ATLAS Offline Software
Loading...
Searching...
No Matches
LVL1::eFexTowerBuilder Class Reference

#include <eFexTowerBuilder.h>

Inheritance diagram for LVL1::eFexTowerBuilder:
Collaboration diagram for LVL1::eFexTowerBuilder:

Public Member Functions

 eFexTowerBuilder (const std::string &name, ISvcLocator *pSvcLocator)
 ~eFexTowerBuilder ()=default
virtual StatusCode initialize ()
virtual StatusCode execute (const EventContext &ctx) const
virtual StatusCode sysInitialize () override
 Override sysInitialize.
virtual bool isClonable () const override
 Specify if the algorithm is clonable.
virtual unsigned int cardinality () const override
 Cardinality (Maximum number of clones that can exist) special value 0 means that algorithm is reentrant.
virtual StatusCode sysExecute (const EventContext &ctx) override
 Execute an algorithm.
virtual const DataObjIDColl & extraOutputDeps () const override
 Return the list of extra output dependencies.
virtual bool filterPassed (const EventContext &ctx) const
virtual void setFilterPassed (bool state, const EventContext &ctx) const
ServiceHandle< StoreGateSvc > & evtStore ()
 The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.
const ServiceHandle< StoreGateSvc > & detStore () const
 The standard StoreGateSvc/DetectorStore Returns (kind of) a pointer to the StoreGateSvc.
virtual StatusCode sysStart () override
 Handle START transition.
virtual std::vector< Gaudi::DataHandle * > inputHandles () const override
 Return this algorithm's input handles.
virtual std::vector< Gaudi::DataHandle * > outputHandles () const override
 Return this algorithm's output handles.
Gaudi::Details::PropertyBase & declareProperty (Gaudi::Property< T, V, H > &t)
void updateVHKA (Gaudi::Details::PropertyBase &)
MsgStream & msg () const
bool msgLvl (const MSG::Level lvl) const

Protected Member Functions

void renounceArray (SG::VarHandleKeyArray &handlesArray)
 remove all handles from I/O resolution
std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > renounce (T &h)
void extraDeps_update_handler (Gaudi::Details::PropertyBase &ExtraDeps)
 Add StoreName to extra input/output deps as needed.

Private Types

typedef ServiceHandle< StoreGateSvcStoreGateSvc_t

Private Member Functions

StatusCode fillTowers (const EventContext &ctx) const
StatusCode fillMap (const EventContext &ctx) const
Gaudi::Details::PropertyBase & declareGaudiProperty (Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyType &)
 specialization for handling Gaudi::Property<SG::VarHandleKey>

Private Attributes

std::mutex m_fillMapMutex ATLAS_THREAD_SAFE
std::map< unsigned long long, std::pair< std::pair< int, int >, std::pair< int, int > > > m_scMap ATLAS_THREAD_SAFE
SG::ReadHandleKey< xAOD::EventInfom_eiKey {this,"EventInfoKey","EventInfo",""}
SG::ReadCondHandleKey< CaloSuperCellDetDescrManagerm_ddmKey {this,"CaloSuperCellDetDescrManager","CaloSuperCellDetDescrManager",""}
SG::ReadHandleKey< CaloCellContainerm_scellKey { this, "CaloCellContainerReadKey", "SCell", "Read handle key for the supercells"}
SG::ReadHandleKey< xAOD::TriggerTowerContainerm_ttKey { this, "TriggerTowerContainerReadKey", "xAODTriggerTowers", "Read handle key for the triggerTowers"}
SG::WriteHandleKey< xAOD::eFexTowerContainerm_outKey {this, "eFexContainerWriteKey", "L1_eFexEmulatedTowers", "Name of the output container"}
Gaudi::Property< std::string > m_mappingFile {this, "MappingFile", "L1CaloFEXByteStream/2023-02-13/scToEfexTowers.root", "PathResolver location to mapping file"}
ToolHandle< eFEXSuperCellTowerIdProviderm_eFEXSuperCellTowerIdProviderTool {this, "eFEXSuperCellTowerIdProviderTool", "LVL1::eFEXSuperCellTowerIdProvider", "Tool that provides tower-FOGA mapping"}
Gaudi::Property< bool > m_applyMasking {this,"ApplyMasking",true,"Apply masking of supercells based on provenance bits. Should be set to False for MC"}
Gaudi::Property< bool > m_v6Mapping {this,"UseLATOMEv6Mapping",false,"If true, will use the LATOME v6 mapping if cannot determine from latome header"}
SG::ReadHandleKey< LArLATOMEHeaderContainerm_LArLatomeHeaderContainerKey { this, "LArLatomeHeaderKey", "SC_LATOME_HEADER" }
DataObjIDColl m_extendedExtraObjects
 Extra output dependency collection, extended by AthAlgorithmDHUpdate to add symlinks.
StoreGateSvc_t m_evtStore
 Pointer to StoreGate (event store by default)
StoreGateSvc_t m_detStore
 Pointer to StoreGate (detector store by default)
std::vector< SG::VarHandleKeyArray * > m_vhka
bool m_varHandleArraysDeclared

Detailed Description

Definition at line 50 of file eFexTowerBuilder.h.

Member Typedef Documentation

◆ StoreGateSvc_t

typedef ServiceHandle<StoreGateSvc> AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::StoreGateSvc_t
privateinherited

Definition at line 388 of file AthCommonDataStore.h.

