ATLAS Offline Software
Loading...
Searching...
No Matches
TRT_TrackSegmentsMakerCondAlg_ATLxk.cxx
Go to the documentation of this file.
1/*
2 Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3*/
4
6
11
14
17
18
19#include <memory>
20#include <utility>
21#include <ostream>
22#include <fstream>
23#include <cmath>
24
25
27// Constructor
29
31 : ::AthCondAlgorithm(name, pSvcLocator) { }
32
34// Initialisation
36
38{
39
40 ATH_CHECK(m_trtDetEleContKey.initialize());
41 ATH_CHECK(m_writeKey.initialize());
42
43 // Get propagator tool
44 //
45 if( m_propTool.retrieve().isFailure()) {
46 ATH_MSG_FATAL("Failed to retrieve tool "<< m_propTool);
47 return StatusCode::FAILURE;
48 }
49 ATH_MSG_DEBUG("Retrieved tool " << m_propTool);
50
52
53 // Get TRT ID
54 if (detStore()->retrieve(m_trtid, "TRT_ID").isFailure()) {
55 ATH_MSG_FATAL("Could not get TRT ID helper");
56 return StatusCode::FAILURE;
57 }
58
59 m_nPhi = 500 ;
60 m_Psi = 2./float(m_nMom-1) ;
61 m_Psi128 = m_Psi*128. ;
62 m_A = float(m_nPhi)/(2.*M_PI) ;
63
64 return StatusCode::SUCCESS;
65}
66
68// Map of straws production
70// Taken from the old InDet::TRT_TrackSegmentsMaker_ATLxk::mapStrawsProduction()
72
73StatusCode InDet::TRT_TrackSegmentsMakerCondAlg_ATLxk::execute(const EventContext& ctx) const
74{
75
77 if (writeHandle.isValid()) {
78 ATH_MSG_DEBUG("CondHandle " << writeHandle.fullKey() << " is already valid.");
79 return StatusCode::SUCCESS;
80 }
81
82 EventIDRange rangeTrt;
83
85 if (not trtDetEleHandle.isValid()) {
86 ATH_MSG_FATAL(m_trtDetEleContKey.fullKey() << " is not available.");
87 return StatusCode::FAILURE;
88 }
89
90 const InDetDD::TRT_Numerology* trtNum = trtDetEleHandle->getTRTNumerology();
91 if (trtNum==nullptr){
92 ATH_MSG_FATAL("Pointer to TRT_Numerology not found in condition store" << m_trtDetEleContKey.fullKey());
93 }
94
95 if (not trtDetEleHandle.range(rangeTrt)) {
96 ATH_MSG_FATAL("Failed to retrieve validity range for " << trtDetEleHandle.key());
97 return StatusCode::FAILURE;
98 }
99
100 auto writeCdo = std::make_unique<InDet::TRT_TrackSegmentsToolCondData_xk>();
101 if(writeCdo->m_ndzdr ) delete [] writeCdo->m_ndzdr ;
102 if(writeCdo->m_slope ) delete [] writeCdo->m_slope ;
103 if(writeCdo->m_islope ) delete [] writeCdo->m_islope ;
104
105 float RZ [4][200];
106 float Tmin [4][200];
107 float Tmax [4][200];
108
109 // Map straws production for barrel geometry
110 //
111 int Rings = trtNum->getNBarrelRings();
112 int NPhi = trtNum->getNBarrelPhi();
113 int n = 0;
114
115 for(int ring = 0; ring!=Rings; ++ring) {
116
117 int NSlayers = trtNum->getNBarrelLayers(ring);
118
119 writeCdo->m_flayers[1][ring] = writeCdo->m_nlayers[1]; writeCdo->m_flayers[2][ring] = writeCdo->m_nlayers[2];
120 writeCdo->m_nlayers[1] += NSlayers ; writeCdo->m_nlayers[2] += NSlayers ;
121
122 for(int nsl=0; nsl!=NSlayers; ++nsl) {
123
124
125 for(int f=0; f!=NPhi; ++f) {
126
127 const InDetDD::TRT_BaseElement* base1 = trtDetEleHandle->getBarrelDetElement(0,ring,f,nsl);
128 const InDetDD::TRT_BaseElement* base2 = trtDetEleHandle->getBarrelDetElement(1,ring,f,nsl);
129 if(!base1 || !base2) continue;
130 const InDetDD::TRT_BarrelElement* bael1 =
131 dynamic_cast<const InDetDD::TRT_BarrelElement*>(base1);
132 const Trk::RectangleBounds* rb1 =
133 dynamic_cast<const Trk::RectangleBounds*>(&base1->bounds());
134 const Trk::RectangleBounds* rb2 =
135 dynamic_cast<const Trk::RectangleBounds*>(&base2->bounds());
