ATLAS Offline Software
eFexTowerBuilder.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3 */
4 
5 //***************************************************************************
6 // eFexTowerBuilder - description:
7 // Builds an eFexTowerContainer from a CaloCellContainer (for supercells) and TriggerTowerContainer (for ppm tile towers)
8 // -------------------
9 // begin : 06 12 2022
10 // email : will@cern.ch
11 //***************************************************************************/
12 
13 
14 // MyPackage includes
15 #include "eFexTowerBuilder.h"
16 
18 
20 
21 
22 #include "TFile.h"
23 #include "TTree.h"
25 
26 namespace LVL1 {
27 
28 eFexTowerBuilder::eFexTowerBuilder( const std::string& name, ISvcLocator* pSvcLocator ) : AthReentrantAlgorithm( name, pSvcLocator ){
29 
30 
31 }
32 
34  ATH_MSG_INFO ("Initializing " << name() << "...");
35 
36  CHECK( m_ddmKey.initialize(true) );
37  CHECK( m_ttKey.initialize(true) );
38  CHECK( m_scellKey.initialize(true) );
39  CHECK( m_outKey.initialize(true) );
40  CHECK( m_eiKey.initialize(true) );
41 
42  if (auto fileName = PathResolverFindCalibFile( m_mappingFile ); !fileName.empty()) {
43  std::unique_ptr<TFile> f( TFile::Open(fileName.c_str()) );
44  if (f) {
45  TTree* t = f->Get<TTree>("mapping");
46  if(t) {
47  unsigned long long scid = 0;
48  std::pair<int,int> coord = {0,0};
49  std::pair<int,int> slot;
50  t->SetBranchAddress("scid",&scid);
51  t->SetBranchAddress("etaIndex",&coord.first);
52  t->SetBranchAddress("phiIndex",&coord.second);
53  t->SetBranchAddress("slot1",&slot.first);
54  t->SetBranchAddress("slot2",&slot.second);
55  for(Long64_t i=0;i<t->GetEntries();i++) {
56  t->GetEntry(i);
57  m_scMap[scid] = std::make_pair(coord,slot);
58  }
59  }
60  }
61  if (m_scMap.empty()) {
62  ATH_MSG_WARNING("Failed to load sc -> eFexTower map from " << fileName);
63  } else {
64  ATH_MSG_INFO("Loaded sc -> eFexTower map from " << fileName);
65  }
66  }
67 
68  return StatusCode::SUCCESS;
69 }
70 
71 StatusCode eFexTowerBuilder::fillTowers(const EventContext& ctx) const {
72 
73 
76  if(!tTowers.isValid()){
77  ATH_MSG_FATAL("Could not retrieve collection " << m_ttKey.key() );
78  return StatusCode::FAILURE;
79  }
80  SG::ReadHandle<CaloCellContainer> scells(m_scellKey,ctx); // n.b. 34048 is a full complement of scells
81  if(!scells.isValid()){
82  ATH_MSG_FATAL("Could not retrieve collection " << m_scellKey.key() );
83  return StatusCode::FAILURE;
84  }
85 
87  if(!ei.isValid()) {
88  ATH_MSG_FATAL("Cannot retrieve eventinfo");
89  return StatusCode::FAILURE;
90  }
91  bool isMC = ei->eventType(xAOD::EventInfo::IS_SIMULATION); // currently only used to decide if should set a saturation code or not
92 
93 
94  std::map<std::pair<int,int>,std::array<int,11>> towers;
95 
96  constexpr int INVALID_VALUE = -99999; // use this value to indicate invalid
97  constexpr int SATURATED_VALUE = std::numeric_limits<int>::max()-1; // use this value to indicate saturation
98 
99  for (auto digi: *scells) {
100  const auto itr = m_scMap.find(digi->ID().get_compact());
101  if (itr == m_scMap.end()) { continue; } // not in map so not mapping to a tower
102  int val = std::round(digi->energy()/(12.5*std::cosh(digi->eta()))); // 12.5 is b.c. energy is in units of 12.5MeV per count
103  // note: a val of < -99998 is what is produced if efex was sent an invalid code of 1022 (see LArRawtoSuperCell)