Constructor & Destructor Documentation

◆ eFexTowerBuilder()

LVL1::eFexTowerBuilder::eFexTowerBuilder ( const std::string & name,
ISvcLocator * pSvcLocator )

Definition at line 28 of file eFexTowerBuilder.cxx.

28 : AthReentrantAlgorithm( name, pSvcLocator ){
29
30
31}

◆ ~eFexTowerBuilder()

LVL1::eFexTowerBuilder::~eFexTowerBuilder ( )
default

Member Function Documentation

◆ cardinality()

unsigned int AthCommonReentrantAlgorithm< Gaudi::Algorithm >::cardinality ( ) const
overridevirtualinherited

Cardinality (Maximum number of clones that can exist) special value 0 means that algorithm is reentrant.

Override this to return 0 for reentrant algorithms.

Definition at line 75 of file AthCommonReentrantAlgorithm.cxx.

64{
65 return 0;
66}

◆ declareGaudiProperty()

Gaudi::Details::PropertyBase & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::declareGaudiProperty ( Gaudi::Property< T, V, H > & hndl,
const SG::VarHandleKeyType &  )
inlineprivateinherited

specialization for handling Gaudi::Property<SG::VarHandleKey>

Definition at line 156 of file AthCommonDataStore.h.

158 {
160 hndl.value(),
161 hndl.documentation());
162
163 }
Gaudi::Details::PropertyBase & declareProperty(Gaudi::Property< T, V, H > &t)

◆ declareProperty()

Gaudi::Details::PropertyBase & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::declareProperty ( Gaudi::Property< T, V, H > & t)
inlineinherited

Definition at line 145 of file AthCommonDataStore.h.

145 {
146 typedef typename SG::HandleClassifier<T>::type htype;
148 }
Gaudi::Details::PropertyBase & declareGaudiProperty(Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyType &)
specialization for handling Gaudi::Property<SG::VarHandleKey>

◆ detStore()

const ServiceHandle< StoreGateSvc > & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::detStore ( ) const
inlineinherited

The standard StoreGateSvc/DetectorStore Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 95 of file AthCommonDataStore.h.

◆ evtStore()

ServiceHandle< StoreGateSvc > & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::evtStore ( )
inlineinherited

The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 85 of file AthCommonDataStore.h.

◆ execute()

StatusCode LVL1::eFexTowerBuilder::execute ( const EventContext & ctx) const
virtual

Definition at line 379 of file eFexTowerBuilder.cxx.

379 {
380 ATH_MSG_DEBUG("Executing " << name() << "...");
381 setFilterPassed(true, ctx);
382
383
384 {
385 std::lock_guard lock(m_fillMapMutex);
386 if (m_scMap.empty()) CHECK( fillMap(ctx) );
387 }
388
389 return fillTowers(ctx);
390
391}
#define ATH_MSG_DEBUG(x)
#define CHECK(...)
Evaluate an expression and check for errors.
virtual void setFilterPassed(bool state, const EventContext &ctx) const
StatusCode fillMap(const EventContext &ctx) const
StatusCode fillTowers(const EventContext &ctx) const

◆ extraDeps_update_handler()

void AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::extraDeps_update_handler ( Gaudi::Details::PropertyBase & ExtraDeps)
protectedinherited

Add StoreName to extra input/output deps as needed.

use the logic of the VarHandleKey to parse the DataObjID keys supplied via the ExtraInputs and ExtraOuputs Properties to add the StoreName if it's not explicitly given

◆ extraOutputDeps()

const DataObjIDColl & AthCommonReentrantAlgorithm< Gaudi::Algorithm >::extraOutputDeps ( ) const
overridevirtualinherited

Return the list of extra output dependencies.

This list is extended to include symlinks implied by inheritance relations.

Definition at line 94 of file AthCommonReentrantAlgorithm.cxx.

90{
91 // If we didn't find any symlinks to add, just return the collection
92 // from the base class. Otherwise, return the extended collection.
93 if (!m_extendedExtraObjects.empty()) {
95 }
97}
An algorithm that can be simultaneously executed in multiple threads.

◆ fillMap()

StatusCode LVL1::eFexTowerBuilder::fillMap ( const EventContext & ctx) const
private

Definition at line 216 of file eFexTowerBuilder.cxx.