136 if(!bael1 || !rb1 || !rb2) continue;
137 float rmean = 0;
138 if(f==0) {
139
140 Amg::Vector3D C1 = base1->center();
141 Amg::Vector3D C2 = base2->center();
142 RZ [1][n] = std::sqrt(C1.x()*C1.x()+C1.y()*C1.y());
143
144 Tmin [1][n] = (C1.z()-rb1->halflengthY())/RZ[1][n];
145 Tmax [1][n] = -.001;
146
147 RZ [2][n] = std::sqrt(C2.x()*C2.x()+C2.y()*C2.y());
148
149 Tmin [2][n] = +.001;
150 Tmax [2][n] = (C2.z()+rb2->halflengthY())/RZ[2][n];
151 ++n;
152 }
153 int ns = bael1->nStraws();
154 for(int s=0; s!=ns; ++s) {
155
156 const Identifier id1 = m_trtid->straw_id(-1,f,ring,nsl,s );
157 const Amg::Vector3D * sc1 = &(base1->strawCenter (s));
158 const Amg::Transform3D* st1 = &(base1->strawTransform (s));
159 const Amg::Transform3D* tr1 = &(base1->surface(id1).transform() );
160 if(f==0) rmean+=std::sqrt(sc1->x()*sc1->x()+sc1->y()*sc1->y());
161
162 if(!sc1 || !st1 || !tr1 ) {ATH_MSG_ERROR("problem with TRT geometry");}
163 ++writeCdo->m_nstraws[1];
164 const Identifier id2 = m_trtid->straw_id(+1,f,ring,nsl,s );
165 const Amg::Vector3D * sc2 = &(base2->strawCenter (s));
166 const Amg::Transform3D* st2 = &(base2->strawTransform (s));
167 const Amg::Transform3D* tr2 = &(base2->surface(id2).transform() );
168 if(!sc2 || !st2 || !tr2) {ATH_MSG_ERROR("problem with TRT geometry");}
169 ++writeCdo->m_nstraws[2];
170 }
171 if(f==0) { RZ[1][n-1] = RZ[2][n-1] = rmean/float(ns);}
172 }
173 }
174 }
175
176 // Endcap
177 //
178 int Wheels = trtNum->getNEndcapWheels(); if(!Wheels) return StatusCode::SUCCESS;
179 NPhi = trtNum->getNEndcapPhi ();
180 n = 0;
181 for(int wh = 0; wh!=Wheels; ++wh) {
182
183 int NSlayers = trtNum->getNEndcapLayers(wh);
184 writeCdo->m_flayers[0][wh] = writeCdo->m_nlayers[0]; writeCdo->m_flayers[3][wh] = writeCdo->m_nlayers[3];
185 writeCdo->m_nlayers[0] += NSlayers ; writeCdo->m_nlayers[3] += NSlayers ;
186
187 for(int nsl = 0; nsl!=NSlayers; ++nsl) {
188
189 for(int f=0; f!=NPhi; ++f) {
190
191 const InDetDD::TRT_BaseElement* base1 = trtDetEleHandle->getEndcapDetElement(0,wh,nsl,f);
192 const InDetDD::TRT_BaseElement* base2 = trtDetEleHandle->getEndcapDetElement(1,wh,nsl,f);
193 if(!base1 || !base2) continue;
194
195 const InDetDD::TRT_EndcapElement* enel1 =
196 dynamic_cast<const InDetDD::TRT_EndcapElement*>(base1);
197 const Trk::DiscBounds* db1 =
198 dynamic_cast<const Trk::DiscBounds*>(&base1->bounds());
199 const Trk::DiscBounds* db2 =
200 dynamic_cast<const Trk::DiscBounds*>(&base2->bounds());
201 if(!enel1 || !db1 || !db2) continue;
202 if(f==0) {
203
204 Amg::Vector3D C1 = base1->center();
205 Amg::Vector3D C2 = base2->center();
206 RZ [0][n] = C1.z();
207 Tmin [0][n] = RZ[0][n]/db1->rMin();
208 Tmax [0][n] = RZ[0][n]/db1->rMax();
209
210 RZ [3][n] = C2.z();
211 Tmin [3][n] = RZ[3][n]/db2->rMax();
212 Tmax [3][n] = RZ[3][n]/db2->rMin();
213
214 ++n;
215 }
216
217 int ns = enel1->nStraws();
218
219 for(int s=0; s!=ns; ++s) {
220
221 const Identifier id1 = m_trtid->straw_id(-2,f,wh,nsl,s );
222 const Amg::Vector3D * sc1 = &(base1->strawCenter (s) );
223 const Amg::Transform3D* st1 = &(base1->strawTransform (s) );
224 const Amg::Transform3D* tr1 = &(base1->surface(id1).transform());
225
226 if(!sc1 || !st1 || !tr1) {ATH_MSG_ERROR("problem with TRT geometry");}
227 ++writeCdo->m_nstraws[0];
228
229 const Identifier id2 = m_trtid->straw_id(+2,f,wh,nsl,s );