104  bool isSaturated = (!isMC) ? (digi->quality()) : false; // not applying saturation codes in MC until the changes to trigger counts has been investigated
105  bool isMasked = m_applyMasking ? ((digi)->provenance()&0x80) : false;
106  bool isInvalid = m_applyMasking ? ((digi)->provenance()&0x40) : false;
107  if(isInvalid) {
108  val = INVALID_VALUE;
109  }
110  if(isSaturated) {
111  val = SATURATED_VALUE;
112  }
113 
114  auto& tower = towers[itr->second.first];
115  if (itr->second.second.second<11) {
116  // doing an energy split between slots ... don't include a masked channel (or invalid channel)
117  if (!isMasked && val!=INVALID_VALUE) {
118  if(isSaturated) {
119  // mark both as saturated
120  tower.at(itr->second.second.first) = SATURATED_VALUE;
121  tower.at(itr->second.second.second) = SATURATED_VALUE;
122  }
123  if(tower.at(itr->second.second.first)!=(SATURATED_VALUE)) { // don't override saturation
124  // if the other contribution was masked or invalid, revert to 0 before adding this contribution
125  if (tower.at(itr->second.second.first)==std::numeric_limits<int>::max() || tower.at(itr->second.second.first)==INVALID_VALUE) {
126  tower.at(itr->second.second.first)=0;
127  }
128  tower.at(itr->second.second.first) += val >> 1;
129  }
130  if(tower.at(itr->second.second.second)!=(SATURATED_VALUE)) { // don't override saturation
131  // if the other contribution was masked or invalid, revert to 0 before adding this contribution
132  if (tower.at(itr->second.second.second)==std::numeric_limits<int>::max() || tower.at(itr->second.second.second)==INVALID_VALUE) {
133  tower.at(itr->second.second.second)=0;
134  }
135  tower.at(itr->second.second.second) += (val - (val >> 1)); // HW seems fixed now!
136  }
137  }
138  // hw is incorrectly ignoring masking on the second part
139  // so always add the 2nd bit
140  //tower.at(itr->second.second.second) += (val - (val >> 1)); // Removed b.c. of fix above - leaving this comment here until resolved!
141  } else {
142  auto& v = tower.at(itr->second.second.first);
143  if (isMasked) {
144  // dont mark it masked if it already has a contribution
145  if(v==0) v = std::numeric_limits<int>::max();
146  } else if(isSaturated) {
147  v = val;
148  } else {
149  v += val;
150  }
151  }
152 
153  }
154 
155  // add tile energies from TriggerTowers
156  static const auto etaIndex = [](float eta) { return int( eta*10 ) + ((eta<0) ? -1 : 1); };
157  static const auto phiIndex = [](float phi) { return int( phi*32./M_PI ) + (phi<0 ? -1 : 1); };
158  for(const xAOD::TriggerTower_v2* tTower : *tTowers) {
159  if (std::abs(tTower->eta()) > 1.5) continue;
160  if (tTower->sampling() != 1) continue;
161  double phi = tTower->phi(); if(phi > M_PI) phi -= 2.*M_PI;
162  towers[std::pair(etaIndex(tTower->eta()),phiIndex(phi))][10] = tTower->cpET();
163  }
164 
165 
167  ATH_CHECK( eTowers.record(std::make_unique<xAOD::eFexTowerContainer>(),std::make_unique<xAOD::eFexTowerAuxContainer>()) );
168 
169  static const auto calToFex = [](int calEt) {
170  if(calEt == std::numeric_limits<int>::max()) return 0; // indicates masked channel
171  if(calEt == SATURATED_VALUE) return 1023; // saturated channel
172  if( calEt == INVALID_VALUE ) return 1022; // invalid channel value
173  if(calEt<448) return std::max((calEt&~1)/2+32,1); // 25 MeV per eFexTower count
174  if(calEt<1472) return (calEt-448)/4+256; // 50 MeV per eFexTower count
175  if(calEt<3520) return (calEt-1472)/8+512; // 100 MeV ...
176  if(calEt<11584) return (calEt-3520)/32+768; // 400 MeV ...