216 {
217
218 ATH_MSG_INFO("Filling sc -> eFexTower map");
219
220 SG::ReadCondHandle<CaloSuperCellDetDescrManager> ddm{m_ddmKey,ctx};
221 SG::ReadHandle<CaloCellContainer> scells(m_scellKey,ctx); // 34048 is a full complement of scells
222 if(!scells.isValid()){
223 ATH_MSG_FATAL("Could not retrieve collection " << m_scellKey.key() );
224 return StatusCode::FAILURE;
225 }
226 if (scells->size() != 34048 && !m_mappingFile.empty()) {
227 ATH_MSG_FATAL("Cannot fill sc -> eFexTower mapping with an incomplete sc collection");
228 return StatusCode::FAILURE;
229 }
230
231 // read the LATOME header if a key is given, so that we can determine LATOME version and get mapping right
232 bool doV6Mapping = m_v6Mapping;
233
234 if(!m_LArLatomeHeaderContainerKey.empty()) {
235 SG::ReadHandle<LArLATOMEHeaderContainer> hdrCont(m_LArLatomeHeaderContainerKey,ctx);
236 if(hdrCont.isValid()) {
237 for (const LArLATOMEHeader* hit : *hdrCont) {
238 doV6Mapping = (hit->FWversion()>1600);
239 }
240 if (doV6Mapping != m_v6Mapping) {
241 ATH_MSG_WARNING("Used LATOME Hardware to determine mapping different to python configuration (use V6 Mapping = " << doV6Mapping << " )");
242 }
243 }
244
245 }
246 struct TowerSCells {
247 std::vector<unsigned long long> ps;
248 std::vector<std::pair<float,unsigned long long>> l1;
249 std::vector<std::pair<float,unsigned long long>> l2;
250 std::vector<unsigned long long> l3;
251 std::vector<unsigned long long> had;
252 std::vector<unsigned long long> other;
253 };
254 static const auto etaIndex = [](float eta) { return int( eta*10 ) + ((eta<0) ? -1 : 1); }; // runs from -25 to 25, skipping over 0 (so gives outer edge eta)
255 static const auto phiIndex = [](float phi) { return int( phi*32./ROOT::Math::Pi() ) + (phi<0 ? -1 : 1); }; // runs from -pi to pi, skipping over 0 (gives out edge phi)
256 std::map<std::pair<int,int>,TowerSCells> towers;
257 std::map<unsigned long long,int> eTowerSlots; // not used by this alg, but we produce the map for benefit of eFexTower->eTower alg
258
259 for (auto digi: *scells) {
260 Identifier id = digi->ID(); // this is if using supercells
261
262 if (auto elem = ddm->get_element(id); elem && std::abs(elem->eta_raw())<2.5) {
263 float eta = elem->eta_raw(); // this seems more symmetric
264 int sampling = elem->getSampling();
265 if(sampling==6 && ddm->getCaloCell_ID()->region(id)==0 && eta<0) eta-=0.01; // nudge this L2 endcap supercell into correct tower (right on boundary)
266
267 unsigned long long val = id.get_compact();
268
269 int towerid = -1;int slot = -1;bool issplit = false;
270 CHECK(m_eFEXSuperCellTowerIdProviderTool->geteTowerIDandslot(id.get_compact(), towerid, slot, issplit));
271 eTowerSlots[id.get_compact()] = slot;
272
273 auto& sc = towers[std::pair(etaIndex(eta),phiIndex(elem->phi_raw()))];
274 switch(sampling) {
275 case 0: case 4: //lar barrel/endcap presampler
276 sc.ps.push_back(val);
277 break;
278 case 1: case 5: //lar barrel/endcap l1
279 sc.l1.push_back({elem->eta(),val}); break;
280 case 2: case 6: //lar barrel/endcap l2
281 sc.l2.push_back({elem->eta(),val}); break;
282 case 3: case 7: //lar barrel/endcap l3
283 sc.l3.push_back(val); break;
284 case 8: case 9: case 10: case 11: //lar hec
285 sc.had.push_back(val); break;
286 default:
287 sc.other.push_back(val); break;
288 }
289 }
290 }
291
292
293 // sort (by increasing eta) l1/l2 sc and handle special cases
294 // finally also output the eTower slot vector
295 std::vector<size_t> slotVector(11);
296 for(auto& [coord,sc] : towers) {
297 std::sort(sc.l1.begin(),sc.l1.end());
298 std::sort(sc.l2.begin(),sc.l2.end());
299 // we have 5 l2 cells @ |eta|=1.45 ... put lowest |eta| one in l3 slot
300 if (sc.l2.size()==5) {
301 if (coord.first >= 0) {
302 sc.l3.push_back(sc.l2.front().second);
303 sc.l2.erase(sc.l2.begin()); // remove first
304 } else {
305 sc.l3.push_back(sc.l2.back().second);
306 sc.l2.resize(sc.l2.size()-1); // remove last
307 }
308 }
309 if (std::abs(coord.first)==15) { //|eta| = 1.45
310 // in the overlap region it seems like the latome id with highest |eta| is swapped with next highest
311 // so to compare we swap the first and second (3rd and 4th are fine) if eta < 0, or 3rd and 4th if eta > 0