230 const Amg::Vector3D * sc2 = &(base2->strawCenter (s) );
231 const Amg::Transform3D* st2 = &(base2->strawTransform (s) );
232 const Amg::Transform3D* tr2 = &(base2->surface(id2).transform());
233
234 if(!sc2 || !st2 || !tr2) {ATH_MSG_ERROR("problem with TRT geometry");}
235 ++writeCdo->m_nstraws[3];
236 }
237 }
238 }
239 }
240
241 double zmax = RZ[3][writeCdo->m_nlayers[3]-1]+10.;
242 double rmax = RZ[2][writeCdo->m_nlayers[2]-1]+10.;
243 const Trk::CylinderBounds CB(rmax,zmax);
244
245 float rapidity[26]=
246 {-2.05,-1.95,-1.84,-1.72,-1.62,-1.53,-1.43,-1.33,-1.21,-1.00,-.94, -.85,-.32,
247 .32, .85, .94, 1.00, 1.21, 1.33, 1.43, 1.53, 1.62, 1.72,1.84, 1.95,2.05};
248
249 std::deque<Amg::Vector3D> G [26];
250 Amg::Vector3D psv(0.,0.,0.);
251 Trk::PerigeeSurface ps(psv);
252
253 for(int r=0; r!=26; ++r) {
254 writeCdo->m_dzdr[r] = 1./std::tan(2.*std::atan(std::exp(-rapidity[r])));
255 double pinv =-1./(m_pTmin*std::sqrt(1.+writeCdo->m_dzdr[r]*writeCdo->m_dzdr[r]));
256 auto trackPar = ps.createUniqueTrackParameters(
257 0.,
258 0.,
259 0.,
260 std::atan2(1., double(writeCdo->m_dzdr[r])),
261 pinv,
262 std::nullopt);
263 m_propTool->globalPositions(ctx,
264 G[r], *trackPar, m_fieldprop, CB, 5., Trk::pion);
265 }
266
267 n = 0;
268 for(int b=0; b!=4; ++b) {
269 for(unsigned int i=0; i!=writeCdo->m_nlayers[b]; ++i) {
270 writeCdo->m_begin[b][i] = n;
271 for(float r : writeCdo->m_dzdr) {
272 if( r >= Tmin[b][i] && r <= Tmax[b][i] ) {
273 writeCdo->m_end[b][i] = n++;
274 }
275 }
276 }
277 }
278
279 writeCdo->m_ndzdr = new unsigned int[n];
280 writeCdo->m_islope = new int[n];
281 writeCdo->m_slope = new float [n];
282 writeCdo->m_cirsize = writeCdo->m_nstraws[0]+writeCdo->m_nstraws[1];
283
284 n = 0;
285 for (int b = 0; b != 4; ++b) {
286
287 for (unsigned int i = 0; i != writeCdo->m_nlayers[b]; ++i) {
288
289 for (int r = 0; r != 26; ++r) {
290 if (writeCdo->m_dzdr[r] >= Tmin[b][i] &&
291 writeCdo->m_dzdr[r] <= Tmax[b][i]) {
292 writeCdo->m_ndzdr[n] = r;
293 std::deque<Amg::Vector3D>::iterator gp0, gp1, gp = G[r].begin(),gpe = G[r].end();
294 if (b == 0 || b == 3) {
295
296 gp0 = gp;
297 for (++gp; gp != gpe; ++gp) {
298 if (b == 3 && (*gp).z() >= RZ[b][i])
299 break;
300 if (b == 0 && (*gp).z() <= RZ[b][i])
301 break;
302 gp1 = gp0;
303 gp0 = gp;
304 }
305 } else {
306 gp0 = gp;
307 for (++gp; gp != gpe; ++gp) {
308 if (std::sqrt((*gp).x() * (*gp).x() + (*gp).y() * (*gp).y()) >
309 RZ[b][i])
310 break;
311 gp1 = gp0;
312 gp0 = gp;
313 }
314 }
315 double x, y, z, ax, ay, az;
316 if (gp != gpe) {
317 x = (*gp0).x();
318 ax = (*gp).x() - x;
319 y = (*gp0).y();
320 ay = (*gp).y() - y;
321 z = (*gp0).z();
322 az = (*gp).z() - z;
323 double as = 1. / std::sqrt(ax * ax + ay * ay + az * az);
324 ax *= as;
325 ay *= as;
326 az *= as;
327 } else {
328 x = (*gp1).x();
329 ax = (*gp0).x() - x;
330 y = (*gp1).y();
331 ay = (*gp0).y() - y;
332 z = (*gp1).z();
333 az = (*gp0).z() - z;
334 double as = 1. / std::sqrt(ax * ax + ay * ay + az * az);
335 ax *= as;
336 ay *= as;
337 az *= as;
338 }
339 double S = 0;
340
341 if (b == 0 || b == 3) {
342 S = (RZ[b][i] - z) / az;
343 } else {
344 double A = (ax * x + ay * y) * 2.;
345 double D = (RZ[b][i] - x - y) * (RZ[b][i] + x + y) + 2. * x * y;
346 S = D / A;
347 double B = 2. * (ax * ax + ay * ay);
348 double Sq = A * A + 2. * D * B;
349 Sq > 0. ? Sq = std::sqrt(Sq) : Sq = 0.;
350 double S1 = -(A + Sq) / B;
351 double S2 = -(A - Sq) / B;
352 if (S > S2)
353 S = S2;
354 else if (S < S1)
355 S = S1;
356 }
357 writeCdo->m_slope[n] = std::atan2(y + S * ay, x + S * ax) * m_A;
358 writeCdo->m_islope[n] = int(writeCdo->m_slope[n] * m_Psi128);
359 ++n;
360 }
361 }
362 }
363 }
364
365 if (writeHandle.record(rangeTrt, std::move(writeCdo)).isFailure()) {
366 ATH_MSG_FATAL("Could not record " << writeHandle.key()
367 << " with EventRange " << rangeTrt
368 << " into Conditions Store");
369 return StatusCode::FAILURE;
370 }
371 ATH_MSG_DEBUG("recorded new CDO " << writeHandle.key() << " with range "
372 << rangeTrt << " into Conditions Store");
373
374 return StatusCode::SUCCESS;
375
376}
377
#define M_PI
#define ATH_CHECK
Evaluate an expression and check for errors.
#define ATH_MSG_ERROR(x)
#define ATH_MSG_FATAL(x)
#define ATH_MSG_DEBUG(x)
HWIdentifier id2
#define G(x, y, z)
Definition MD5.cxx:113
struct TBPatternUnitContext S2
struct TBPatternUnitContext S1
#define y
#define x
#define z
const ServiceHandle< StoreGateSvc > & detStore() const
Base class for conditions algorithms.
Extended TRT_BaseElement to describe a TRT readout element, this is a planar layer with n ( order of ...
Virtual base class of TRT readout elements.
unsigned int nStraws() const
Number of straws in the element.
virtual const Trk::SurfaceBounds & bounds() const override final
Straw layer bounds.
virtual const Trk::Surface & surface() const override final
Element Surface: access to the Surface (straw layer)
virtual const Amg::Vector3D & center() const override final
Element Surface: center of a straw layer.
const Amg::Transform3D & strawTransform(unsigned int straw) const
Straw transform - fast access in array, in Tracking frame: Amg.
const Amg::Vector3D & strawCenter(int straw) const
Straw Surface: Local -> global transform of the straw via integer.
Extended class of a TRT_BaseElement to describe a readout elment in the endcap.
Helper class to organize the straw elements on TRT readout elements.
unsigned int getNEndcapWheels() const
unsigned int getNEndcapPhi() const
unsigned int getNBarrelPhi() const
unsigned int getNBarrelRings() const
unsigned int getNBarrelLayers(unsigned int iMod) const
unsigned int getNEndcapLayers(unsigned int iWheel) const
virtual StatusCode execute(const EventContext &ctx) const override
TRT_TrackSegmentsMakerCondAlg_ATLxk(const std::string &name, ISvcLocator *pSvcLocator)
SG::WriteCondHandleKey< TRT_TrackSegmentsToolCondData_xk > m_writeKey
SG::ReadCondHandleKey< InDetDD::TRT_DetElementContainer > m_trtDetEleContKey
bool range(EventIDRange &r)
const std::string & key() const
const std::string & key() const
StatusCode record(const EventIDRange &range, T *t)
record handle, with explicit range DEPRECATED
const DataObjID & fullKey() const
Bounds for a cylindrical Surface.
Class to describe the bounds for a planar DiscSurface.
Definition DiscBounds.h:44
magnetic field properties to steer the behavior of the extrapolation
Class describing the Line to which the Perigee refers to.
Bounds for a rectangular, planar surface.
double halflengthY() const
for consitant naming
int r
Definition globals.cxx:22
Eigen::Affine3d Transform3D
Eigen::Matrix< double, 3, 1 > Vector3D
@ FastField
call the fast field access method of the FieldSvc
@ NoField
Field is set to 0., 0., 0.,.
@ FullField
Field is set to be realistic, but within a given Volume.
hold the test vectors and ease the comparison