177  return 1020;
178  };
179 
180  // now create the towers
181  for(auto& [coord,counts] : towers) {
182  size_t ni = (std::abs(coord.first)<=15) ? 10 : 11; // ensures we skip the tile towers for next line
183  for(size_t i=0;i<ni;++i) counts[i] = (scells->empty() ? 1025 : calToFex(counts[i])); // do latome energy scaling to non-tile towers - if had no cells will use code "1025" to indicate
184  eTowers->push_back( std::make_unique<xAOD::eFexTower>() );
185  eTowers->back()->initialize( ( (coord.first<0 ? 0.5:-0.5) + coord.first)*0.1 ,
186  ( (coord.second<0 ? 0.5:-0.5) + coord.second)*M_PI/32,
187  std::vector<uint16_t>(counts.begin(), counts.end()),
188  -1, /* module number */
189  -1, /* fpga number */
190  0,0 /* status flags ... could use to indicate which cells were actually present?? */);
191  }
192 
193  return StatusCode::SUCCESS;
194 
195 }
196 
197 StatusCode eFexTowerBuilder::fillMap(const EventContext& ctx) const {
198 
199  ATH_MSG_INFO("Filling sc -> eFexTower map");
200 
202  SG::ReadHandle<CaloCellContainer> scells(m_scellKey,ctx); // 34048 is a full complement of scells
203  if(!scells.isValid()){
204  ATH_MSG_FATAL("Could not retrieve collection " << m_scellKey.key() );
205  return StatusCode::FAILURE;
206  }
207  if (scells->size() != 34048) {
208  ATH_MSG_FATAL("Cannot fill sc -> eFexTower mapping with an incomplete sc collection");
209  return StatusCode::FAILURE;
210  }
211  struct TowerSCells {
212  std::vector<unsigned long long> ps;
213  std::vector<std::pair<float,unsigned long long>> l1;
214  std::vector<std::pair<float,unsigned long long>> l2;
215  std::vector<unsigned long long> l3;
216  std::vector<unsigned long long> had;
217  std::vector<unsigned long long> other;
218  };
219  static const auto etaIndex = [](float eta) { return int( eta*10 ) + ((eta<0) ? -1 : 1); }; // runs from -25 to 25, skipping over 0 (so gives outer edge eta)
220  static const auto phiIndex = [](float phi) { return int( phi*32./ROOT::Math::Pi() ) + (phi<0 ? -1 : 1); }; // runs from -pi to pi, skipping over 0 (gives out edge phi)
221  std::map<std::pair<int,int>,TowerSCells> towers;
222  std::map<unsigned long long,int> eTowerSlots; // not used by this alg, but we produce the map for benefit of eFexTower->eTower alg
223 
224  for (auto digi: *scells) {
225  Identifier id = digi->ID(); // this is if using supercells
226 
227  if (auto elem = ddm->get_element(id); elem && std::abs(elem->eta_raw())<2.5) {
228  float eta = elem->eta_raw(); // this seems more symmetric
229  int sampling = elem->getSampling();
230  if(sampling==6 && ddm->getCaloCell_ID()->region(id)==0 && eta<0) eta-=0.01; // nudge this L2 endcap supercell into correct tower (right on boundary)
231 
232  unsigned long long val = id.get_compact();
233 
234  int towerid = -1;int slot = -1;bool issplit = false;
235  CHECK(m_eFEXSuperCellTowerIdProviderTool->geteTowerIDandslot(id.get_compact(), towerid, slot, issplit));
236  eTowerSlots[id.get_compact()] = slot;
237 
238  auto& sc = towers[std::pair(etaIndex(eta),phiIndex(elem->phi_raw()))];
239  switch(sampling) {
240  case 0: case 4: //lar barrel/endcap presampler
241  sc.ps.push_back(val);
242  break;
243  case 1: case 5: //lar barrel/endcap l1
244  sc.l1.push_back({elem->eta(),val}); break;
245  case 2: case 6: //lar barrel/endcap l2
246  sc.l2.push_back({elem->eta(),val}); break;
247  case 3: case 7: //lar barrel/endcap l3
248  sc.l3.push_back(val); break;
249  case 8: case 9: case 10: case 11: //lar hec
250  sc.had.push_back(val); break;
251  default:
252  sc.other.push_back(val); break;
253  }
254  }
255  }
256 
257 
258  // sort (by increasing eta) l1/l2 sc and handle special cases
259  // finally also output the eTower slot vector
260  std::vector<size_t> slotVector(11);
261  for(auto& [coord,sc] : towers) {
262  std::sort(sc.l1.begin(),sc.l1.end());
263  std::sort(sc.l2.begin(),sc.l2.end());
264  // we have 5 l2 cells @ |eta|=1.45 ... put lowest |eta| one in l3 slot
265  if (sc.l2.size()==5) {
266  if (coord.first >= 0) {
267  sc.l3.push_back(sc.l2.front().second);
268  sc.l2.erase(sc.l2.begin()); // remove first
269  } else {
270  sc.l3.push_back(sc.l2.back().second);
271  sc.l2.resize(sc.l2.size()-1); // remove last
272  }
273  }
274  if (std::abs(coord.first)==15) { //|eta| = 1.45
275  // in the overlap region it seems like the latome id with highest |eta| is swapped with next highest
276  // so to compare we swap the first and second (3rd and 4th are fine) if eta < 0, or 3rd and 4th if eta > 0
277  if (coord.first<0) {std::swap(sc.l1.at(0),sc.l1.at(1)); }
278  else {std::swap(sc.l1.at(2),sc.l1.at(3));}
279  }
280  // handle case @ |eta|~1.8-2 with 6 L1 cells
281  if (sc.l1.size()==6) {
282  m_scMap[sc.l1.at(0).second] = std::pair(coord,std::pair(1,11));
283  m_scMap[sc.l1.at(1).second] = std::pair(coord,std::pair(1,2));
284  m_scMap[sc.l1.at(2).second] = std::pair(coord,std::pair(2,11));
285  m_scMap[sc.l1.at(3).second] = std::pair(coord,std::pair(3,11));
286  m_scMap[sc.l1.at(4).second] = std::pair(coord,std::pair(3,4));
287  m_scMap[sc.l1.at(5).second] = std::pair(coord,std::pair(4,11));
288  slotVector[1] = eTowerSlots[sc.l1.at(0).second];
289  slotVector[2] = eTowerSlots[sc.l1.at(2).second];
290  slotVector[3] = eTowerSlots[sc.l1.at(3).second];
291  slotVector[4] = eTowerSlots[sc.l1.at(5).second];
292  }
293 
294  // for |eta|>2.4 there's only 1 l1 sc, to match hardware this should be compared placed in the 'last' l1 input
295  if (sc.l1.size()==1) {
296  m_scMap[sc.l1.at(0).second] = std::pair(coord,std::pair(4,11));
297  slotVector[1] = 1; slotVector[2] = 2; slotVector[3] = 3; slotVector[4] = eTowerSlots[sc.l1.at(0).second];
298  }
299 
300  // fill the map with sc ids -> tower coord + slot
301  if (!sc.ps.empty()) {m_scMap[sc.ps.at(0)] = std::pair(coord,std::pair(0,11)); slotVector[0] = eTowerSlots[sc.ps.at(0)]; }
302  if(sc.l1.size()==4) for(size_t i=0;i<4;i++) if(sc.l1.size() > i) {m_scMap[sc.l1.at(i).second] = std::pair(coord,std::pair(i+1,11)); slotVector[i+1] = eTowerSlots[sc.l1.at(i).second]; }
303  for(size_t i=0;i<4;i++) if(sc.l2.size() > i) { m_scMap[sc.l2.at(i).second] = std::pair(coord,std::pair(i+5,11)); slotVector[i+5] = eTowerSlots[sc.l2.at(i).second]; }
304  if (!sc.l3.empty()) {m_scMap[sc.l3.at(0)] = std::pair(coord,std::pair(9,11)); slotVector[9] = eTowerSlots[sc.l3.at(0)]; }
305  if (!sc.had.empty()) {m_scMap[sc.had.at(0)] = std::pair(coord,std::pair(10,11));slotVector[10] = eTowerSlots[sc.had.at(0)]; }
306 
307  // finally output the slotVector for this tower
308  // do only for the slots that don't match
309  // note to self: seems like everything is fine apart from the l1->ps remap for |eta|>2.4
310  // so leaving this bit commented out for now ... useful to leave it here in case need to recheck in future
311 // for(size_t i=0;i<slotVector.size();i++) {
312 // if(slotVector[i] != i) {
313 // std::cout << coord.first << "," << coord.second << "," << i << "," << slotVector[i] << std::endl;
314 // }
315 // }
316  }
317 
318  // save the map to disk
319  TFile f("scToEfexTowers.root","RECREATE");
320  TTree* t = new TTree("mapping","mapping");
321  unsigned long long scid = 0;
322  std::pair<int,int> coord = {0,0};
323  std::pair<int,int> slot = {-1,-1};
324  t->Branch("scid",&scid);
325  t->Branch("etaIndex",&coord.first);
326  t->Branch("phiIndex",&coord.second);
327  t->Branch("slot1",&slot.first);
328  t->Branch("slot2",&slot.second);
329  for(auto& [id,val] : m_scMap) {
330  scid = id; coord = val.first; slot = val.second;
331  t->Fill();
332  }
333  t->Write();
334  f.Close();
335 
336  return StatusCode::SUCCESS;
337 
338 }
339 
340 
341 StatusCode eFexTowerBuilder::execute(const EventContext& ctx) const {
342  ATH_MSG_DEBUG("Executing " << name() << "...");
343  setFilterPassed(true, ctx);
344 
345 
346  {
347  std::lock_guard lock(m_fillMapMutex);
348  if (m_scMap.empty()) CHECK( fillMap(ctx) );
349  }
350 
351  return fillTowers(ctx);
352 
353 }
354 
355 } // LVL1 Namespace
LVL1::eFexTowerBuilder::fillTowers
StatusCode fillTowers(const EventContext &ctx) const
Definition: eFexTowerBuilder.cxx:71
LVL1::eFexTowerBuilder::execute
virtual StatusCode execute(const EventContext &ctx) const
Definition: eFexTowerBuilder.cxx:341
ATH_MSG_FATAL
#define ATH_MSG_FATAL(x)
Definition: AthMsgStreamMacros.h:34
LVL1::eFexTowerBuilder::eFexTowerBuilder
eFexTowerBuilder(const std::string &name, ISvcLocator *pSvcLocator)
Definition: eFexTowerBuilder.cxx:28
SG::ReadCondHandle
Definition: ReadCondHandle.h:44
ATH_MSG_INFO
#define ATH_MSG_INFO(x)
Definition: AthMsgStreamMacros.h:31
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
SG::ReadHandle
Definition: StoreGate/StoreGate/ReadHandle.h:70
max
constexpr double max()
Definition: ap_fixedTest.cxx:33
MuonGM::round
float round(const float toRound, const unsigned int decimals)
Definition: Mdt.cxx:27
M_PI
#define M_PI
Definition: ActiveFraction.h:11
LVL1::eFexTowerBuilder::initialize
virtual StatusCode initialize()
Definition: eFexTowerBuilder.cxx:33
LVL1::eFexTowerBuilder::m_eFEXSuperCellTowerIdProviderTool
ToolHandle< IeFEXSuperCellTowerIdProvider > m_eFEXSuperCellTowerIdProviderTool
Definition: eFexTowerBuilder.h:74
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
eFexTowerBuilder.h
SG::VarHandleKey::key
const std::string & key() const
Return the StoreGate ID for the referenced object.
Definition: AthToolSupport/AsgDataHandles/Root/VarHandleKey.cxx:141
LVL1::eFexTowerBuilder::m_ddmKey
SG::ReadCondHandleKey< CaloSuperCellDetDescrManager > m_ddmKey
Definition: eFexTowerBuilder.h:67
xAOD::EventInfo_v1::IS_SIMULATION
@ IS_SIMULATION
true: simulation, false: data
Definition: EventInfo_v1.h:151
LVL1
eFexTowerBuilder creates xAOD::eFexTowerContainer from supercells (LATOME) and triggerTowers (TREX) i...
Definition: ICMMCPHitsCnvTool.h:18
LVL1::eFexTowerBuilder::fillMap
StatusCode fillMap(const EventContext &ctx) const
Definition: eFexTowerBuilder.cxx:197
LVL1::eFexTowerBuilder::m_eiKey
SG::ReadHandleKey< xAOD::EventInfo > m_eiKey
Definition: eFexTowerBuilder.h:65
AthenaPoolTestRead.sc
sc
Definition: AthenaPoolTestRead.py:27
LVL1::eFexTowerBuilder::m_scellKey
SG::ReadHandleKey< CaloCellContainer > m_scellKey
Definition: eFexTowerBuilder.h:69
AthReentrantAlgorithm
An algorithm that can be simultaneously executed in multiple threads.
Definition: AthReentrantAlgorithm.h:83
skel.l2
l2
Definition: skel.GENtoEVGEN.py:399
FortranAlgorithmOptions.fileName
fileName
Definition: FortranAlgorithmOptions.py:13
lumiFormat.i
int i
Definition: lumiFormat.py:85
EL::StatusCode
::StatusCode StatusCode
StatusCode definition for legacy code.
Definition: PhysicsAnalysis/D3PDTools/EventLoop/EventLoop/StatusCode.h:22
ATH_MSG_DEBUG
#define ATH_MSG_DEBUG(x)
Definition: AthMsgStreamMacros.h:29
LVL1::eFexTowerBuilder::m_applyMasking
Gaudi::Property< bool > m_applyMasking
Definition: eFexTowerBuilder.h:76
xAOD::TriggerTower_v2
Description of TriggerTower_v2.
Definition: TriggerTower_v2.h:49
CaloCell_SuperCell_ID.h
Helper class for offline supercell identifiers.
ATH_CHECK
#define ATH_CHECK
Definition: AthCheckMacros.h:40
CHECK
#define CHECK(...)
Evaluate an expression and check for errors.
Definition: Control/AthenaKernel/AthenaKernel/errorcheck.h:422
hist_file_dump.f
f
Definition: hist_file_dump.py:135
eFexTowerAuxContainer.h
SG::VarHandleKey::initialize
StatusCode initialize(bool used=true)
If this object is used as a property, then this should be called during the initialize phase.
Definition: AthToolSupport/AsgDataHandles/Root/VarHandleKey.cxx:103
DataVector::back
const T * back() const
Access the last element in the collection as an rvalue.
WriteCalibToCool.swap
swap
Definition: WriteCalibToCool.py:94
SG::ReadHandle::isValid
virtual bool isValid() override final
Can the handle be successfully dereferenced?
TrigConf::name
Definition: HLTChainList.h:35
LVL1::eFexTowerBuilder::m_outKey
SG::WriteHandleKey< xAOD::eFexTowerContainer > m_outKey
Definition: eFexTowerBuilder.h:71
PathResolver.h
id
SG::auxid_t id
Definition: Control/AthContainers/Root/debug.cxx:227
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
DataVector::push_back
value_type push_back(value_type pElem)
Add an element to the end of the collection.
SG::CondHandleKey::initialize
StatusCode initialize(bool used=true)
JetVoronoiDiagramHelpers::coord
double coord
Definition: JetVoronoiDiagramHelpers.h:45
PathResolverFindCalibFile
std::string PathResolverFindCalibFile(const std::string &logical_file_name)
Definition: PathResolver.cxx:431
eflowRec::phiIndex
unsigned int phiIndex(float phi, float binsize)
calculate phi index for a given phi
Definition: EtaPhiLUT.cxx:23
python.PyAthena.v
v
Definition: PyAthena.py:154
SG::WriteHandle
Definition: StoreGate/StoreGate/WriteHandle.h:76
InDetDD::other
@ other
Definition: InDetDD_Defs.h:16
SG::WriteHandle::record
StatusCode record(std::unique_ptr< T > data)
Record a const object to the store.
RunTileMonitoring.towers
towers
Definition: RunTileMonitoring.py:133
ATH_MSG_WARNING
#define ATH_MSG_WARNING(x)
Definition: AthMsgStreamMacros.h:32
LVL1::eFexTowerBuilder::m_ttKey
SG::ReadHandleKey< xAOD::TriggerTowerContainer > m_ttKey
Definition: eFexTowerBuilder.h:70
Pythia8_RapidityOrderMPI.val
val
Definition: Pythia8_RapidityOrderMPI.py:14
LVL1::eFexTowerBuilder::m_mappingFile
Gaudi::Property< std::string > m_mappingFile
Definition: eFexTowerBuilder.h:73
EventInfoRead.isMC
isMC
Definition: EventInfoRead.py:11
skel.l1
l1
Definition: skel.GENtoEVGEN.py:398
DataVector::size
size_type size() const noexcept
Returns the number of elements in the collection.
xAOD::EventInfo_v1::eventType
bool eventType(EventType type) const
Check for one particular bitmask value.
AthReentrantAlgorithm::setFilterPassed
virtual void setFilterPassed(bool state, const EventContext &ctx) const
Definition: AthReentrantAlgorithm.h:139
Identifier
Definition: IdentifierFieldParser.cxx:14