312 if (coord.first<0) {std::swap(sc.l1.at(0),sc.l1.at(1)); }
313 else {std::swap(sc.l1.at(2),sc.l1.at(3));}
314 }
315 // handle case @ |eta|~1.8-2 with 6 L1 cells
316 if (sc.l1.size()==6) {
317 m_scMap[sc.l1.at(0).second] = std::pair(coord,std::pair(1,11));
318 m_scMap[sc.l1.at(1).second] = std::pair(coord,(doV6Mapping && coord.first < 0) ? std::pair(2,1) : std::pair(1,2)); // in LATOME v5 FW this was (1,2) for both sides
319 m_scMap[sc.l1.at(2).second] = std::pair(coord,std::pair(2,11));
320 m_scMap[sc.l1.at(3).second] = std::pair(coord,std::pair(3,11));
321 m_scMap[sc.l1.at(4).second] = std::pair(coord,(doV6Mapping && coord.first < 0) ? std::pair(4,3) : std::pair(3,4)); // in LATOME v5 FW this was (3,4) for both sides
322 m_scMap[sc.l1.at(5).second] = std::pair(coord,std::pair(4,11));
323 slotVector[1] = eTowerSlots[sc.l1.at(0).second];
324 slotVector[2] = eTowerSlots[sc.l1.at(2).second];
325 slotVector[3] = eTowerSlots[sc.l1.at(3).second];
326 slotVector[4] = eTowerSlots[sc.l1.at(5).second];
327 }
328
329 // for |eta|>2.4 there's only 1 l1 sc, to match hardware this should be compared placed in the 'last' l1 input
330 if (sc.l1.size()==1) {
331 m_scMap[sc.l1.at(0).second] = std::pair(coord,std::pair(4,11));
332 slotVector[1] = 1; slotVector[2] = 2; slotVector[3] = 3; slotVector[4] = eTowerSlots[sc.l1.at(0).second];
333 }
334
335 // fill the map with sc ids -> tower coord + slot
336 if (!sc.ps.empty()) {m_scMap[sc.ps.at(0)] = std::pair(coord,std::pair(0,11)); slotVector[0] = eTowerSlots[sc.ps.at(0)]; }
337 if(sc.l1.size()==4) for(size_t i=0;i<4;i++) if(sc.l1.size() > i) {m_scMap[sc.l1.at(i).second] = std::pair(coord,std::pair(i+1,11)); slotVector[i+1] = eTowerSlots[sc.l1.at(i).second]; }
338 for(size_t i=0;i<4;i++) if(sc.l2.size() > i) { m_scMap[sc.l2.at(i).second] = std::pair(coord,std::pair(i+5,11)); slotVector[i+5] = eTowerSlots[sc.l2.at(i).second]; }
339 if (!sc.l3.empty()) {m_scMap[sc.l3.at(0)] = std::pair(coord,std::pair(9,11)); slotVector[9] = eTowerSlots[sc.l3.at(0)]; }
340 if (!sc.had.empty()) {m_scMap[sc.had.at(0)] = std::pair(coord,std::pair(10,11));slotVector[10] = eTowerSlots[sc.had.at(0)]; }
341
342 // finally output the slotVector for this tower
343 // do only for the slots that don't match
344 // note to self: seems like everything is fine apart from the l1->ps remap for |eta|>2.4
345 // so leaving this bit commented out for now ... useful to leave it here in case need to recheck in future
346// for(size_t i=0;i<slotVector.size();i++) {
347// if(slotVector[i] != i) {
348// std::cout << coord.first << "," << coord.second << "," << i << "," << slotVector[i] << std::endl;
349// }
350// }
351 }
352
353 // save the map to disk, if required
354 if(!m_mappingFile.empty()) {
355 TFile f(m_mappingFile.value().c_str(), "RECREATE");
356 TTree *t = new TTree("mapping", "mapping");
357 unsigned long long scid = 0;
358 std::pair<int, int> coord = {0, 0};
359 std::pair<int, int> slot = {-1, -1};
360 t->Branch("scid", &scid);
361 t->Branch("etaIndex", &coord.first);
362 t->Branch("phiIndex", &coord.second);
363 t->Branch("slot1", &slot.first);
364 t->Branch("slot2", &slot.second);
365 for (auto &[id, val]: m_scMap) {
366 scid = id;
367 coord = val.first;
368 slot = val.second;
369 t->Fill();
370 }
371 t->Write();
372 f.Close();
373 }
374 return StatusCode::SUCCESS;
375
376}
Scalar eta() const
pseudorapidity method
Scalar phi() const
phi method
#define ATH_MSG_FATAL(x)
#define ATH_MSG_INFO(x)
#define ATH_MSG_WARNING(x)
double coord
Type of coordination system.
static Double_t sc
SG::ReadCondHandleKey< CaloSuperCellDetDescrManager > m_ddmKey
SG::ReadHandleKey< LArLATOMEHeaderContainer > m_LArLatomeHeaderContainerKey
Gaudi::Property< bool > m_v6Mapping
ToolHandle< eFEXSuperCellTowerIdProvider > m_eFEXSuperCellTowerIdProviderTool
Gaudi::Property< std::string > m_mappingFile
SG::ReadHandleKey< CaloCellContainer > m_scellKey
unsigned int phiIndex(float phi, float binsize)
calculate phi index for a given phi
Definition EtaPhiLUT.cxx:23
void sort(typename DataModel_detail::iterator< DVL > beg, typename DataModel_detail::iterator< DVL > end)
Specialization of sort for DataVector/List.
void swap(ElementLinkVector< DOBJ > &lhs, ElementLinkVector< DOBJ > &rhs)

◆ fillTowers()

StatusCode LVL1::eFexTowerBuilder::fillTowers ( const EventContext & ctx) const
private

Definition at line 74 of file eFexTowerBuilder.cxx.

74 {
75
76
77 SG::ReadCondHandle<CaloSuperCellDetDescrManager> ddm{m_ddmKey,ctx};
78 SG::ReadHandle<xAOD::TriggerTowerContainer> tTowers(m_ttKey,ctx);
79 if(!tTowers.isValid()){
80 ATH_MSG_FATAL("Could not retrieve collection " << m_ttKey.key() );
81 return StatusCode::FAILURE;
82 }
83 SG::ReadHandle<CaloCellContainer> scells(m_scellKey,ctx); // n.b. 34048 is a full complement of scells
84 if(!scells.isValid()){
85 ATH_MSG_FATAL("Could not retrieve collection " << m_scellKey.key() );
86 return StatusCode::FAILURE;
87 }
88
89 SG::ReadHandle<xAOD::EventInfo> ei(m_eiKey,ctx);
90 if(!ei.isValid()) {
91 ATH_MSG_FATAL("Cannot retrieve eventinfo");
92 return StatusCode::FAILURE;
93 }
94 bool isMC = ei->eventType(xAOD::EventInfo::IS_SIMULATION); // currently only used to decide if should set a saturation code or not
95
96
97 std::map<std::pair<int,int>,std::array<int,11>> towers;
98
99 constexpr int INVALID_VALUE = -99999; // use this value to indicate invalid
100 constexpr int MASKED_VALUE = std::numeric_limits<int>::max(); // use this value to indicate masked
101 constexpr int SATURATED_VALUE = std::numeric_limits<int>::max()-1; // use this value to indicate saturation
102 constexpr int MISSING_VALUE = -99998; // use this value to indicate missing supercell
103
104 for (auto digi: *scells) {
105 const auto itr = m_scMap.find(digi->ID().get_compact());
106 if (itr == m_scMap.end()) { continue; } // not in map so not mapping to a tower
107 int val = std::round(digi->energy()/(12.5*std::cosh(digi->eta()))); // 12.5 is b.c. energy is in units of 12.5MeV per count
108 // note: a val of < -99998 is what is produced if efex was sent an invalid code of 1022 (see LArRawtoSuperCell)
109 bool isSaturated = (!isMC) ? (digi->quality()) : false; // not applying saturation codes in MC until the changes to trigger counts has been investigated
110 bool isMasked = ((digi)->provenance()&0x80);
111 bool isInvalid = m_applyMasking ? ((digi)->provenance()&0x40) : false;
112 // note: if debugging, the SCIDs have value: digi->ID().get_compact()>>32
113 if(isInvalid) {
114 val = INVALID_VALUE;
115 }
116 if(isSaturated) {
117 val = SATURATED_VALUE;
118 }
119
120 auto towerItr = towers.emplace(itr->second.first,std::array<int,11>{}); // returns pair<itr,bool> with bool indicating if emplaced
121 if(towerItr.second) { // did an emplace
122 towerItr.first->second.fill(MISSING_VALUE); // ensure all slots initialize with missing value
123 }
124 auto& tower = (towerItr.first->second);
125 if (itr->second.second.second<11) {
126 // doing an energy split between slots ... don't include a masked channel (or invalid channel)
127 if (!isMasked && val!=INVALID_VALUE) {
128 if(isSaturated) {
129 // mark both as saturated
130 tower.at(itr->second.second.first) = SATURATED_VALUE;
131 tower.at(itr->second.second.second) = SATURATED_VALUE;
132 }
133 if(tower.at(itr->second.second.first)!=(SATURATED_VALUE)) { // don't override saturation
134 // if the other contribution was masked or invalid or missing, revert to 0 before adding this contribution
135 if (tower.at(itr->second.second.first)==MASKED_VALUE || tower.at(itr->second.second.first)==INVALID_VALUE || tower.at(itr->second.second.first)==MISSING_VALUE) {
136 tower.at(itr->second.second.first)=0;
137 }
138 tower.at(itr->second.second.first) += val >> 1;
139 }
140 if(tower.at(itr->second.second.second)!=(SATURATED_VALUE)) { // don't override saturation
141 // if the other contribution was masked or invalid or missing, revert to 0 before adding this contribution
142 if (tower.at(itr->second.second.second)==MASKED_VALUE || tower.at(itr->second.second.second)==INVALID_VALUE || tower.at(itr->second.second.second)==MISSING_VALUE) {
143 tower.at(itr->second.second.second)=0;
144 }
145 tower.at(itr->second.second.second) += (val - (val >> 1)); // HW seems fixed now!
146 }
147 }
148 // hw is incorrectly ignoring masking on the second part
149 // so always add the 2nd bit
150 //tower.at(itr->second.second.second) += (val - (val >> 1)); // Removed b.c. of fix above - leaving this comment here until resolved!
151 } else {
152 auto& v = tower.at(itr->second.second.first);
153 if (isMasked) {
154 // dont mark it masked if it already has a contribution
155 if(v==MISSING_VALUE) v = MASKED_VALUE;
156 } else if(isSaturated) {
157 v = val;
158 } else {
159 if(v==INVALID_VALUE || v==MISSING_VALUE) v = 0;
160 v += val;
161 }
162 }
163
164 }
165
166 // add tile energies from TriggerTowers
167 static const auto etaIndex = [](float eta) { return int( eta*10 ) + ((eta<0) ? -1 : 1); };
168 static const auto phiIndex = [](float phi) { return int( phi*32./M_PI ) + (phi<0 ? -1 : 1); };
169 for(const xAOD::TriggerTower_v2* tTower : *tTowers) {
170 if (std::abs(tTower->eta()) > 1.5) continue;
171 if (tTower->sampling() != 1) continue;
172 double phi = tTower->phi(); if(phi > M_PI) phi -= 2.*M_PI;
173 auto towerItr = towers.emplace(std::pair(etaIndex(tTower->eta()),phiIndex(phi)),std::array<int,11>{}); // returns pair<itr,bool> with bool indicating if emplaced
174 if(towerItr.second) { // did an emplace
175 towerItr.first->second.fill(MISSING_VALUE); // ensure all slots initialize with missing value
176 }
177 (towerItr.first->second).at(10) = tTower->cpET();
178 }
179
180
181 SG::WriteHandle<xAOD::eFexTowerContainer> eTowers = SG::WriteHandle<xAOD::eFexTowerContainer>(m_outKey,ctx);
182 ATH_CHECK( eTowers.record(std::make_unique<xAOD::eFexTowerContainer>(),std::make_unique<xAOD::eFexTowerAuxContainer>()) );
183
184 static const auto calToFex = [](int calEt) {
185 if(calEt == MASKED_VALUE) return 0; // indicates masked channel
186 if(calEt == SATURATED_VALUE) return 1023; // saturated channel
187 if( calEt == INVALID_VALUE ) return 1022; // invalid channel value
188 if( calEt == MISSING_VALUE ) return 1025; // missing channel value
189 if(calEt<448) return std::max((calEt&~1)/2+32,1); // 25 MeV per eFexTower count
190 if(calEt<1472) return (calEt-448)/4+256; // 50 MeV per eFexTower count
191 if(calEt<3520) return (calEt-1472)/8+512; // 100 MeV ...
192 if(calEt<11584) return (calEt-3520)/32+768; // 400 MeV ...
193 return 1020;
194 };
195
196 // now create the towers. Note that we need a code for "missing" input (1025), because a tower can contain some but not all
197 // inputs, depending on which sources are present in the run (e.g. if tile is present but not LAr).
198 // This is different to e.g. jFex, which creates a separate tower for each source at each location
199 // so jFex doesn't need a "missing" input code.
200 for(auto& [coord,counts] : towers) {
201 size_t ni = (std::abs(coord.first)<=15) ? 10 : 11; // ensures we skip the tile towers for next line
202 for(size_t i=0;i<ni;++i) counts[i] = (scells->empty() ? 1025 : calToFex(counts[i])); // do latome energy scaling to non-tile towers - if had no cells will use code "1025" to indicate
203 eTowers->push_back( std::make_unique<xAOD::eFexTower>() );
204 eTowers->back()->initialize( ( (coord.first<0 ? 0.5:-0.5) + coord.first)*0.1 ,
205 ( (coord.second<0 ? 0.5:-0.5) + coord.second)*M_PI/32,
206 std::vector<uint16_t>(counts.begin(), counts.end()),
207 -1, /* module number */
208 -1, /* fpga number */
209 0,0 /* status flags ... could use to indicate which cells were actually present?? */);
210 }
211
212 return StatusCode::SUCCESS;
213
214}
#define M_PI
#define ATH_CHECK
Evaluate an expression and check for errors.
SG::ReadHandleKey< xAOD::TriggerTowerContainer > m_ttKey
SG::ReadHandleKey< xAOD::EventInfo > m_eiKey
SG::WriteHandleKey< xAOD::eFexTowerContainer > m_outKey
Gaudi::Property< bool > m_applyMasking
StatusCode record(std::unique_ptr< T > data)
Record a const object to the store.
@ IS_SIMULATION
true: simulation, false: data

◆ filterPassed()

virtual bool AthCommonReentrantAlgorithm< Gaudi::Algorithm >::filterPassed ( const EventContext & ctx) const
inlinevirtualinherited

Definition at line 96 of file AthCommonReentrantAlgorithm.h.

96 {
97 return execState( ctx ).filterPassed();
98 }
virtual bool filterPassed(const EventContext &ctx) const

◆ initialize()

StatusCode LVL1::eFexTowerBuilder::initialize ( )
virtual

Definition at line 33 of file eFexTowerBuilder.cxx.

33 {
34 ATH_MSG_INFO ("Initializing " << name() << "...");
35
36 CHECK( m_ddmKey.initialize(true) );
37 CHECK( m_ttKey.initialize(true) );
38 CHECK( m_scellKey.initialize(true) );
39 CHECK( m_outKey.initialize(true) );
40 CHECK( m_eiKey.initialize(true) );
42
43 if(!m_mappingFile.empty()) {
44 if (auto fileName = PathResolverFindCalibFile(m_mappingFile); !fileName.empty()) {
45 std::unique_ptr <TFile> f(TFile::Open(fileName.c_str()));
46 if (f) {
47 TTree *t = f->Get<TTree>("mapping");
48 if (t) {
49 unsigned long long scid = 0;
50 std::pair<int, int> coord = {0, 0};
51 std::pair<int, int> slot;
52 t->SetBranchAddress("scid", &scid);
53 t->SetBranchAddress("etaIndex", &coord.first);
54 t->SetBranchAddress("phiIndex", &coord.second);
55 t->SetBranchAddress("slot1", &slot.first);
56 t->SetBranchAddress("slot2", &slot.second);
57 for (Long64_t i = 0; i < t->GetEntries(); i++) {
58 t->GetEntry(i);
59 m_scMap[scid] = std::make_pair(coord, slot);
60 }
61 }
62 }
63 if (m_scMap.empty()) {
64 ATH_MSG_WARNING("Failed to load sc -> eFexTower map from " << fileName);
65 } else {
66 ATH_MSG_INFO("Loaded sc -> eFexTower map from " << fileName);
67 }
68 }
69 }
70
71 return StatusCode::SUCCESS;
72}
std::string PathResolverFindCalibFile(const std::string &logical_file_name)

◆ inputHandles()

virtual std::vector< Gaudi::DataHandle * > AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::inputHandles ( ) const
overridevirtualinherited

Return this algorithm's input handles.

We override this to include handle instances from key arrays if they have not yet been declared. See comments on updateVHKA.

◆ isClonable()

◆ msg()

MsgStream & AthCommonMsg< Gaudi::Algorithm >::msg ( ) const
inlineinherited

Definition at line 24 of file AthCommonMsg.h.

24 {
25 return this->msgStream();
26 }

◆ msgLvl()

bool AthCommonMsg< Gaudi::Algorithm >::msgLvl ( const MSG::Level lvl) const
inlineinherited

Definition at line 30 of file AthCommonMsg.h.

30 {
31 return this->msgLevel(lvl);
32 }

◆ outputHandles()

virtual std::vector< Gaudi::DataHandle * > AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::outputHandles ( ) const
overridevirtualinherited

Return this algorithm's output handles.

We override this to include handle instances from key arrays if they have not yet been declared. See comments on updateVHKA.

◆ renounce()

std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::renounce ( T & h)
inlineprotectedinherited

Definition at line 380 of file AthCommonDataStore.h.

381 {
382 h.renounce();
384 }
std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > renounce(T &h)

◆ renounceArray()

void AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::renounceArray ( SG::VarHandleKeyArray & handlesArray)
inlineprotectedinherited

remove all handles from I/O resolution

Definition at line 364 of file AthCommonDataStore.h.

364 {
366 }

◆ setFilterPassed()

virtual void AthCommonReentrantAlgorithm< Gaudi::Algorithm >::setFilterPassed ( bool state,
const EventContext & ctx ) const
inlinevirtualinherited

Definition at line 100 of file AthCommonReentrantAlgorithm.h.

100 {
102 }

◆ sysExecute()

StatusCode AthCommonReentrantAlgorithm< Gaudi::Algorithm >::sysExecute ( const EventContext & ctx)
overridevirtualinherited

Execute an algorithm.

We override this in order to work around an issue with the Algorithm base class storing the event context in a member variable that can cause crashes in MT jobs.

Definition at line 85 of file AthCommonReentrantAlgorithm.cxx.

77{
78 return BaseAlg::sysExecute (ctx);
79}

◆ sysInitialize()

StatusCode AthCommonReentrantAlgorithm< Gaudi::Algorithm >::sysInitialize ( )
overridevirtualinherited

Override sysInitialize.

Override sysInitialize from the base class.

Loop through all output handles, and if they're WriteCondHandles, automatically register them and this Algorithm with the CondSvc

Scan through all outputHandles, and if they're WriteCondHandles, register them with the CondSvc

Reimplemented from AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >.

Reimplemented in HypoBase, and InputMakerBase.

Definition at line 61 of file AthCommonReentrantAlgorithm.cxx.

107 {
109
110 if (sc.isFailure()) {
111 return sc;
112 }
113
114 ServiceHandle<ICondSvc> cs("CondSvc",name());
115 for (auto h : outputHandles()) {
116 if (h->isCondition() && h->mode() == Gaudi::DataHandle::Writer) {
117 // do this inside the loop so we don't create the CondSvc until needed
118 if ( cs.retrieve().isFailure() ) {
119 ATH_MSG_WARNING("no CondSvc found: won't autoreg WriteCondHandles");
120 return StatusCode::SUCCESS;
121 }
122 if (cs->regHandle(this,*h).isFailure()) {
124 ATH_MSG_ERROR("unable to register WriteCondHandle " << h->fullKey()
125 << " with CondSvc");
126 }
127 }
128 }
129 return sc;
130}
#define ATH_MSG_ERROR(x)
virtual std::vector< Gaudi::DataHandle * > outputHandles() const override

◆ sysStart()

virtual StatusCode AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::sysStart ( )
overridevirtualinherited

Handle START transition.

We override this in order to make sure that conditions handle keys can cache a pointer to the conditions container.

◆ updateVHKA()

void AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::updateVHKA ( Gaudi::Details::PropertyBase & )
inlineinherited

Definition at line 308 of file AthCommonDataStore.h.

308 {
309 // debug() << "updateVHKA for property " << p.name() << " " << p.toString()
310 // << " size: " << m_vhka.size() << endmsg;
311 for (auto &a : m_vhka) {
313 for (auto k : keys) {
314 k->setOwner(this);
315 }
316 }
317 }

Member Data Documentation

◆ ATLAS_THREAD_SAFE [1/2]

std::mutex m_fillMapMutex LVL1::eFexTowerBuilder::ATLAS_THREAD_SAFE
mutableprivate

Definition at line 61 of file eFexTowerBuilder.h.

◆ ATLAS_THREAD_SAFE [2/2]

std::map<unsigned long long, std::pair<std::pair<int,int>,std::pair<int,int> > > m_scMap LVL1::eFexTowerBuilder::ATLAS_THREAD_SAFE
mutableprivate

Definition at line 62 of file eFexTowerBuilder.h.

◆ m_applyMasking

Gaudi::Property<bool> LVL1::eFexTowerBuilder::m_applyMasking {this,"ApplyMasking",true,"Apply masking of supercells based on provenance bits. Should be set to False for MC"}
private

Definition at line 78 of file eFexTowerBuilder.h.

78{this,"ApplyMasking",true,"Apply masking of supercells based on provenance bits. Should be set to False for MC"};

◆ m_ddmKey

SG::ReadCondHandleKey<CaloSuperCellDetDescrManager> LVL1::eFexTowerBuilder::m_ddmKey {this,"CaloSuperCellDetDescrManager","CaloSuperCellDetDescrManager",""}
private

Definition at line 69 of file eFexTowerBuilder.h.

69{this,"CaloSuperCellDetDescrManager","CaloSuperCellDetDescrManager",""};

◆ m_detStore

StoreGateSvc_t AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_detStore
privateinherited

Pointer to StoreGate (detector store by default)

Definition at line 393 of file AthCommonDataStore.h.

◆ m_eFEXSuperCellTowerIdProviderTool

ToolHandle<eFEXSuperCellTowerIdProvider> LVL1::eFexTowerBuilder::m_eFEXSuperCellTowerIdProviderTool {this, "eFEXSuperCellTowerIdProviderTool", "LVL1::eFEXSuperCellTowerIdProvider", "Tool that provides tower-FOGA mapping"}
private

Definition at line 76 of file eFexTowerBuilder.h.

76{this, "eFEXSuperCellTowerIdProviderTool", "LVL1::eFEXSuperCellTowerIdProvider", "Tool that provides tower-FOGA mapping"};

◆ m_eiKey

SG::ReadHandleKey<xAOD::EventInfo> LVL1::eFexTowerBuilder::m_eiKey {this,"EventInfoKey","EventInfo",""}
private

Definition at line 67 of file eFexTowerBuilder.h.

67{this,"EventInfoKey","EventInfo",""};

◆ m_evtStore

StoreGateSvc_t AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_evtStore
privateinherited

Pointer to StoreGate (event store by default)

Definition at line 390 of file AthCommonDataStore.h.

◆ m_extendedExtraObjects

DataObjIDColl AthCommonReentrantAlgorithm< Gaudi::Algorithm >::m_extendedExtraObjects
privateinherited

Extra output dependency collection, extended by AthAlgorithmDHUpdate to add symlinks.

Empty if no symlinks were found.

Definition at line 114 of file AthCommonReentrantAlgorithm.h.

◆ m_LArLatomeHeaderContainerKey

SG::ReadHandleKey<LArLATOMEHeaderContainer> LVL1::eFexTowerBuilder::m_LArLatomeHeaderContainerKey { this, "LArLatomeHeaderKey", "SC_LATOME_HEADER" }
private

Definition at line 81 of file eFexTowerBuilder.h.

81{ this, "LArLatomeHeaderKey", "SC_LATOME_HEADER" };

◆ m_mappingFile

Gaudi::Property<std::string> LVL1::eFexTowerBuilder::m_mappingFile {this, "MappingFile", "L1CaloFEXByteStream/2023-02-13/scToEfexTowers.root", "PathResolver location to mapping file"}
private

Definition at line 75 of file eFexTowerBuilder.h.

75{this, "MappingFile", "L1CaloFEXByteStream/2023-02-13/scToEfexTowers.root", "PathResolver location to mapping file"};

◆ m_outKey

SG::WriteHandleKey<xAOD::eFexTowerContainer> LVL1::eFexTowerBuilder::m_outKey {this, "eFexContainerWriteKey", "L1_eFexEmulatedTowers", "Name of the output container"}
private

Definition at line 73 of file eFexTowerBuilder.h.

73{this, "eFexContainerWriteKey", "L1_eFexEmulatedTowers", "Name of the output container"};

◆ m_scellKey

SG::ReadHandleKey<CaloCellContainer> LVL1::eFexTowerBuilder::m_scellKey { this, "CaloCellContainerReadKey", "SCell", "Read handle key for the supercells"}
private

Definition at line 71 of file eFexTowerBuilder.h.

71{ this, "CaloCellContainerReadKey", "SCell", "Read handle key for the supercells"};

◆ m_ttKey

SG::ReadHandleKey<xAOD::TriggerTowerContainer> LVL1::eFexTowerBuilder::m_ttKey { this, "TriggerTowerContainerReadKey", "xAODTriggerTowers", "Read handle key for the triggerTowers"}
private

Definition at line 72 of file eFexTowerBuilder.h.

72{ this, "TriggerTowerContainerReadKey", "xAODTriggerTowers", "Read handle key for the triggerTowers"};

◆ m_v6Mapping

Gaudi::Property<bool> LVL1::eFexTowerBuilder::m_v6Mapping {this,"UseLATOMEv6Mapping",false,"If true, will use the LATOME v6 mapping if cannot determine from latome header"}
private

Definition at line 80 of file eFexTowerBuilder.h.

80{this,"UseLATOMEv6Mapping",false,"If true, will use the LATOME v6 mapping if cannot determine from latome header"};

◆ m_varHandleArraysDeclared

bool AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_varHandleArraysDeclared
privateinherited

Definition at line 399 of file AthCommonDataStore.h.

◆ m_vhka

std::vector<SG::VarHandleKeyArray*> AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_vhka
privateinherited

Definition at line 398 of file AthCommonDataStore.h.


The documentation for this class was generated from the following files: