( *cnv, ref, log );
180 if( !*cnv ) return 0;
181 (*cnv)->setReadingFlag();
182 }
183 return (**cnv).virt_createTransFromPStore( ref.index(), log );
184 }
CNV * converterForRef(CNV *cnv, const TPObjRef &ref, MsgStream &log) const
Find converter for a TP type ID (passed in a TP Ref), that is or ihnerits from CNV type.
Definition TPConverter.h:74
virtual TRANS * virt_createTransFromPStore(unsigned index, MsgStream &log)=0
Internal interface method that is used to invoke the real conversion method (createTransient) in the ...
unsigned value() const
Returns the type ID as an integer.
Definition TPObjRef.h:46

◆ createTransient()

virtual TRANS * TPPolyCnvBase< TRANS, TRANS, PERS >::createTransient ( const PERS * persObj,
MsgStream & log )
virtualinherited

Create transient representation of a persistent object.

Simply creates a new transient object and calls persToTrans()

Parameters
persObj[IN] persistent object
log[IN] output message stream
Returns
the created transient object

◆ createTransientWithKey()

virtual TRANS * TPPolyCnvBase< TRANS, TRANS, PERS >::createTransientWithKey ( const PERS * persObj,
const std::string & key,
MsgStream & log )
virtualinherited

Create transient representation of a persistent object, with SG key.

Simply creates a new transient object and calls persToTransWithKey()

Parameters
persObj[IN] persistent object
key[IN] SG key of object being read
log[IN] output message stream
Returns
the created transient object

◆ fillTransFromPStore()

template<class TRANS>
template<class CNV, class TRANS_T>
void ITPConverterFor< TRANS >::fillTransFromPStore ( CNV ** cnv,
const TPObjRef & ref,
TRANS_T * trans,
MsgStream & log ) const
inlineinherited

Convert persistent object, stored in the the top-level persistent object and referenced by the TP Ref, to transient representation.

An empty transient object to be filled in is provided. If converter is not given, it will be found based on the Ref type.

Parameters
cnv[IN][OUT] pointer to the converter, usually 0 at the start. Once the right converter is found, this pointer will be set so the search is done only once
ref[IN] TP Ref to the persistent object to be converted
trans[IN] pointer to the empty transient object
log[IN] output message stream

Definition at line 145 of file TPConverter.h.

145 {
146 if( ref.isNull() ) return;
147 CNV *temp_cnv_p = 0;
148 if( !cnv ) cnv = &temp_cnv_p;
149 // see if we already have a converter and if it is the right one
150 if( !*cnv || (*cnv)->typeID().value() != ref.typeID() ) {
151 // we don't - find the right converter for ref.typeID()
152 *cnv = converterForRef( *cnv, ref, log );
153 if( !*cnv ) return;
154 (*cnv)->setReadingFlag();
155 }
156 (**cnv).pstoreToTrans( ref.index(), trans, log );
157 }
virtual void pstoreToTrans(unsigned index, TransBase_t *transObj, MsgStream &log)=0
Internal interface method that is used to invoke the real conversion method (persToTrans) in the deri...

◆ ignoreRecursion()

void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::ignoreRecursion ( bool flag = false)
inlineinherited

Tell the converter to ignore recursion (do not throw errors) even when recurion is detected.

UNSAFE! use only if you are sure you preallocated enough persistent storage

Definition at line 568 of file TPConverter.h.

568 {
570 }
The most basic TP converter template which is parametrized by transient and persistent types.

◆ initPrivateConverters()

◆ operator=()

McEventCollectionCnv_p5 & McEventCollectionCnv_p5::operator= ( const McEventCollectionCnv_p5 & rhs)

Assignement operator.

Definition at line 41 of file McEventCollectionCnv_p5.cxx.

42{
43 if ( this != &rhs ) {
44 Base_t::operator=( rhs );
46 }
47 return *this;
48}

◆ persistentTInfo()

virtual const std::type_info & TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::persistentTInfo ( ) const
inlinevirtualinherited

return C++ type id of the persistent class this converter is for

Returns
std::type_info&

Implements ITPCnvBase.

Definition at line 482 of file TPConverter.h.

482{ return typeid(PERS); }

◆ persToTrans() [1/2]

void McEventCollectionCnv_p5::persToTrans ( const McEventCollection_p5 * persObj,
McEventCollection * transObj,
MsgStream & log )
virtual

Method creating the transient representation of McEventCollection from its persistent representation McEventCollection_p5.

Definition at line 58 of file McEventCollectionCnv_p5.cxx.

61{
62 const EventContext& ctx = Gaudi::Hive::currentContext();
63
64 msg << MSG::DEBUG << "Loading McEventCollection from persistent state..."
65 << endmsg;
66
67 // elements are managed by DataPool
68 if (!m_isPileup) {
69 transObj->clear(SG::VIEW_ELEMENTS);
70 }
71 HepMC::DataPool datapools;
72 const unsigned int nVertices = persObj->m_genVertices.size();
73 datapools.vtx.prepareToAdd(nVertices);
74 const unsigned int nParts = persObj->m_genParticles.size();
75 datapools.part.prepareToAdd(nParts);
76 const unsigned int nEvts = persObj->m_genEvents.size();
77 datapools.evt.prepareToAdd(nEvts);
78 transObj->reserve( nEvts );
79 for ( std::vector<GenEvent_p5>::const_iterator
80 itr = persObj->m_genEvents.begin(),
81 itrEnd = persObj->m_genEvents.end();
82 itr != itrEnd;
83 ++itr ) {
84 const GenEvent_p5& persEvt = *itr;
85 HepMC::GenEvent * genEvt(nullptr);
86 if(m_isPileup) {
87 genEvt = new HepMC::GenEvent();
88 } else {
89 genEvt = datapools.getGenEvent();
90 }
91#ifdef HEPMC3
92 genEvt->add_attribute ("barcodes", std::make_shared<HepMC::GenEventBarcodes>());
93 genEvt->add_attribute("signal_process_id", std::make_shared<HepMC3::IntAttribute>(persEvt.m_signalProcessId));
94 genEvt->set_event_number(persEvt.m_eventNbr);
95 genEvt->add_attribute("mpi", std::make_shared<HepMC3::IntAttribute>(persEvt.m_mpi));
96 genEvt->add_attribute("event_scale", std::make_shared<HepMC3::DoubleAttribute>(persEvt.m_eventScale));
97 genEvt->add_attribute("alphaQCD", std::make_shared<HepMC3::DoubleAttribute>(persEvt.m_alphaQCD));
98 genEvt->add_attribute("alphaQED", std::make_shared<HepMC3::DoubleAttribute>(persEvt.m_alphaQED));
99 genEvt->weights()= persEvt.m_weights;
100 genEvt->add_attribute("random_states", std::make_shared<HepMC3::VectorLongIntAttribute>(persEvt.m_randomStates));
101
102 genEvt->set_units(static_cast<HepMC3::Units::MomentumUnit>(persEvt.m_momentumUnit),
103 static_cast<HepMC3::Units::LengthUnit>(persEvt.m_lengthUnit));
104
105 //restore weight names from the dedicated svc (which was keeping them in metadata for efficiency)
106 if(!genEvt->run_info()) genEvt->set_run_info(std::make_shared<HepMC3::GenRunInfo>());
107 genEvt->run_info()->set_weight_names(m_hepMCWeightSvc->weightNameVec(ctx));
108 // cross-section restore
109
110 if (!persEvt.m_crossSection.empty()) {
111 auto cs = std::make_shared<HepMC3::GenCrossSection>();
112 const std::vector<double>& xsection = persEvt.m_crossSection;
113 genEvt->set_cross_section(cs);
114 if( static_cast<bool>(xsection[0]) )
115 cs->set_cross_section(xsection[2],xsection[1]);
116 else
117 cs->set_cross_section(-1.0, -1.0);
118 }
119
120 // heavyIon restore
121 if (!persEvt.m_heavyIon.empty()) {
122 auto hi = std::make_shared<HepMC3::GenHeavyIon>();
123 const std::vector<float>& hIon = persEvt.m_heavyIon;
124 //AV NOTE THE ORDER
125 hi->set(
126 static_cast<int>(hIon[12]), // Ncoll_hard
127 static_cast<int>(hIon[11]), // Npart_proj
128 static_cast<int>(hIon[10]), // Npart_targ
129 static_cast<int>(hIon[9]), // Ncoll
130 static_cast<int>(hIon[8]), // spectator_neutrons
131 static_cast<int>(hIon[7]), // spectator_protons
132 static_cast<int>(hIon[6]), // N_Nwounded_collisions
133 static_cast<int>(hIon[5]), // Nwounded_N_collisions
134 static_cast<int>(hIon[4]), // Nwounded_Nwounded_collisions
135 hIon[3], // impact_parameter
136 hIon[2], // event_plane_angle
137 hIon[1], // eccentricity
138 hIon[0] ); // sigma_inel_NN
139 genEvt->set_heavy_ion(std::move(hi));
140 }
141
142
143
144 // pdfinfo restore
145 if (!persEvt.m_pdfinfo.empty())
146 {
147 const std::vector<double>& pdf = persEvt.m_pdfinfo;
148 HepMC3::GenPdfInfoPtr pi = std::make_shared<HepMC3::GenPdfInfo>();
149 pi->set(static_cast<int>(pdf[8]), // id1
150 static_cast<int>(pdf[7]), // id2
151 pdf[4], // x1
152 pdf[3], // x2
153 pdf[2], // scalePDF
154 pdf[1], // pdf1
155 pdf[0], // pdf2
156 static_cast<int>(pdf[6]), // pdf_id1
157 static_cast<int>(pdf[5]));// pdf_id2
158 genEvt->set_pdf_info(std::move(pi));
159 }
160 transObj->push_back( genEvt );
161
162 // create a temporary map associating the barcode of an end-vtx to its
163 // particle.
164 // As not all particles are stable (d'oh!) we take 50% of the number of
165 // particles as an initial size of the hash-map (to prevent re-hash)
166 ParticlesMap_t partToEndVtx( (persEvt.m_particlesEnd - persEvt.m_particlesBegin)/2 );
167 // This is faster than the HepMC::barcode_to_vertex
168 std::map<int, HepMC::GenVertexPtr> brc_to_vertex;
169
170 // create the vertices
171 const unsigned int endVtx = persEvt.m_verticesEnd;
172 for ( unsigned int iVtx = persEvt.m_verticesBegin; iVtx != endVtx; ++iVtx ) {
173 auto vtx = createGenVertex( *persObj, persObj->m_genVertices[iVtx], partToEndVtx, datapools, genEvt );
174 brc_to_vertex[persObj->m_genVertices[iVtx].m_barcode] = std::move(vtx);
175 } //> end loop over vertices
176
177 // set the signal process vertex
178 const int sigProcVtx = persEvt.m_signalProcessVtx;
179 if ( sigProcVtx != 0 && brc_to_vertex.count(sigProcVtx) ) {
180 HepMC::set_signal_process_vertex(genEvt, brc_to_vertex[sigProcVtx] );
181 }
182
183 // connect particles to their end vertices
184 for (auto & p : partToEndVtx) {
185 if ( brc_to_vertex.count(p.second) ) {
186 auto decayVtx = brc_to_vertex[p.second];
187 decayVtx->add_particle_in( p.first );
188 } else {
189 msg << MSG::ERROR << "GenParticle points to null end vertex !!" << endmsg;
190 }
191 }
192 // set the beam particles
193 const int beamPart1 = persEvt.m_beamParticle1;
194 const int beamPart2 = persEvt.m_beamParticle2;
195 if ( beamPart1 != 0 && beamPart2 != 0 ) {
196 genEvt->set_beam_particles(HepMC::barcode_to_particle(genEvt, beamPart1),
197 HepMC::barcode_to_particle(genEvt, beamPart2));
198 }
199
200#else
201 genEvt->m_signal_process_id = persEvt.m_signalProcessId;
202 genEvt->m_event_number = persEvt.m_eventNbr;
203 genEvt->m_mpi = persEvt.m_mpi;
204 genEvt->m_event_scale = persEvt.m_eventScale;
205 genEvt->m_alphaQCD = persEvt.m_alphaQCD;
206 genEvt->m_alphaQED = persEvt.m_alphaQED;
207 genEvt->m_signal_process_vertex = 0;
208 genEvt->m_beam_particle_1 = 0;
209 genEvt->m_beam_particle_2 = 0;
210 genEvt->m_weights = persEvt.m_weights;
211 genEvt->m_random_states = persEvt.m_randomStates;
212 genEvt->m_vertex_barcodes.clear();
213 genEvt->m_particle_barcodes.clear();
214 genEvt->m_momentum_unit = static_cast<HepMC::Units::MomentumUnit>(persEvt.m_momentumUnit);
215 genEvt->m_position_unit = static_cast<HepMC::Units::LengthUnit>(persEvt.m_lengthUnit);
216
217 //restore weight names from the dedicated svc (which was keeping them in metadata for efficiency)
218 genEvt->m_weights.m_names = m_hepMCWeightSvc->weightNames(ctx);
219
220 // cross-section restore
221 if( genEvt->m_cross_section )
222 delete genEvt->m_cross_section;
223 genEvt->m_cross_section = 0;
224
225 if (!persEvt.m_crossSection.empty()) {
226 genEvt->m_cross_section = new HepMC::GenCrossSection();
227 const std::vector<double>& xsection = persEvt.m_crossSection;
228 if( static_cast<bool>(xsection[0]) )
229 genEvt->m_cross_section->set_cross_section(xsection[2],xsection[1]);
230 }
231
232 // heavyIon restore
233 if(genEvt->m_heavy_ion )
234 delete genEvt->m_heavy_ion;
235 genEvt->m_heavy_ion = 0;
236 if (!persEvt.m_heavyIon.empty()) {
237 const std::vector<float>& hIon = persEvt.m_heavyIon;
238 genEvt->m_heavy_ion = new HepMC::HeavyIon
239 (
240 static_cast<int>(hIon[12]), // Ncoll_hard
241 static_cast<int>(hIon[11]), // Npart_proj
242 static_cast<int>(hIon[10]), // Npart_targ
243 static_cast<int>(hIon[9]), // Ncoll
244 static_cast<int>(hIon[8]), // spectator_neutrons
245 static_cast<int>(hIon[7]), // spectator_protons
246 static_cast<int>(hIon[6]), // N_Nwounded_collisions
247 static_cast<int>(hIon[5]), // Nwounded_N_collisions
248 static_cast<int>(hIon[4]), // Nwounded_Nwounded_collisions
249 hIon[3], // impact_parameter
250 hIon[2], // event_plane_angle
251 hIon[1], // eccentricity
252 hIon[0] ); // sigma_inel_NN
253 }
254
255
256
257 // pdfinfo restore
258 if(genEvt->m_pdf_info)
259 delete genEvt->m_pdf_info;
260 genEvt->m_pdf_info = 0;
261 if (!persEvt.m_pdfinfo.empty()) {
262 const std::vector<double>& pdf = persEvt.m_pdfinfo;
263 genEvt->m_pdf_info = new HepMC::PdfInfo
264 (
265 static_cast<int>(pdf[8]), // id1
266 static_cast<int>(pdf[7]), // id2
267 pdf[4], // x1
268 pdf[3], // x2
269 pdf[2], // scalePDF
270 pdf[1], // pdf1
271 pdf[0], // pdf2
272 static_cast<int>(pdf[6]), // pdf_id1
273 static_cast<int>(pdf[5]) // pdf_id2
274 );
275 }
276
277 transObj->push_back( genEvt );
278
279 // create a temporary map associating the barcode of an end-vtx to its
280 // particle.
281 // As not all particles are stable (d'oh!) we take 50% of the number of
282 // particles as an initial size of the hash-map (to prevent re-hash)
283 ParticlesMap_t partToEndVtx( (persEvt.m_particlesEnd-
284 persEvt.m_particlesBegin)/2 );
285
286 // create the vertices
287 const unsigned int endVtx = persEvt.m_verticesEnd;
288 for ( unsigned int iVtx= persEvt.m_verticesBegin; iVtx != endVtx; ++iVtx ) {
289 genEvt->add_vertex( createGenVertex( *persObj,
290 persObj->m_genVertices[iVtx],
291 partToEndVtx,
292 datapools ) );
293 } //> end loop over vertices
294
295 // set the signal process vertex
296 const int sigProcVtx = persEvt.m_signalProcessVtx;
297 if ( sigProcVtx != 0 ) {
298 genEvt->set_signal_process_vertex( genEvt->barcode_to_vertex( sigProcVtx ) );
299 }
300
301 // connect particles to their end vertices
302 for ( ParticlesMap_t::iterator
303 p = partToEndVtx.begin(),
304 endItr = partToEndVtx.end();
305 p != endItr;
306 ++p ) {
307 auto decayVtx = HepMC::barcode_to_vertex(genEvt, p->second );
308 if ( decayVtx ) {
309 decayVtx->add_particle_in( p->first );
310 } else {
311 msg << MSG::ERROR
312 << "GenParticle points to null end vertex !!"
313 << endmsg;
314 }
315 }
316
317 // set the beam particles
318 const int beamPart1 = persEvt.m_beamParticle1;
319 const int beamPart2 = persEvt.m_beamParticle2;
320 if ( beamPart1 != 0 && beamPart2 !=0 ) {
321 genEvt->set_beam_particles(genEvt->barcode_to_particle(beamPart1),
322 genEvt->barcode_to_particle(beamPart2));
323 }
324
325#endif
326
327 } //> end loop over m_genEvents
328
329 msg << MSG::DEBUG << "Loaded McEventCollection from persistent state [OK]"
330 << endmsg;
331}
#define pi
void prepareToAdd(unsigned int size)
Prepare to add cached elements.
void reserve(size_type n)
Attempt to preallocate enough memory for a specified number of elements.
value_type push_back(value_type pElem)
Add an element to the end of the collection.
void clear()
Erase all the elements in the collection.
int m_lengthUnit
HepMC::Units::LengthUnit casted to int.
int m_eventNbr
Event number.
Definition GenEvent_p5.h:78
std::vector< double > m_weights
Weights for this event.
int m_signalProcessId
Id of the processus being generated.
Definition GenEvent_p5.h:74
unsigned int m_particlesBegin
Begin position in the vector of particles composing this event.
double m_alphaQED
value of the QED coupling.
Definition GenEvent_p5.h:94
int m_beamParticle1
Barcode of the beam particle 1.
double m_alphaQCD
value of the QCD coupling.
Definition GenEvent_p5.h:90
int m_momentumUnit
HepMC::Units::MomentumUnit casted to int.
unsigned int m_verticesEnd
End position in the vector of vertices composing this event.
unsigned int m_verticesBegin
Begin position in the vector of vertices composing this event.
double m_eventScale
Energy scale.
Definition GenEvent_p5.h:86
std::vector< float > m_heavyIon
Container of HepMC::HeavyIon object translated to vector<double>
std::vector< double > m_crossSection
Container of HepMC::GenCrossSection object translated to vector<double>
int m_mpi
Number of multi particle interactions.
Definition GenEvent_p5.h:82
unsigned int m_particlesEnd
End position in the vector of particles composing this event.
std::vector< long int > m_randomStates
Container of random numbers for the generator states.
int m_beamParticle2
Barcode of the beam particle 2.
int m_signalProcessVtx
Barcode of the GenVertex holding the signal process.
std::vector< double > m_pdfinfo
Container of HepMC::PdfInfo object translated to vector<double> for simplicity.
std::unordered_map< HepMC::GenParticlePtr, int > ParticlesMap_t
HepMC::GenVertexPtr createGenVertex(const McEventCollection_p5 &persEvts, const GenVertex_p5 &vtx, ParticlesMap_t &bcToPart, HepMC::DataPool &datapools, HepMC::GenEvent *parent=nullptr) const
Create a transient GenVertex from a persistent one (version 1) It returns the new GenVertex.
std::vector< GenEvent_p5 > m_genEvents
The vector of persistent representation of GenEvents.
std::vector< GenVertex_p5 > m_genVertices
The vector of persistent representation of GenVertices.
std::vector< GenParticle_p5 > m_genParticles
The vector of persistent representation of GenParticles.
void set_signal_process_vertex(GenEvent *e, T v)
Definition GenEvent.h:652
GenParticle * barcode_to_particle(const GenEvent *e, int id)
Definition GenEvent.h:630
GenVertex * barcode_to_vertex(const GenEvent *e, int id)
Definition GenEvent.h:629
@ VIEW_ELEMENTS
this data object is a view, it does not own its elmts
GenPartPool_t part
an arena of HepMC::GenParticle for efficient object instantiation
HepMC::GenEvent * getGenEvent()
GenVtxPool_t vtx
an arena of HepMC::GenVertex for efficient object instantiation
GenEvtPool_t evt
an arena of HepMC::GenEvent for efficient object instantiation
MsgStream & msg
Definition testRead.cxx:32

◆ persToTrans() [2/2]

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::persToTrans ( const PERS * persObj,
TRANS * transObj,
MsgStream & log )
pure virtualinherited

Convert persistent representation to transient one.

Copies data members from persistent object to an existing transient one. Needs to be implemented by the developer on the actual converter.

Parameters
persObj[IN] persistent object
transObj[IN] transient object
log[IN] output message stream

Implemented in AFP_SiDigiCnv_p1, AFP_SIDLocRecoEvCollectionCnv_p1, AFP_SIDLocRecoEventCnv_p1, AFP_SIDSimHitCnv_p1, AFP_TDDigiCnv_p1, AFP_TDLocRecoEvCollectionCnv_p1, AFP_TDLocRecoEventCnv_p1, AFP_TDSimHitCnv_p1, ALFA_CLinkEventCnv_p1, ALFA_DigitCnv_p1, ALFA_DigitCollectionCnv_p1, ALFA_GloRecEvCollectionCnv_p1, ALFA_GloRecEventCnv_p1, ALFA_HitCnv_p1, ALFA_LocRecCorrEvCollectionCnv_p1, ALFA_LocRecCorrEventCnv_p1, ALFA_LocRecCorrODEvCollectionCnv_p1, ALFA_LocRecCorrODEventCnv_p1, ALFA_LocRecEvCollectionCnv_p1, ALFA_LocRecEventCnv_p1, ALFA_LocRecODEvCollectionCnv_p1, ALFA_LocRecODEventCnv_p1, ALFA_ODDigitCnv_p1, ALFA_ODDigitCollectionCnv_p1, ALFA_ODHitCnv_p1, ALFA_RawDataCnv_charge_p1, ALFA_RawDataCnv_p1, AthenaBarCodeCnv_p1, CaloClusterContainerCnv_p1, CaloClusterContainerCnv_p2, CaloClusterContainerCnv_p3, CaloClusterContainerCnv_p4, CaloClusterContainerCnv_p5, CaloClusterContainerCnv_p6, CaloClusterContainerCnv_p7, CaloEnergyCnv_p1, CaloShowerContainerCnv_p1, CaloShowerContainerCnv_p2, CaloTopoTowerContainerCnv_p1, CaloTowerContainerCnv_p1, ChamberT0sCnv_p1, CompositeParticleCnv_p1, CompositeParticleContainerCnv_p1, DataLinkCnv_p1< DLINK_TYPE >, DataLinkCnv_p1< DataLink< ALFA_DigitCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecCorrEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecCorrODEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecODEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_ODDigitCollection > >, DataLinkCnv_p1< DataLink< ALFA_RawDataContainer > >, DataLinkCnv_p1< DataLink< CaloCellContainer > >, DataLinkCnv_p1< DataLink< CaloClusterContainer > >, DataLinkCnv_p1< DataLink< CaloTowerContainer > >, DataLinkCnv_p1< DataLink< INav4MomAssocs > >, DataLinkCnv_p1< DataLink< LArSamples::Container > >, DataLinkCnv_p1< DataLink< LArSamples::ParticleBaseContainer > >, DataLinkCnv_p2< DLINK_TYPE >, DataLinkCnv_p2< DataLink< CaloCellContainer > >, DataLinkCnv_p2< DataLink< INav4MomAssocs > >, DataLinkCnv_p2< DataLink< INav4MomToTrackParticleAssocs > >, DataLinkCnv_p2< DataLink< TrackParticleAssocs > >, DepositInCaloCnv_p1, DepositInCaloCnv_p2, DetailedTrackTruthCnv_p1, DetailedTrackTruthCnv_p2, DetailedTrackTruthCnv_p3, DetailedTrackTruthCnv_p4, DMTest::CLinksAODCnv_p1, ElementLinkCnv_p1< LINK_TYPE >, ElementLinkCnv_p1< ElementLink< Analysis::MuonContainer > >, ElementLinkCnv_p1< ElementLink< AthExParticles > >, ElementLinkCnv_p1< ElementLink< CaloCellLinkContainer > >, ElementLinkCnv_p1< ElementLink< CaloClusterContainer > >, ElementLinkCnv_p1< ElementLink< CaloShowerContainer > >, ElementLinkCnv_p1< ElementLink< ElectronContainer > >, ElementLinkCnv_p1< ElementLink< InDet::PixelClusterContainer > >, ElementLinkCnv_p1< ElementLink< InDet::SCT_ClusterContainer > >, ElementLinkCnv_p1< ElementLink< InDet::TRT_DriftCircleContainer > >, ElementLinkCnv_p1< ElementLink< McEventCollection > >, ElementLinkCnv_p1< ElementLink< Muon::CscPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< Muon::MdtPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< Muon::RpcPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< Muon::TgcPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< MuonCaloEnergyContainer > >, ElementLinkCnv_p1< ElementLink< MuonFeatureContainer > >, ElementLinkCnv_p1< ElementLink< PhotonContainer > >, ElementLinkCnv_p1< ElementLink< Rec::TrackParticleContainer > >, ElementLinkCnv_p1< ElementLink< RingerRingsContainer > >, ElementLinkCnv_p1< ElementLink< TileMuFeatureContainer > >, ElementLinkCnv_p1< ElementLink< TrigEFBphysContainer > >, ElementLinkCnv_p1< ElementLink< TrigEMClusterContainer > >, ElementLinkCnv_p1< ElementLink< TrigInDetTrackCollection > >, ElementLinkCnv_p1< ElementLink< TrigL2BphysContainer > >, ElementLinkCnv_p1< ElementLink< TrigTauClusterDetailsContainer > >, ElementLinkCnv_p1< ElementLink< TruthEtIsolationsContainer > >, ElementLinkCnv_p1< ElementLink< VxContainer > >, ElementLinkCnv_p3< LINK_TYPE >, ElementLinkCnv_p3< ElementLink< CaloCellContainer > >, ElementLinkCnv_p3< ElementLink< CaloCellLinkContainer > >, ElementLinkCnv_p3< ElementLink< CaloClusterContainer > >, ElementLinkCnv_p3< ElementLink< CaloRingsContainer > >, ElementLinkCnv_p3< ElementLink< CaloShowerContainer > >, ElementLinkCnv_p3< ElementLink< DataVector< C_v1 > > >, ElementLinkCnv_p3< ElementLink< DataVector< TrackParticleBase > > >, ElementLinkCnv_p3< ElementLink< DataVector< Trk::Track > > >, ElementLinkCnv_p3< ElementLink< ExampleHitContainer > >, ElementLinkCnv_p3< ElementLink< INavigable4MomentumCollection > >, ElementLinkCnv_p3< ElementLink< McEventCollection > >, ElementLinkCnv_p3< ElementLink< Muon::CscPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::MdtPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::MMPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::RpcPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::sTgcPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::TgcPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< MuonCaloEnergyContainer > >, ElementLinkCnv_p3< ElementLink< MuonFeatureContainer > >, ElementLinkCnv_p3< ElementLink< Rec::TrackParticleContainer > >, ElementLinkCnv_p3< ElementLink< RingerRingsContainer > >, ElementLinkCnv_p3< ElementLink< TileMuFeatureContainer > >, ElementLinkCnv_p3< ElementLink< TrigEFBphysContainer > >, ElementLinkCnv_p3< ElementLink< TrigEMClusterContainer > >, ElementLinkCnv_p3< ElementLink< TrigInDetTrackCollection > >, ElementLinkCnv_p3< ElementLink< TrigL2BphysContainer > >, ElementLinkCnv_p3< ElementLink< TrigMuonEFInfoContainer > >, ElementLinkCnv_p3< ElementLink< TrigTauClusterDetailsContainer > >, ElementLinkCnv_p3< ElementLink< TruthEtIsolationsContainer > >, ElementLinkCnv_p3< ElementLink< VxContainer > >, ElementLinkCnv_p3< MasterLink_t >, ElementLinkCnv_p3< typename LinkVect_t::value_type >, ElementLinkVectorCnv_p1< LINK_VECT >, ElementLinkVectorCnv_p1< ElementLinkVector< AthExIParticles > >, ElementLinkVectorCnv_p1< ElementLinkVector< CaloClusterContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< DataVector< C_v1 > > >, ElementLinkVectorCnv_p1< ElementLinkVector< egDetailContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< ExampleHitContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< Rec::TrackParticleContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< Trk::SegmentCollection > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename NAV::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< Analysis::MuonContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< CaloCellContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< ElectronContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< PhotonContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< Rec::TrackParticleContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< VxContainer > >, EnergyLossCnv_p1, EventIDCnv_p1, EventInfoCnv_p1, EventInfoCnv_p2, EventInfoCnv_p3, EventInfoCnv_p4, EventStreamInfoCnv_p1, EventStreamInfoCnv_p2, EventStreamInfoCnv_p3, EventTypeCnv_p1, EventTypeCnv_p3, FitQualityCnv_p1, HepLorentzVectorCnv_p1, HepMcParticleLinkCnv_p1, HepMcParticleLinkCnv_p2, HepMcParticleLinkCnv_p3, INav4MomAssocsCnv_p1, INav4MomAssocsCnv_p2, INav4MomAssocsCnv_p3, INav4MomLinkContainerCnv_p1, INav4MomToTrackParticleAssocsCnv_p1, IParticleLinkContainerCnv_p1, JetCnv_p1, JetCnv_p2, JetCnv_p3, JetCnv_p4, JetCollectionCnv_p1, JetCollectionCnv_p2, JetCollectionCnv_p3, JetCollectionCnv_p4, JetCollectionCnv_p5, JetCollectionCnv_p6, JetKeyDescriptorCnv_p1, JetSamplingCnv_p1, JetSamplingCnv_p2, JetSamplingCollectionCnv_p1, JetSamplingCollectionCnv_p2, LArAutoCorrSubsetCnv_p1, LArCaliWaveSubsetCnv_p1, LArCaliWaveSubsetCnv_p2, LArCaliWaveSubsetCnv_p3, LArDigitContainerCnv_p1, LArDigitContainerCnv_p2, LArDigitContainerCnv_p3, LArDSPThresholdsSubsetCnv_p1, LArFebErrorSummaryCnv_p1, LArLATOMEHeaderContainerCnv_p1, LArMphysOverMcalSubsetCnv_p1, LArNoisyROSummaryCnv_p1, LArNoisyROSummaryCnv_p2, LArNoisyROSummaryCnv_p3, LArNoisyROSummaryCnv_p4, LArNoisyROSummaryCnv_p5, LArNoisyROSummaryCnv_p6, LArOFCBinSubsetCnv_p1, LArOFCSubsetCnv_p1, LArPedestalMCCnv_p1, LArPedestalSubsetCnv_p1, LArPedestalSubsetCnv_p2, LArPhysWaveSubsetCnv_p1, LArRampSubsetCnv_p1, LArRawChannelCnv_p1, LArRawChannelCnv_p2, LArRawChannelContainerCnv_p1, LArRawChannelContainerCnv_p2, LArRawChannelContainerCnv_p3, LArRawChannelContainerCnv_p4, LArRawSCContainerCnv_p1, LArSCDigitContainerCnv_p1, LArShapeSubsetCnv_p1, LArShapeSubsetCnv_p2, LArSingleFloatSubsetCnv_p1, LArTTL1Cnv_p1, LUCID_DigitCnv_p1, LUCID_DigitCnv_p2, LUCID_DigitContainerCnv_p1, LUCID_DigitContainerCnv_p2, LUCID_RawDataCnv_p1, LUCID_RawDataContainerCnv_p1, LVL1_ROICnv_p1, LVL1CTP::Lvl1ResultCnv_p1, LVL1CTP::Lvl1ResultCnv_p2, MergedEventInfoCnv_p1, MergedEventInfoCnv_p2, MissingEtCaloCnv_p1, MissingEtCaloCnv_p2, MissingEtCaloCnv_p3, MissingETCnv_p1, MissingETCnv_p2, MissingETCnv_p3, MissingEtRegionsCnv_p1, MissingEtRegionsCnv_p2, MissingEtRegionsCnv_p3, MissingEtTruthCnv_p1, MissingEtTruthCnv_p2, MissingEtTruthCnv_p3, MuonCnv_p1, MuonCnv_p2, MuonCnv_p3, MuonCnv_p4, MuonCnv_p5, MuonCnv_p6, MuonContainerCnv_p1, MuonContainerCnv_p2, MuonSpShowerCnv_p1, MuonSpShowerContainerCnv_p1, NavigableCnv_p1< NAV, RPAR >, NavigableCnv_p1< NAV, NavigationDefaults::DefaultWeight >, NavigableCnv_p1< Navigable< Analysis::MuonContainer, double >, float >, NavigableCnv_p1< Navigable< CaloCellContainer, double >, float >, NavigableCnv_p1< Navigable< ElectronContainer, double >, float >, NavigableCnv_p1< Navigable< INavigable4MomentumCollection, double > >, NavigableCnv_p1< Navigable< PhotonContainer, double >, float >, NavigableCnv_p1< Navigable< Rec::TrackParticleContainer, double >, float >, NavigableCnv_p2< NAV, RPAR >, NavigableCnv_p2< MissingETComposition, MissingETComposition_p1::Weight_p1 >, NavigableCnv_p2< MissingETComposition, Weight_p1 >, NavigableCnv_p2< NAV, NavigationDefaults::DefaultWeight >, NavigableCnv_p2< Navigable< ExampleHitContainer > >, NavigableCnv_p2< Navigable< ExampleHitContainer, double > >, NavigableCnv_p2< Navigable< INavigable4MomentumCollection, double >, float >, NeutrinoCnv_p1, NeutrinoCnv_p2, P4EEtaPhiMCnv_p1, P4EEtaPhiMCnv_p2, P4ImplEEtaPhiMCnv_p1, P4ImplEEtaPhiMCnv_p2, P4ImplIPtCotThPhiMCnv_p1, P4ImplPtEtaPhiMCnv_p1, P4ImplPtEtaPhiMCnv_p2, P4ImplPxPyPzECnv_p1, P4IPtCotThPhiMCnv_p1, P4PtEtaPhiMCnv_p1, P4PtEtaPhiMCnv_p2, P4PxPyPzECnv_p1, ParticleBaseCnv_p1, ParticleBaseCnv_p2, ParticleJetCnv_p1, ParticleLinksCnv_p1< Container >, ParticleLinksCnv_p1< ParticleBaseContainer >, ParticleShallowCloneCnv_p1, ParticleShallowCloneContainerCnv_p1, PileUpEventInfoCnv_p1, PileUpEventInfoCnv_p2, PileUpEventInfoCnv_p3, PileUpEventInfoCnv_p4, PileUpEventInfoCnv_p5, RingerRingsCnv_p1, RingerRingsCnv_p2, RpcByteStreamErrorContainerCnv_p1, RpcSectorLogicContainerCnv_p1, SelectedParticlesCnv_p1, SubDetHitStatisticsCnv_p0, T_AthenaHitsVectorCnv< TRANS, PERS, CONV >, T_AtlasHitsVectorCnv< TRANS, PERS, CONV >, TBADCRawContCnv_p1, TBBPCContCnv_p1, TBEventInfoCnv_p1, TBLArDigitContainerCnv_p1, TBMWPCContCnv_p1, TBPhaseCnv_p1, TBScintillatorContCnv_p1, TBTailCatcherCnv_p1, TBTDCCnv_p1, TBTDCRawContCnv_p1, TBTrackCnv_p1, TBTrackInfoCnv_p1, TBTriggerPatternUnitCnv_p1, TileBeamElemCnv_p1, TileCosmicMuonCnv_p1, TileCosmicMuonCnv_p2, TileDigitsCnv_p1, TileDigitsCnv_p2, TileDigitsCnv_p3, TileHitCnv_p1, TileL2Cnv_p1, TileL2Cnv_p2, TileMuCnv_p1, TileMuonReceiverObjCnv_p1, TileRawChannelCnv_p1, TileTTL1CellCnv_p1, TileTTL1Cnv_p1, TPCnvIDCont< TRANS, PERS, CONV >, TPCnvIDContFromIdentifier< TRANS, PERS, CONV >, TPCnvStdVector< TRANS, PERS, CONV >, TPCnvVector< TRANS, PERS, CONV >, TPConverterConstBase< TRANS, PERS >, TPPtrVectorCnv< TRANS, PERS, CONV >, TPValVectorCnv< TRANS, PERS, CONV >, TrackParticleAssocsCnv_p1, TrackParticleTruthCollectionCnv_p1, TrackParticleTruthCollectionCnv_p2, TrackParticleTruthCollectionCnv_p3, TrackRecordCnv_p1, TrackRecordCnv_p2, TrigCaloClusterCnv_p1, TrigCaloClusterCnv_p2, TrigCaloClusterCnv_p3, TrigConfAlgCnv_p1, TrigConfChainCnv_p1, TrigConfSeqCnv_p1, TrigConfSigCnv_p1, TrigDec::TrigDecisionCnv_p2, TrigDec::TrigDecisionCnv_p3, TrigDec::TrigDecisionCnv_p4, TrigDec::TrigDecisionCnv_p5, TrigEMClusterCnv_p3, TrigEMClusterCnv_p4, TriggerInfoCnv_p1, TriggerInfoCnv_p2, TrigMonAlgCnv_p1, TrigMonConfigCnv_p1, TrigMonEventCnv_p1, TrigMonROBCnv_p1, TrigMonROBDataCnv_p1, TrigMonROBDataCnv_p2, TrigMonRoiCnv_p1, TrigMonSeqCnv_p1, TrigMonTECnv_p1, TrigRNNOutputCnv_p2, TrigT2JetCnv_p1, TrigT2JetCnv_p2, TrigT2JetCnv_p3, TrigT2MbtsBitsCnv_p1, TrigT2MbtsBitsCnv_p2, TrigT2MbtsBitsCnv_p3, TrigT2ZdcSignalsCnv_p1, TrigTauClusterCnv_p1, TrigTauClusterCnv_p2, TrigTauClusterCnv_p3, TrigTauClusterCnv_p4, TrigTauClusterCnv_p5, TrigTauClusterDetailsCnv_p1, TrigTauClusterDetailsCnv_p2, TruthEtIsolationsCnv_p1, TruthParticleContainerCnv_p5, TruthParticleContainerCnv_p6, TruthTrajectoryCnv_p1, TruthTrajectoryCnv_p2, TruthTrajectoryCnv_p3, xAODBTaggingAuxContainerCnv_v1, xAODCaloClusterAuxContainerCnv_v1, xAODElectronAuxContainerCnv_v1, xAODElectronAuxContainerCnv_v2, xAODEmTauRoIAuxContainerCnv_v1, xAODEmTauRoIContainerCnv_v1, xAODEnergySumRoIAuxInfoCnv_v1, xAODEnergySumRoICnv_v1, xAODEventAuxInfoCnv_v1, xAODEventAuxInfoCnv_v2, xAODJetRoIAuxContainerCnv_v1, xAODJetRoIContainerCnv_v1, xAODJetTrigAuxContainerCnv_v1, xAODL2StandAloneMuonAuxContainerCnv_v1, xAODL2StandAloneMuonContainerCnv_v1, xAODMissingETAuxAssociationMapCnv_v1, xAODMuonAuxContainerCnv_v1, xAODMuonAuxContainerCnv_v2, xAODMuonAuxContainerCnv_v3, xAODMuonAuxContainerCnv_v4, xAODPhotonAuxContainerCnv_v1, xAODPhotonAuxContainerCnv_v2, xAODRODHeaderAuxContainerCnv_v1, xAODRODHeaderContainerCnv_v1, xAODTauJetAuxContainerCnv_v1, xAODTauJetContainerCnv_v1, xAODTauJetContainerCnv_v2, xAODTrackCaloClusterAuxContainerCnv_v1, xAODTrackParticleAuxContainerCnv_v1, xAODTrackParticleAuxContainerCnv_v2, xAODTrackParticleAuxContainerCnv_v3, xAODTrackParticleAuxContainerCnv_v4, xAODTrigCompositeAuxContainerCnv_v1, xAODTrigRingerRingsAuxContainerCnv_v1, xAODTrigRingerRingsContainerCnv_v1, xAODTrigRNNOutputAuxContainerCnv_v1, xAODTrigRNNOutputContainerCnv_v1, xAODTruthParticleAuxContainerCnv_v1, xAODTruthVertexAuxContainerCnv_v1, ZDC_SimFiberHit_CollectionCnv_p1, ZDC_SimFiberHitCnv_p1, ZdcDigitsCnv_p1, ZdcDigitsCollectionCnv_p1, ZdcRawChannelCnv_p1, and ZdcRawChannelCollectionCnv_p1.

◆ persToTransUntyped()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::persToTransUntyped ( const void * pers,
void * trans,
MsgStream & log )
inlinevirtualinherited

Convert persistent object representation to transient.

Parameters
pers[IN] void* pointer to the persistent object
trans[OUT] void* pointer to the empty transient object
log[IN] output message stream

Implements ITPCnvBase.

Definition at line 400 of file TPConverter.h.

403 {
404 persToTrans (reinterpret_cast<const PERS*> (pers),
405 reinterpret_cast<TRANS*> (trans),
406 log);
407 }
virtual void persToTrans(const PERS *persObj, TRANS *transObj, MsgStream &log)=0

◆ persToTransWithKey()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::persToTransWithKey ( const PERS * persObj,
TRANS * transObj,
const std::string & ,
MsgStream & log )
inlinevirtualinherited

Convert persistent representation to transient one.

Copies data members from persistent object to an existing transient one. Needs to be implemented by the developer on the actual converter.

Parameters
persObj[IN] persistent object
transObj[IN] transient object
log[IN] output message stream

Reimplemented in AthExParticlesCnv_p1, CaloCellContainerCnv_p1, CaloCellLinkContainerCnv_p1, CaloCellLinkContainerCnv_p2, CaloClusterCellLinkContainerCnv_p1, TPConverterWithKeyBase< TRANS, PERS >, and xAODTauJetAuxContainerCnv_v2.

Definition at line 376 of file TPConverter.h.

379 {
380 return persToTrans (persObj, transObj, log);
381 }

◆ persToTransWithKeyUntyped()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::persToTransWithKeyUntyped ( const void * pers,
void * trans,
const std::string & key,
MsgStream & log )
inlinevirtualinherited

Convert persistent object representation to transient.

Parameters
pers[IN] void* pointer to the persistent object
trans[OUT] void* pointer to the empty transient object
key[IN] SG key of object being read.
log[IN] output message stream

Reimplemented from ITPCnvBase.

Definition at line 420 of file TPConverter.h.

424 {
425 persToTransWithKey (reinterpret_cast<const PERS*> (pers),
426 reinterpret_cast<TRANS*> (trans),
427 key,
428 log);
429 }
virtual void persToTransWithKey(const PERS *persObj, TRANS *transObj, const std::string &, MsgStream &log)

◆ pstoreToTrans()

template<class TRANS, class PERS>
virtual void TPConverterBase< TRANS, PERS >::pstoreToTrans ( unsigned index,
TRANS * trans,
MsgStream & log )
inlinevirtualinherited

Convert persistent representation stored in the storage vector of the top-level object to transient.

Internal.

Parameters
index[IN] index of the persistent representation in the storage vector
trans[IN] empty transient object
log[IN] output message stream

Reimplemented from TPAbstractPolyCnvBase< TRANS, TRANS, PERS >.

Definition at line 760 of file TPConverter.h.

760 {
762 this->persToTrans( &(*this->m_pStorage)[index], trans, log );
763 }
TP Converter template for a "regular" type.

◆ reservePStorage()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::reservePStorage ( size_t size)
inlinevirtualinherited

Reserve 'size' elements for persistent storage.

Implements ITPConverter.

Definition at line 573 of file TPConverter.h.

573 {
574 m_pStorage->reserve( size );
575 }

◆ setPileup()

void McEventCollectionCnv_p5::setPileup ( )

Definition at line 920 of file McEventCollectionCnv_p5.cxx.

920 {
921 m_isPileup = true;
922}

◆ setPStorage()

void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::setPStorage ( std::vector< PERS > * storage)
inlineinherited

Tell this converter which storage vector it should use to store or retrieve persistent representations.

Parameters
storage[IN] the address of the storage vector

Definition at line 551 of file TPConverter.h.

◆ setReadingFlag()

template<class TRANS>
void ITPConverterFor< TRANS >::setReadingFlag ( )
inlineinherited

Definition at line 234 of file TPConverter.h.

234{ m_wasUsedForReading = true; }

◆ setRecursive()

void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::setRecursive ( bool flag = true)
inlineinherited

Tell the converter if it should work in recursive mode slower but it can safely handle recursion.

Definition at line 559 of file TPConverter.h.

◆ setRuntimeTopConverter()

template<class TRANS>
virtual void ITPConverterFor< TRANS >::setRuntimeTopConverter ( TopLevelTPCnvBase * topConverter)
inlinevirtualinherited

Set runtime top-level converter - usually it is the owning TL converter, but in case of extended objects it will be the TL converter of the extended object.

Parameters
topConverter[IN] runtime top-level converter for this converter

Implements ITPConverter.

Definition at line 215 of file TPConverter.h.

215 {
218 }
virtual void initPrivateConverters(TopLevelTPCnvBase *)
virtual TopLevelTPCnvBase * topConverter()
return the top-level converter for this elemental TP converter

◆ setTopConverter()

template<class TRANS>
virtual void ITPConverterFor< TRANS >::setTopConverter ( TopLevelTPCnvBase * topConverter,
const TPObjRef::typeID_t & TPtypeID )
inlinevirtualinherited

Set which top-level converter owns this elemental converter, and what TPtypeID was assigned to the persistent objects it produces.

Parameters
topConverter[IN] the top-level converter owning this converter
TPtypeID[IN] TP type id for persistent objects (used in TP refs)

Implements ITPConverter.

Definition at line 221 of file TPConverter.h.

223 {
228 }
unsigned m_pStorageTIDvalue
m_pStorageTID converted to integer value
TPObjRef::typeID_t m_pStorageTID
TP Ref typeID for the persistent objects this converter is creating.
TopLevelTPCnvBase * m_topConverter
top level converter that owns this elemental TP converter it also holds the storage object

◆ topConverter() [1/2]

template<class TRANS>
virtual TopLevelTPCnvBase * ITPConverterFor< TRANS >::topConverter ( )
inlinevirtualinherited

return the top-level converter for this elemental TP converter

Returns
TopLevelTPCnvBas

Reimplemented from ITPConverter.

Definition at line 191 of file TPConverter.h.

191 {
192 return m_topConverter;
193 }

◆ topConverter() [2/2]

template<class TRANS>
virtual const TopLevelTPCnvBase * ITPConverterFor< TRANS >::topConverter ( ) const
inlinevirtualinherited

return the top-level converter for this elemental TP converter

Returns
TopLevelTPCnvBas

Reimplemented from ITPConverter.

Definition at line 196 of file TPConverter.h.

196 {
197 return m_topConverter;
198 }

◆ toPersistent()

template<class TRANS>
template<class CNV>
TPObjRef ITPConverterFor< TRANS >::toPersistent ( CNV ** cnv,
const typename CNV::TransBase_t * transObj,
MsgStream & log ) const
inlineinherited

Persistify an object and store the persistent represenation in the storage vector of the top-level persistent object.

The correct converter is located using the actual object type.

Parameters
cnv[IN/OUT] pointer to the converter, usually 0 at the start. Once the right converter is found, this pointer will be set so the search is done only once
transObj[IN] transient object
log[IN] output message stream
Returns
TPObjRef TP reference to the persistent representation stored in the storage vector of the top-level persistent object

Definition at line 119 of file TPConverter.h.

119 {
120 if( !transObj ) return TPObjRef();
121 CNV *temp_cnv_p = 0;
122 if( !cnv ) cnv = &temp_cnv_p;
123 if( !*cnv || (*cnv)->wasUsedForReading() ) {
124 // don't trust the converter if it was used for reading, find again
125 *cnv = converterForType( *cnv, typeid(*transObj), log );
126 if( !*cnv ) return TPObjRef();
127 (*cnv)->clearReadingFlag();
128 }
129 return (**cnv).virt_toPersistent(transObj, log);
130 }
virtual TPObjRef virt_toPersistent(const TransBase_t *trans, MsgStream &log)=0
Internal interface method that is used to invoke the real conversion method (toPersistent_impl) in th...

◆ toPersistentWithKey_impl()

TPObjRef TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::toPersistentWithKey_impl ( const TRANS * trans,
const std::string & key,
MsgStream & log )
inherited

Convert transient object to persistent representation.

Stores the result in the storage vector of the top-level object and returns a TP Ref to it.

Parameters
trans[IN] transient object
key[IN] SG key of object being converted
log[IN] output message stream
Returns
TP reference to the persistent representation

◆ transBaseTInfo()

template<class TRANS>
const std::type_info & ITPConverterFor< TRANS >::transBaseTInfo ( ) const
inlinevirtualinherited

return C++ type id of the common base transient type for all converters for a group of polymorphic types

Returns
std::type_info& this method is not overwritten in the subclasses like transientTInfo()

Implements ITPConverter.

Definition at line 205 of file TPConverter.h.

205{ return typeid(TRANS); }

◆ transientTInfo()

virtual const std::type_info & TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::transientTInfo ( ) const
inlinevirtualinherited

return C++ type id of the transient class this converter is for

Returns
std::type_info&

Reimplemented from ITPConverterFor< TRANS >.

Definition at line 479 of file TPConverter.h.

479{ return typeid(TRANS); }

◆ transToPers() [1/2]

void McEventCollectionCnv_p5::transToPers ( const McEventCollection * transObj,
McEventCollection_p5 * persObj,
MsgStream & log )
virtual

Method creating the persistent representation McEventCollection_p5 from its transient representation McEventCollection.

Definition at line 333 of file McEventCollectionCnv_p5.cxx.

336{
337 const EventContext& ctx = Gaudi::Hive::currentContext();
338
339 msg << MSG::DEBUG << "Creating persistent state of McEventCollection..."
340 << endmsg;
341 persObj->m_genEvents.reserve( transObj->size() );
342
343 const std::pair<unsigned int,unsigned int> stats = nbrParticlesAndVertices( transObj );
344 persObj->m_genParticles.reserve( stats.first );
345 persObj->m_genVertices.reserve ( stats.second );
346
347 const McEventCollection::const_iterator itrEnd = transObj->end();
348 for ( McEventCollection::const_iterator itr = transObj->begin();
349 itr != itrEnd;
350 ++itr ) {
351 const unsigned int nPersVtx = persObj->m_genVertices.size();
352 const unsigned int nPersParts = persObj->m_genParticles.size();
353 const HepMC::GenEvent* genEvt = *itr;
354#ifdef HEPMC3
355 //save the weight names to metadata via the HepMCWeightSvc
356 if (genEvt->run_info()) {
357 if (!genEvt->run_info()->weight_names().empty()) {
358 m_hepMCWeightSvc->setWeightNames( names_to_name_index_map(genEvt->weight_names()), ctx ).ignore();
359 } else {
360 //AV : This to be decided if one would like to have default names.
361 //std::vector<std::string> names{"0"};
362 //m_hepMCWeightSvc->setWeightNames( names_to_name_index_map(names), ctx );
363 }
364 }
365
366 auto A_mpi=genEvt->attribute<HepMC3::IntAttribute>("mpi");
367 auto A_signal_process_id=genEvt->attribute<HepMC3::IntAttribute>("signal_process_id");
368 auto A_event_scale=genEvt->attribute<HepMC3::DoubleAttribute>("event_scale");
369 auto A_alphaQCD=genEvt->attribute<HepMC3::DoubleAttribute>("alphaQCD");
370 auto A_alphaQED=genEvt->attribute<HepMC3::DoubleAttribute>("alphaQED");
372 auto A_random_states=genEvt->attribute<HepMC3::VectorLongIntAttribute>("random_states");
373 auto beams=genEvt->beams();
374 persObj->m_genEvents.
375 emplace_back(A_signal_process_id?(A_signal_process_id->value()):-1,
376 genEvt->event_number(),
377 A_mpi?(A_mpi->value()):-1,
378 A_event_scale?(A_event_scale->value()):0.0,
379 A_alphaQCD?(A_alphaQCD->value()):0.0,
380 A_alphaQED?(A_alphaQED->value()):0.0,
381 signal_process_vertex?HepMC::barcode(signal_process_vertex):0,
382 !beams.empty()?HepMC::barcode(beams[0]):0,
383 beams.size()>1?HepMC::barcode(beams[1]):0,
384 genEvt->weights(),
385 A_random_states?(A_random_states->value()):std::vector<long>(),
386 std::vector<double>(), // cross section
387 std::vector<float>(), // heavyion
388 std::vector<double>(), // pdf info
389 genEvt->momentum_unit(),
390 genEvt->length_unit(),
391 nPersVtx,
392 nPersVtx + genEvt->vertices().size(),
393 nPersParts,
394 nPersParts + genEvt->particles().size() );
395
396
397 //HepMC::GenCrossSection encoding
398 if (genEvt->cross_section()) {
399 auto cs=genEvt->cross_section();
400 GenEvent_p5& persEvt = persObj->m_genEvents.back();
401 std::vector<double>& crossSection = persEvt.m_crossSection;
402 crossSection.resize(3);
403 crossSection[2] = cs->xsec();
404 crossSection[1] = cs->xsec_err();
405 crossSection[0] = static_cast<double>(cs->is_valid());
408 if (crossSection[2] < 0) {
409 crossSection[2] = 0.0;
410 if (crossSection[1] < 0) {
411 crossSection[1] = 0.0;
412 }
413 crossSection[0] = 0.0;
414 }
415
416 }
417
418 //HepMC::HeavyIon encoding
419 if (genEvt->heavy_ion()) {
420 auto hi=genEvt->heavy_ion();
421 GenEvent_p5& persEvt = persObj->m_genEvents.back();
422 std::vector<float>& heavyIon = persEvt.m_heavyIon;
423 heavyIon.resize(13);
424 heavyIon[12] = static_cast<float>(hi->Ncoll_hard);
425 heavyIon[11] = static_cast<float>(hi->Npart_proj);
426 heavyIon[10] = static_cast<float>(hi->Npart_targ);
427 heavyIon[9] = static_cast<float>(hi->Ncoll);
428 heavyIon[8] = static_cast<float>(hi->spectator_neutrons);
429 heavyIon[7] = static_cast<float>(hi->spectator_protons);
430 heavyIon[6] = static_cast<float>(hi->N_Nwounded_collisions);
431 heavyIon[5] = static_cast<float>(hi->Nwounded_N_collisions);
432 heavyIon[4] = static_cast<float>(hi->Nwounded_Nwounded_collisions);
433 heavyIon[3] = hi->impact_parameter;
434 heavyIon[2] = hi->event_plane_angle;
435 heavyIon[1] = hi->eccentricity;
436 heavyIon[0] = hi->sigma_inel_NN;
437 }
438
439 //PdfInfo encoding
440 if (genEvt->pdf_info()) {
441 auto pi=genEvt->pdf_info();
442 GenEvent_p5& persEvt = persObj->m_genEvents.back();
443 std::vector<double>& pdfinfo = persEvt.m_pdfinfo;
444 pdfinfo.resize(9);
445 pdfinfo[8] = static_cast<double>(pi->parton_id[0]);
446 pdfinfo[7] = static_cast<double>(pi->parton_id[1]);
447 pdfinfo[6] = static_cast<double>(pi->pdf_id[0]);
448 pdfinfo[5] = static_cast<double>(pi->pdf_id[1]);
449 pdfinfo[4] = pi->x[0];
450 pdfinfo[3] = pi->x[1];
451 pdfinfo[2] = pi->scale;
452 pdfinfo[1] = pi->xf[0];
453 pdfinfo[0] = pi->xf[1];
454 }
455
456 // create vertices
457 for (const auto& v: genEvt->vertices()) {
458 writeGenVertex( v, *persObj );
459 }
460#else
461 const int signalProcessVtx = genEvt->m_signal_process_vertex
462 ? genEvt->m_signal_process_vertex->barcode()
463 : 0;
464 const int beamParticle1Barcode = genEvt->m_beam_particle_1
465 ? genEvt->m_beam_particle_1->barcode()
466 : 0;
467 const int beamParticle2Barcode = genEvt->m_beam_particle_2
468 ? genEvt->m_beam_particle_2->barcode()
469 : 0;
470
471 //save the weight names to metadata via the HepMCWeightSvc
472 m_hepMCWeightSvc->setWeightNames( genEvt->m_weights.m_names, ctx ).ignore();
473
474
475 persObj->m_genEvents.
476 push_back( GenEvent_p5( genEvt->m_signal_process_id,
477 genEvt->m_event_number,
478 genEvt->mpi(), // number of multi particle interactions
479 genEvt->m_event_scale,
480 genEvt->m_alphaQCD,
481 genEvt->m_alphaQED,
482 signalProcessVtx,
483 beamParticle1Barcode, // barcodes of beam particles
484 beamParticle2Barcode,
485 genEvt->m_weights.m_weights,
486 genEvt->m_random_states,
487 std::vector<double>(), // cross section
488 std::vector<float>(), // heavyion
489 std::vector<double>(), // pdf info
490 genEvt->m_momentum_unit,
491 genEvt->m_position_unit,
492 nPersVtx,
493 nPersVtx + genEvt->vertices_size(),
494 nPersParts,
495 nPersParts + genEvt->particles_size() ) );
496 //HepMC::GenCrossSection encoding
497 if (genEvt->m_cross_section) {
498 GenEvent_p5& persEvt = persObj->m_genEvents.back();
499 std::vector<double>& crossSection = persEvt.m_crossSection;
500 crossSection.resize(3);
501 crossSection[2] = genEvt->m_cross_section->m_cross_section;
502 crossSection[1] = genEvt->m_cross_section->m_cross_section_error;
503 crossSection[0] = static_cast<double>(genEvt->m_cross_section->m_is_set);
504 }
505
506 //HepMC::HeavyIon encoding
507 if (genEvt->m_heavy_ion) {
508 GenEvent_p5& persEvt = persObj->m_genEvents.back();
509 std::vector<float>& heavyIon = persEvt.m_heavyIon;
510 heavyIon.resize(13);
511 heavyIon[12] = static_cast<float>(genEvt->m_heavy_ion->m_Ncoll_hard);
512 heavyIon[11] = static_cast<float>(genEvt->m_heavy_ion->m_Npart_proj);
513 heavyIon[10] = static_cast<float>(genEvt->m_heavy_ion->m_Npart_targ);
514 heavyIon[9] = static_cast<float>(genEvt->m_heavy_ion->m_Ncoll);
515 heavyIon[8] = static_cast<float>(genEvt->m_heavy_ion->m_spectator_neutrons);
516 heavyIon[7] = static_cast<float>(genEvt->m_heavy_ion->m_spectator_protons);
517 heavyIon[6] = static_cast<float>(genEvt->m_heavy_ion->m_N_Nwounded_collisions);
518 heavyIon[5] = static_cast<float>(genEvt->m_heavy_ion->m_Nwounded_N_collisions);
519 heavyIon[4] = static_cast<float>(genEvt->m_heavy_ion->m_Nwounded_Nwounded_collisions);
520 heavyIon[3] = genEvt->m_heavy_ion->m_impact_parameter;
521 heavyIon[2] = genEvt->m_heavy_ion->m_event_plane_angle;
522 heavyIon[1] = genEvt->m_heavy_ion->m_eccentricity;
523 heavyIon[0] = genEvt->m_heavy_ion->m_sigma_inel_NN;
524 }
525
526 //PdfInfo encoding
527 if (genEvt->m_pdf_info) {
528 GenEvent_p5& persEvt = persObj->m_genEvents.back();
529 std::vector<double>& pdfinfo = persEvt.m_pdfinfo;
530 pdfinfo.resize(9);
531 pdfinfo[8] = static_cast<double>(genEvt->m_pdf_info->m_id1);
532 pdfinfo[7] = static_cast<double>(genEvt->m_pdf_info->m_id2);
533 pdfinfo[6] = static_cast<double>(genEvt->m_pdf_info->m_pdf_id1);
534 pdfinfo[5] = static_cast<double>(genEvt->m_pdf_info->m_pdf_id2);
535 pdfinfo[4] = genEvt->m_pdf_info->m_x1;
536 pdfinfo[3] = genEvt->m_pdf_info->m_x2;
537 pdfinfo[2] = genEvt->m_pdf_info->m_scalePDF;
538 pdfinfo[1] = genEvt->m_pdf_info->m_pdf1;
539 pdfinfo[0] = genEvt->m_pdf_info->m_pdf2;
540 }
541
542 // create vertices
543 const HepMC::GenEvent::vertex_const_iterator endVtx=genEvt->vertices_end();
544 for ( HepMC::GenEvent::vertex_const_iterator i = genEvt->vertices_begin();
545 i != endVtx;
546 ++i ) {
547 writeGenVertex( **i, *persObj );
548 }
549#endif
550
551 } //> end loop over GenEvents
552
553 msg << MSG::DEBUG << "Created persistent state of HepMC::GenEvent [OK]" << endmsg;
554}
DataModel_detail::const_iterator< DataVector > const_iterator
Definition DataVector.h:838
const_iterator end() const noexcept
Return a const_iterator pointing past the end of the collection.
const_iterator begin() const noexcept
Return a const_iterator pointing at the beginning of the collection.
size_type size() const noexcept
Returns the number of elements in the collection.
void writeGenVertex(const HepMC::GenVertex &vtx, McEventCollection_p5 &persEvt) const
Method to write a persistent GenVertex object.
int barcode(const T *p)
Definition Barcode.h:16
GenVertex * signal_process_vertex(const GenEvent *e)
Definition GenEvent.h:627

◆ transToPers() [2/2]

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::transToPers ( const TRANS * transObj,
PERS * persObj,
MsgStream & log )
pure virtualinherited

Convert transient representation to persistent one.

Copies data members from transient object to an existing persistent one. Needs to be implemented by the developer on the actual converter.

Parameters
transObj[IN] transient object
persObj[IN] persistent object
log[IN] output message stream

Implemented in AFP_SiDigiCnv_p1, AFP_SIDLocRecoEvCollectionCnv_p1, AFP_SIDLocRecoEventCnv_p1, AFP_SIDSimHitCnv_p1, AFP_TDDigiCnv_p1, AFP_TDLocRecoEvCollectionCnv_p1, AFP_TDLocRecoEventCnv_p1, AFP_TDSimHitCnv_p1, ALFA_CLinkEventCnv_p1, ALFA_DigitCnv_p1, ALFA_DigitCollectionCnv_p1, ALFA_GloRecEvCollectionCnv_p1, ALFA_GloRecEventCnv_p1, ALFA_HitCnv_p1, ALFA_LocRecCorrEvCollectionCnv_p1, ALFA_LocRecCorrEventCnv_p1, ALFA_LocRecCorrODEvCollectionCnv_p1, ALFA_LocRecCorrODEventCnv_p1, ALFA_LocRecEvCollectionCnv_p1, ALFA_LocRecEventCnv_p1, ALFA_LocRecODEvCollectionCnv_p1, ALFA_LocRecODEventCnv_p1, ALFA_ODDigitCnv_p1, ALFA_ODDigitCollectionCnv_p1, ALFA_ODHitCnv_p1, ALFA_RawDataCnv_charge_p1, ALFA_RawDataCnv_p1, AthenaBarCodeCnv_p1, CaloClusterContainerCnv_p1, CaloClusterContainerCnv_p2, CaloClusterContainerCnv_p3, CaloClusterContainerCnv_p4, CaloClusterContainerCnv_p5, CaloClusterContainerCnv_p6, CaloClusterContainerCnv_p7, CaloEnergyCnv_p1, CaloShowerContainerCnv_p1, CaloShowerContainerCnv_p2, CaloTopoTowerContainerCnv_p1, CaloTowerContainerCnv_p1, ChamberT0sCnv_p1, CompositeParticleCnv_p1, CompositeParticleContainerCnv_p1, DataLinkCnv_p1< DLINK_TYPE >, DataLinkCnv_p1< DataLink< ALFA_DigitCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecCorrEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecCorrODEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_LocRecODEvCollection > >, DataLinkCnv_p1< DataLink< ALFA_ODDigitCollection > >, DataLinkCnv_p1< DataLink< ALFA_RawDataContainer > >, DataLinkCnv_p1< DataLink< CaloCellContainer > >, DataLinkCnv_p1< DataLink< CaloClusterContainer > >, DataLinkCnv_p1< DataLink< CaloTowerContainer > >, DataLinkCnv_p1< DataLink< INav4MomAssocs > >, DataLinkCnv_p1< DataLink< LArSamples::Container > >, DataLinkCnv_p1< DataLink< LArSamples::ParticleBaseContainer > >, DataLinkCnv_p2< DLINK_TYPE >, DataLinkCnv_p2< DataLink< CaloCellContainer > >, DataLinkCnv_p2< DataLink< INav4MomAssocs > >, DataLinkCnv_p2< DataLink< INav4MomToTrackParticleAssocs > >, DataLinkCnv_p2< DataLink< TrackParticleAssocs > >, DepositInCaloCnv_p1, DepositInCaloCnv_p2, DetailedTrackTruthCnv_p1, DetailedTrackTruthCnv_p2, DetailedTrackTruthCnv_p3, DetailedTrackTruthCnv_p4, DMTest::CLinksAODCnv_p1, ElementLinkCnv_p1< LINK_TYPE >, ElementLinkCnv_p1< ElementLink< Analysis::MuonContainer > >, ElementLinkCnv_p1< ElementLink< AthExParticles > >, ElementLinkCnv_p1< ElementLink< CaloCellLinkContainer > >, ElementLinkCnv_p1< ElementLink< CaloClusterContainer > >, ElementLinkCnv_p1< ElementLink< CaloShowerContainer > >, ElementLinkCnv_p1< ElementLink< ElectronContainer > >, ElementLinkCnv_p1< ElementLink< InDet::PixelClusterContainer > >, ElementLinkCnv_p1< ElementLink< InDet::SCT_ClusterContainer > >, ElementLinkCnv_p1< ElementLink< InDet::TRT_DriftCircleContainer > >, ElementLinkCnv_p1< ElementLink< McEventCollection > >, ElementLinkCnv_p1< ElementLink< Muon::CscPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< Muon::MdtPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< Muon::RpcPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< Muon::TgcPrepDataContainer > >, ElementLinkCnv_p1< ElementLink< MuonCaloEnergyContainer > >, ElementLinkCnv_p1< ElementLink< MuonFeatureContainer > >, ElementLinkCnv_p1< ElementLink< PhotonContainer > >, ElementLinkCnv_p1< ElementLink< Rec::TrackParticleContainer > >, ElementLinkCnv_p1< ElementLink< RingerRingsContainer > >, ElementLinkCnv_p1< ElementLink< TileMuFeatureContainer > >, ElementLinkCnv_p1< ElementLink< TrigEFBphysContainer > >, ElementLinkCnv_p1< ElementLink< TrigEMClusterContainer > >, ElementLinkCnv_p1< ElementLink< TrigInDetTrackCollection > >, ElementLinkCnv_p1< ElementLink< TrigL2BphysContainer > >, ElementLinkCnv_p1< ElementLink< TrigTauClusterDetailsContainer > >, ElementLinkCnv_p1< ElementLink< TruthEtIsolationsContainer > >, ElementLinkCnv_p1< ElementLink< VxContainer > >, ElementLinkCnv_p3< LINK_TYPE >, ElementLinkCnv_p3< ElementLink< CaloCellContainer > >, ElementLinkCnv_p3< ElementLink< CaloCellLinkContainer > >, ElementLinkCnv_p3< ElementLink< CaloClusterContainer > >, ElementLinkCnv_p3< ElementLink< CaloRingsContainer > >, ElementLinkCnv_p3< ElementLink< CaloShowerContainer > >, ElementLinkCnv_p3< ElementLink< DataVector< C_v1 > > >, ElementLinkCnv_p3< ElementLink< DataVector< TrackParticleBase > > >, ElementLinkCnv_p3< ElementLink< DataVector< Trk::Track > > >, ElementLinkCnv_p3< ElementLink< ExampleHitContainer > >, ElementLinkCnv_p3< ElementLink< INavigable4MomentumCollection > >, ElementLinkCnv_p3< ElementLink< McEventCollection > >, ElementLinkCnv_p3< ElementLink< Muon::CscPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::MdtPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::MMPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::RpcPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::sTgcPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< Muon::TgcPrepDataContainer > >, ElementLinkCnv_p3< ElementLink< MuonCaloEnergyContainer > >, ElementLinkCnv_p3< ElementLink< MuonFeatureContainer > >, ElementLinkCnv_p3< ElementLink< Rec::TrackParticleContainer > >, ElementLinkCnv_p3< ElementLink< RingerRingsContainer > >, ElementLinkCnv_p3< ElementLink< TileMuFeatureContainer > >, ElementLinkCnv_p3< ElementLink< TrigEFBphysContainer > >, ElementLinkCnv_p3< ElementLink< TrigEMClusterContainer > >, ElementLinkCnv_p3< ElementLink< TrigInDetTrackCollection > >, ElementLinkCnv_p3< ElementLink< TrigL2BphysContainer > >, ElementLinkCnv_p3< ElementLink< TrigMuonEFInfoContainer > >, ElementLinkCnv_p3< ElementLink< TrigTauClusterDetailsContainer > >, ElementLinkCnv_p3< ElementLink< TruthEtIsolationsContainer > >, ElementLinkCnv_p3< ElementLink< VxContainer > >, ElementLinkCnv_p3< MasterLink_t >, ElementLinkCnv_p3< typename LinkVect_t::value_type >, ElementLinkVectorCnv_p1< LINK_VECT >, ElementLinkVectorCnv_p1< ElementLinkVector< AthExIParticles > >, ElementLinkVectorCnv_p1< ElementLinkVector< CaloClusterContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< DataVector< C_v1 > > >, ElementLinkVectorCnv_p1< ElementLinkVector< egDetailContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< ExampleHitContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< Rec::TrackParticleContainer > >, ElementLinkVectorCnv_p1< ElementLinkVector< Trk::SegmentCollection > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename NAV::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< Analysis::MuonContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< CaloCellContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< ElectronContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< PhotonContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< typename Navigable< Rec::TrackParticleContainer, double >::container_type > >, ElementLinkVectorCnv_p1< ElementLinkVector< VxContainer > >, EnergyLossCnv_p1, EventIDCnv_p1, EventInfoCnv_p1, EventInfoCnv_p2, EventInfoCnv_p3, EventInfoCnv_p4, EventStreamInfoCnv_p1, EventStreamInfoCnv_p2, EventStreamInfoCnv_p3, EventTypeCnv_p1, EventTypeCnv_p3, FitQualityCnv_p1, HepLorentzVectorCnv_p1, HepMcParticleLinkCnv_p1, HepMcParticleLinkCnv_p2, HepMcParticleLinkCnv_p3, INav4MomAssocsCnv_p1, INav4MomAssocsCnv_p2, INav4MomAssocsCnv_p3, INav4MomLinkContainerCnv_p1, INav4MomToTrackParticleAssocsCnv_p1, IParticleLinkContainerCnv_p1, JetCnv_p1, JetCnv_p2, JetCnv_p3, JetCnv_p4, JetCollectionCnv_p1, JetCollectionCnv_p2, JetCollectionCnv_p3, JetCollectionCnv_p4, JetCollectionCnv_p5, JetCollectionCnv_p6, JetKeyDescriptorCnv_p1, JetSamplingCnv_p1, JetSamplingCnv_p2, JetSamplingCollectionCnv_p1, JetSamplingCollectionCnv_p2, LArAutoCorrSubsetCnv_p1, LArCaliWaveSubsetCnv_p1, LArCaliWaveSubsetCnv_p2, LArCaliWaveSubsetCnv_p3, LArDigitContainerCnv_p1, LArDigitContainerCnv_p2, LArDigitContainerCnv_p3, LArDSPThresholdsSubsetCnv_p1, LArFebErrorSummaryCnv_p1, LArLATOMEHeaderContainerCnv_p1, LArMphysOverMcalSubsetCnv_p1, LArNoisyROSummaryCnv_p1, LArNoisyROSummaryCnv_p2, LArNoisyROSummaryCnv_p3, LArNoisyROSummaryCnv_p4, LArNoisyROSummaryCnv_p5, LArNoisyROSummaryCnv_p6, LArOFCBinSubsetCnv_p1, LArOFCSubsetCnv_p1, LArPedestalMCCnv_p1, LArPedestalSubsetCnv_p1, LArPedestalSubsetCnv_p2, LArPhysWaveSubsetCnv_p1, LArRampSubsetCnv_p1, LArRawChannelCnv_p1, LArRawChannelCnv_p2, LArRawChannelContainerCnv_p1, LArRawChannelContainerCnv_p2, LArRawChannelContainerCnv_p3, LArRawChannelContainerCnv_p4, LArRawSCContainerCnv_p1, LArSCDigitContainerCnv_p1, LArShapeSubsetCnv_p1, LArShapeSubsetCnv_p2, LArSingleFloatSubsetCnv_p1, LArTTL1Cnv_p1, LUCID_DigitCnv_p1, LUCID_DigitCnv_p2, LUCID_DigitContainerCnv_p1, LUCID_DigitContainerCnv_p2, LUCID_RawDataCnv_p1, LUCID_RawDataContainerCnv_p1, LVL1_ROICnv_p1, LVL1CTP::Lvl1ResultCnv_p1, LVL1CTP::Lvl1ResultCnv_p2, MergedEventInfoCnv_p1, MergedEventInfoCnv_p2, MissingEtCaloCnv_p1, MissingEtCaloCnv_p2, MissingEtCaloCnv_p3, MissingETCnv_p1, MissingETCnv_p2, MissingETCnv_p3, MissingEtRegionsCnv_p1, MissingEtRegionsCnv_p2, MissingEtRegionsCnv_p3, MissingEtTruthCnv_p1, MissingEtTruthCnv_p2, MissingEtTruthCnv_p3, MuonCnv_p1, MuonCnv_p2, MuonCnv_p3, MuonCnv_p4, MuonCnv_p5, MuonCnv_p6, MuonContainerCnv_p1, MuonContainerCnv_p2, MuonSpShowerCnv_p1, MuonSpShowerContainerCnv_p1, NavigableCnv_p1< NAV, RPAR >, NavigableCnv_p1< NAV, NavigationDefaults::DefaultWeight >, NavigableCnv_p1< Navigable< Analysis::MuonContainer, double >, float >, NavigableCnv_p1< Navigable< CaloCellContainer, double >, float >, NavigableCnv_p1< Navigable< ElectronContainer, double >, float >, NavigableCnv_p1< Navigable< INavigable4MomentumCollection, double > >, NavigableCnv_p1< Navigable< PhotonContainer, double >, float >, NavigableCnv_p1< Navigable< Rec::TrackParticleContainer, double >, float >, NavigableCnv_p2< NAV, RPAR >, NavigableCnv_p2< MissingETComposition, MissingETComposition_p1::Weight_p1 >, NavigableCnv_p2< MissingETComposition, Weight_p1 >, NavigableCnv_p2< NAV, NavigationDefaults::DefaultWeight >, NavigableCnv_p2< Navigable< ExampleHitContainer > >, NavigableCnv_p2< Navigable< ExampleHitContainer, double > >, NavigableCnv_p2< Navigable< INavigable4MomentumCollection, double >, float >, NeutrinoCnv_p1, NeutrinoCnv_p2, P4EEtaPhiMCnv_p1, P4EEtaPhiMCnv_p2, P4ImplEEtaPhiMCnv_p1, P4ImplEEtaPhiMCnv_p2, P4ImplIPtCotThPhiMCnv_p1, P4ImplPtEtaPhiMCnv_p1, P4ImplPtEtaPhiMCnv_p2, P4ImplPxPyPzECnv_p1, P4IPtCotThPhiMCnv_p1, P4PtEtaPhiMCnv_p1, P4PtEtaPhiMCnv_p2, P4PxPyPzECnv_p1, ParticleBaseCnv_p1, ParticleBaseCnv_p2, ParticleJetCnv_p1, ParticleLinksCnv_p1< Container >, ParticleLinksCnv_p1< ParticleBaseContainer >, ParticleShallowCloneCnv_p1, ParticleShallowCloneContainerCnv_p1, PileUpEventInfoCnv_p1, PileUpEventInfoCnv_p2, PileUpEventInfoCnv_p3, PileUpEventInfoCnv_p4, PileUpEventInfoCnv_p5, RingerRingsCnv_p1, RingerRingsCnv_p2, RpcByteStreamErrorContainerCnv_p1, RpcSectorLogicContainerCnv_p1, SelectedParticlesCnv_p1, SubDetHitStatisticsCnv_p0, T_AthenaHitsVectorCnv< TRANS, PERS, CONV >, T_AtlasHitsVectorCnv< TRANS, PERS, CONV >, TBADCRawContCnv_p1, TBBPCContCnv_p1, TBEventInfoCnv_p1, TBLArDigitContainerCnv_p1, TBMWPCContCnv_p1, TBPhaseCnv_p1, TBScintillatorContCnv_p1, TBTailCatcherCnv_p1, TBTDCCnv_p1, TBTDCRawContCnv_p1, TBTrackCnv_p1, TBTrackInfoCnv_p1, TBTriggerPatternUnitCnv_p1, TileBeamElemCnv_p1, TileCosmicMuonCnv_p1, TileCosmicMuonCnv_p2, TileDigitsCnv_p1, TileDigitsCnv_p2, TileDigitsCnv_p3, TileHitCnv_p1, TileL2Cnv_p1, TileL2Cnv_p2, TileMuCnv_p1, TileMuonReceiverObjCnv_p1, TileRawChannelCnv_p1, TileTTL1CellCnv_p1, TileTTL1Cnv_p1, TPCnvIDCont< TRANS, PERS, CONV >, TPCnvIDContFromIdentifier< TRANS, PERS, CONV >, TPCnvStdVector< TRANS, PERS, CONV >, TPCnvVector< TRANS, PERS, CONV >, TPConverterConstBase< TRANS, PERS >, TPPolyVectorCnv< TRANS, PERS, CONV >, TPPtrVectorCnv< TRANS, PERS, CONV >, TPValVectorCnv< TRANS, PERS, CONV >, TrackParticleAssocsCnv_p1, TrackParticleTruthCollectionCnv_p1, TrackParticleTruthCollectionCnv_p2, TrackParticleTruthCollectionCnv_p3, TrackRecordCnv_p1, TrackRecordCnv_p2, TrigCaloClusterCnv_p1, TrigCaloClusterCnv_p2, TrigCaloClusterCnv_p3, TrigConfAlgCnv_p1, TrigConfChainCnv_p1, TrigConfSeqCnv_p1, TrigConfSigCnv_p1, TrigDec::TrigDecisionCnv_p2, TrigDec::TrigDecisionCnv_p3, TrigDec::TrigDecisionCnv_p4, TrigDec::TrigDecisionCnv_p5, TrigEMClusterCnv_p3, TrigEMClusterCnv_p4, TriggerInfoCnv_p1, TriggerInfoCnv_p2, TrigMonAlgCnv_p1, TrigMonConfigCnv_p1, TrigMonEventCnv_p1, TrigMonROBCnv_p1, TrigMonROBDataCnv_p1, TrigMonROBDataCnv_p2, TrigMonRoiCnv_p1, TrigMonSeqCnv_p1, TrigMonTECnv_p1, TrigRNNOutputCnv_p2, TrigT2JetCnv_p1, TrigT2JetCnv_p2, TrigT2JetCnv_p3, TrigT2MbtsBitsCnv_p1, TrigT2MbtsBitsCnv_p2, TrigT2MbtsBitsCnv_p3, TrigT2ZdcSignalsCnv_p1, TrigTauClusterCnv_p1, TrigTauClusterCnv_p2, TrigTauClusterCnv_p3, TrigTauClusterCnv_p4, TrigTauClusterCnv_p5, TrigTauClusterDetailsCnv_p1, TrigTauClusterDetailsCnv_p2, TruthEtIsolationsCnv_p1, TruthParticleContainerCnv_p5, TruthParticleContainerCnv_p6, TruthTrajectoryCnv_p1, TruthTrajectoryCnv_p2, TruthTrajectoryCnv_p3, xAODBTaggingAuxContainerCnv_v1, xAODCaloClusterAuxContainerCnv_v1, xAODElectronAuxContainerCnv_v1, xAODElectronAuxContainerCnv_v2, xAODEmTauRoIAuxContainerCnv_v1, xAODEmTauRoIContainerCnv_v1, xAODEnergySumRoIAuxInfoCnv_v1, xAODEnergySumRoICnv_v1, xAODEventAuxInfoCnv_v1, xAODEventAuxInfoCnv_v2, xAODJetRoIAuxContainerCnv_v1, xAODJetRoIContainerCnv_v1, xAODJetTrigAuxContainerCnv_v1, xAODL2StandAloneMuonAuxContainerCnv_v1, xAODL2StandAloneMuonContainerCnv_v1, xAODMissingETAuxAssociationMapCnv_v1, xAODMuonAuxContainerCnv_v1, xAODMuonAuxContainerCnv_v2, xAODMuonAuxContainerCnv_v3, xAODMuonAuxContainerCnv_v4, xAODPhotonAuxContainerCnv_v1, xAODPhotonAuxContainerCnv_v2, xAODRODHeaderAuxContainerCnv_v1, xAODRODHeaderContainerCnv_v1, xAODTauJetAuxContainerCnv_v1, xAODTauJetContainerCnv_v1, xAODTauJetContainerCnv_v2, xAODTrackCaloClusterAuxContainerCnv_v1, xAODTrackParticleAuxContainerCnv_v1, xAODTrackParticleAuxContainerCnv_v2, xAODTrackParticleAuxContainerCnv_v3, xAODTrackParticleAuxContainerCnv_v4, xAODTrigCompositeAuxContainerCnv_v1, xAODTrigRingerRingsAuxContainerCnv_v1, xAODTrigRingerRingsContainerCnv_v1, xAODTrigRNNOutputAuxContainerCnv_v1, xAODTrigRNNOutputContainerCnv_v1, xAODTruthParticleAuxContainerCnv_v1, xAODTruthVertexAuxContainerCnv_v1, ZDC_SimFiberHit_CollectionCnv_p1, ZDC_SimFiberHitCnv_p1, ZdcDigitsCnv_p1, ZdcDigitsCollectionCnv_p1, ZdcRawChannelCnv_p1, and ZdcRawChannelCollectionCnv_p1.

◆ transToPersUntyped()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::transToPersUntyped ( const void * trans,
void * pers,
MsgStream & log )
inlinevirtualinherited

Convert transient object representation to persistent.

Parameters
trans[IN] void* pointer to the transient object
pers[OUT] void* pointer to the empty persistent object
log[IN] output message stream

Implements ITPCnvBase.

Definition at line 410 of file TPConverter.h.

413 {
414 transToPers (reinterpret_cast<const TRANS*> (trans),
415 reinterpret_cast<PERS*> (pers),
416 log);
417 }
virtual void transToPers(const TRANS *transObj, PERS *persObj, MsgStream &log)=0

◆ transToPersWithKey()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::transToPersWithKey ( const TRANS * transObj,
PERS * persObj,
const std::string & ,
MsgStream & log )
inlinevirtualinherited

Convert transient representation to persistent one.

Copies data members from transient object to an existing persistent one. Needs to be implemented by the developer on the actual converter.

Parameters
transObj[IN] transient object
persObj[IN] persistent object
key[IN] SG key of object being written.
log[IN] output message stream

Reimplemented in AthExParticlesCnv_p1, CaloCellContainerCnv_p1, CaloCellLinkContainerCnv_p1, CaloCellLinkContainerCnv_p2, CaloClusterCellLinkContainerCnv_p1, TPConverterWithKeyBase< TRANS, PERS >, and xAODTauJetAuxContainerCnv_v2.

Definition at line 392 of file TPConverter.h.

395 {
396 return transToPers (transObj, persObj, log);
397 }

◆ transToPersWithKeyUntyped()

virtual void TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::transToPersWithKeyUntyped ( const void * trans,
void * pers,
const std::string & key,
MsgStream & log )
inlinevirtualinherited

Convert transient object representation to persistent.

Parameters
trans[IN] void* pointer to the transient object
pers[OUT] void* pointer to the empty persistent object
key[IN] SG key of object being written.
log[IN] output message stream

Reimplemented from ITPCnvBase.

Definition at line 432 of file TPConverter.h.

436 {
437 transToPersWithKey (reinterpret_cast<const TRANS*> (trans),
438 reinterpret_cast<PERS*> (pers),
439 key,
440 log);
441 }
virtual void transToPersWithKey(const TRANS *transObj, PERS *persObj, const std::string &, MsgStream &log)

◆ typeID()

template<class TRANS>
virtual const TPObjRef::typeID_t & ITPConverterFor< TRANS >::typeID ( ) const
inlinevirtualinherited

Return TP typeID for persistent objects produced by this converter.

Returns
TPObjRef::typeID_t&

Implements ITPConverter.

Definition at line 208 of file TPConverter.h.

208{ return m_pStorageTID; }

◆ typeIDvalue()

template<class TRANS>
unsigned ITPConverterFor< TRANS >::typeIDvalue ( ) const
inlineinherited

inlined non-virtual version to get the typeID value fast

Definition at line 211 of file TPConverter.h.

211{ return m_pStorageTIDvalue; }

◆ virt_createTransFromPStore()

virtual TRANS * TPPolyCnvBase< TRANS, TRANS, PERS >::virt_createTransFromPStore ( unsigned index,
MsgStream & log )
inlinevirtualinherited

Internal interface method that is used to invoke the real conversion method (createTransient)

Parameters
index[IN] index of the persistent object in the storage vector
log[IN] output message stream
Returns
Created transient object (by pointer)

Reimplemented from TPAbstractPolyCnvBase< TRANS, TRANS, PERS >.

Definition at line 706 of file TPConverter.h.

706 {
708 return createTransient( &(*this->m_pStorage)[index], log );
709 }
Base TP converter template parametrized by transient and persistent types.
virtual TRANS * createTransient(const PERS *persObj, MsgStream &log)

◆ virt_createTransFromPStoreWithKey()

virtual TRANS * TPPolyCnvBase< TRANS, TRANS, PERS >::virt_createTransFromPStoreWithKey ( unsigned index,
const std::string & key,
MsgStream & log )
inlinevirtualinherited

Internal interface method that is used to invoke the real conversion method (createTransient)

Parameters
index[IN] index of the persistent object in the storage vector
key[IN] SG key of the object being converted
log[IN] output message stream
Returns
Created transient object (by pointer)

Reimplemented from TPAbstractPolyCnvBase< TRANS, TRANS, PERS >.

Definition at line 718 of file TPConverter.h.

721 {
723 return createTransientWithKey( &(*this->m_pStorage)[index], key, log );
724 }
virtual TRANS * createTransientWithKey(const PERS *persObj, const std::string &key, MsgStream &log)

◆ virt_toPersistent()

template<class TRANS, class PERS>
virtual TPObjRef TPConverterBase< TRANS, PERS >::virt_toPersistent ( const TRANS * trans,
MsgStream & log )
inlinevirtualinherited

Internal interface method that is used to invoke the real conversion method (toPersistent_impl) in the derived converter.

Parameters
trans[IN] transient object
log[IN] output message stream
Returns
TPObjRef TP reference to the persistent representation stored in the storage vector of the top-level persistent object Here toPersistent_impl is invoked with the dynamic cast of the transient type pointer to it's actual type

Reimplemented from TPAbstractPolyCnvBase< TRANS, TRANS, PERS >.

Definition at line 747 of file TPConverter.h.

747 {
748 return this->toPersistentWithKey_impl( trans, "", log);
749 }
TPObjRef toPersistentWithKey_impl(const TRANS *trans, const std::string &key, MsgStream &log)

◆ virt_toPersistentWithKey()

template<class TRANS, class PERS>
virtual TPObjRef TPConverterBase< TRANS, PERS >::virt_toPersistentWithKey ( const TRANS * trans,
const std::string & key,
MsgStream & log )
inlinevirtualinherited

Internal interface method that is used to invoke the real conversion method (toPersistent_impl) in the derived converter.

Parameters
trans[IN] transient object
key[IN] SG key of the object being converted.
log[IN] output message stream
Returns
TPObjRef TP reference to the persistent representation stored in the storage vector of the top-level persistent object Here toPersistentWithKey_impl is invoked with the dynamic cast of the transient type pointer to it's actual type

Reimplemented from TPAbstractPolyCnvBase< TRANS, TRANS, PERS >.

Definition at line 752 of file TPConverter.h.

755 {
756 return this->toPersistentWithKey_impl( trans, key, log);
757 }

◆ wasUsedForReading()

template<class TRANS>
bool ITPConverterFor< TRANS >::wasUsedForReading ( )
inlineinherited

Definition at line 236 of file TPConverter.h.

236{ return m_wasUsedForReading; }

◆ writeGenParticle()

int McEventCollectionCnv_p5::writeGenParticle ( const HepMC::GenParticle & p,
McEventCollection_p5 & persEvt ) const
protected

Method to write a persistent GenParticle object It returns the index of the persistent GenParticle into the collection of persistent of GenParticles from the persistent GenEvent.

Definition at line 873 of file McEventCollectionCnv_p5.cxx.

875{
876 const HepMC::FourVector& mom = p.m_momentum;
877 const double ene = mom.e();
878 const double m2 = mom.m2();
879
880 // Definitions of Bool isTimeLilike, isSpacelike and isLightlike according to HepLorentzVector definition
881 const bool useP2M2 = !(m2 > 0) && // !isTimelike
882 (m2 < 0) && // isSpacelike
883 !(std::abs(m2) < 2.0*DBL_EPSILON*ene*ene); // !isLightlike
884
885 const short recoMethod = ( !useP2M2
886 ? 0
887 : ( ene >= 0. //*GeV
888 ? 1
889 : 2 ) );
890
891
892 persEvt.m_genParticles.
893 push_back( GenParticle_p5( mom.px(),
894 mom.py(),
895 mom.pz(),
896 mom.m(),
897 p.m_pdg_id,
898 HepMC::old_particle_status_from_new(p.m_status), // REVERTED STATUS VALUE TO OLD SCHEME
899 p.m_flow.size(),
900 p.m_polarization.theta(),
901 p.m_polarization.phi(),
902 p.m_production_vertex
903 ? p.m_production_vertex->barcode()
904 : 0,
905 p.m_end_vertex
906 ? p.m_end_vertex->barcode()
907 : 0,
908 p.m_barcode,
909 p.m_generated_mass,
910 recoMethod ) );
911 persEvt.m_genParticles.back().m_flow.assign( p.m_flow.begin(),
912 p.m_flow.end() );
913
914 // we return the index of the particle in the big vector of particles
915 // (contained by the persistent GenEvent)
916 return (persEvt.m_genParticles.size() - 1);
917}
int old_particle_status_from_new(const int newStatus)
Get particle status in the old scheme from the status in the new scheme.

◆ writeGenVertex()

void McEventCollectionCnv_p5::writeGenVertex ( const HepMC::GenVertex & vtx,
McEventCollection_p5 & persEvt ) const
protected

Method to write a persistent GenVertex object.

The persistent vertex is added to the persistent is added to the persistent GenEvent.

Definition at line 792 of file McEventCollectionCnv_p5.cxx.

794{
795 const HepMC::FourVector& position = vtx.m_position;
796 persEvt.m_genVertices.push_back(
797 GenVertex_p5( position.x(),
798 position.y(),
799 position.z(),
800 position.t(),
801 HepMC::old_vertex_status_from_new(vtx.m_id), // REVERTED STATUS VALUE TO OLD SCHEME
802 vtx.m_weights.m_weights.begin(),
803 vtx.m_weights.m_weights.end(),
804 vtx.m_barcode ) );
805 GenVertex_p5& persVtx = persEvt.m_genVertices.back();
806
807 // we write only the orphans in-coming particles
808 const std::vector<HepMC::GenParticlePtr>::const_iterator endInVtx = vtx.m_particles_in.end();
809 persVtx.m_particlesIn.reserve(vtx.m_particles_in.size());
810 for ( std::vector<HepMC::GenParticlePtr>::const_iterator p = vtx.m_particles_in.begin();
811 p != endInVtx;
812 ++p ) {
813 if ( 0 == (*p)->production_vertex() ) {
814 persVtx.m_particlesIn.push_back( writeGenParticle( **p, persEvt ) );
815 }
816 }
817
818 const std::vector<HepMC::GenParticlePtr>::const_iterator endOutVtx = vtx.m_particles_out.end();
819 persVtx.m_particlesOut.reserve(vtx.m_particles_out.size());
820 for ( std::vector<HepMC::GenParticlePtr>::const_iterator p = vtx.m_particles_out.begin();
821 p != endOutVtx;
822 ++p ) {
823 persVtx.m_particlesOut.push_back( writeGenParticle( **p, persEvt ) );
824 }
825
826 return;
827}
std::vector< int > m_particlesIn
collection of barcodes of in-going particles connected to this vertex
std::vector< int > m_particlesOut
collection of barcodes of out-going particles connected to this vertex
int writeGenParticle(const HepMC::GenParticle &p, McEventCollection_p5 &persEvt) const
Method to write a persistent GenParticle object It returns the index of the persistent GenParticle in...
int old_vertex_status_from_new(const int newStatus)
Get vertex status in the old scheme from the status in the new scheme.

Member Data Documentation

◆ m_curRecLevel

int TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::m_curRecLevel
protectedinherited

count recursive invocations, to detect recursion

Definition at line 582 of file TPConverter.h.

◆ m_hepMCWeightSvc

ServiceHandle<IHepMCWeightSvc> McEventCollectionCnv_p5::m_hepMCWeightSvc
protected

Definition at line 156 of file McEventCollectionCnv_p5.h.

◆ m_ignoreRecursion

bool TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::m_ignoreRecursion
protectedinherited

if true, do not throw errors in case of recursion.

Definition at line 588 of file TPConverter.h.

◆ m_isPileup

bool McEventCollectionCnv_p5::m_isPileup
protected

Definition at line 155 of file McEventCollectionCnv_p5.h.

◆ m_pStorage

std::vector< PERS >* TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::m_pStorage
protectedinherited

the address of the storage vector for persistent representations

Definition at line 579 of file TPConverter.h.

◆ m_pStorageTID

template<class TRANS>
TPObjRef::typeID_t ITPConverterFor< TRANS >::m_pStorageTID
protectedinherited

TP Ref typeID for the persistent objects this converter is creating.

Definition at line 292 of file TPConverter.h.

◆ m_pStorageTIDvalue

template<class TRANS>
unsigned ITPConverterFor< TRANS >::m_pStorageTIDvalue
protectedinherited

m_pStorageTID converted to integer value

Definition at line 295 of file TPConverter.h.

◆ m_recursive

bool TPAbstractPolyCnvBase< TRANS, TRANS, PERS >::m_recursive
protectedinherited

if true, work in recursion-safe way (slower)

Definition at line 585 of file TPConverter.h.

◆ m_topConverter

template<class TRANS>
TopLevelTPCnvBase* ITPConverterFor< TRANS >::m_topConverter
protectedinherited

top level converter that owns this elemental TP converter it also holds the storage object

Definition at line 299 of file TPConverter.h.

◆ m_topConverterRuntime

template<class TRANS>
TopLevelTPCnvBase* ITPConverterFor< TRANS >::m_topConverterRuntime
protectedinherited

top level converter "owning" this TP converter at runtime (different from m_topConverter in case the top-level converter and object have extensions)

Definition at line 302 of file TPConverter.h.

◆ m_wasUsedForReading

template<class TRANS>
bool ITPConverterFor< TRANS >::m_wasUsedForReading
protectedinherited

flag set when using this converter for reading triggers search for a new converter before writing, to prevent possible use of old version

Definition at line 306 of file TPConverter.h.


The documentation for this class was generated from the following files: