ATLAS Offline Software
errors/trainNN.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2020 CERN for the benefit of the ATLAS collaboration
3 */
4 
5 #include <TChain.h>
6 #include <TTree.h>
7 #include <TFile.h>
8 #include <TCanvas.h>
9 #include <TH1F.h>
10 #include <TLegend.h>
11 #include <TPad.h>
12 
13 #include "../TJetNet.h"
14 #include "../doNormalization.C"
15 #include "Riostream.h"
16 #include "../TNetworkToHistoTool.h"
17 #include <TSystem.h>
18 
19 #include "../TTrainedNetwork.h"
20 
21 #include "TMatrixD.h"
22 #include "TVectorD.h"
23 #include "trainNN.h"
24 
25 #include <vector>
26 #include <utility>
27 #include <algorithm>
28 #include <string>
29 #include <cmath>
30 #include <iostream>
31 
32 using namespace std;
33 
34 Double_t sigmoid(Double_t x)
35 {
36  return 1./(1.+exp(-2*x));
37 }
38 
39 using namespace std;
40 
41 
42 bool isBadCluster( int sizeX, int nParticles ){
43 
44 
45  if(sizeX==-100){return true;}
46  if(nParticles==0){return true;}
47  if(nParticles!=1 && nParticles!=2 && nParticles!=3){return true;}
48 
49 
50 
51  return false;
52 
53 
54 }
55 
56 
57 bool skipSingle(int nParticles,int iClus, int dilutionFactor){
58 
59 
60  // this reduces the number of single particle clusters of a factor k
61  int k = 60;
62 
63 
64  if (nParticles==1)
65  {
66  if ((iClus %(dilutionFactor*k) != 0) && (iClus % (dilutionFactor*k) != 1))
67  {
68  return true;
69  }
70  }
71 
72  return false;
73 
74 }
75 
76 
77 
78 bool badTrackInfo(bool useTrackEstimate, double theta){
79 
80  if(useTrackEstimate && theta==0){return true;}
81  return false;
82 
83 }
84 
85 int main()
86 {
87  trainNN(
88  "../reduceddatasets/reduceddataset_Cone4H1TopoParticleJets_forNN.root",
89  "dummy",
90  10000,
91  200,
92  10,
93  10,
94  0);
95  return 0;
96 }
97 
98 
99 bool binIsFull(int binNumber,bool isX,double errValue,int nParticles,int numberBins)
100 {
101  double interval=0;
102  if (isX)
103  {
104  interval=errorHalfIntervalX(nParticles);
105  }
106  else
107  {
108  interval=errorHalfIntervalY(nParticles);
109  }
110 
111  double min=-interval;
112  double max=interval;
113 
114  int realBins=numberBins-2;//delete case of overflow / underflow
115 
116  double binSize=(max-min)/(double)realBins;
117 
118  if (errValue<min)
119  {
120  if (binNumber==0)
121  {
122  return true;
123  }
124  else
125  {
126  return false;
127  }
128  }
129  if (errValue>=max)
130  {
131  if (binNumber==numberBins-1)
132  {
133  return true;
134  }
135  else
136  {
137  return false;
138  }
139  }
140 
141  bool found=false;
142 
143  for (int u=0;u<realBins;u++)
144  {
145  double minInterval=min+u*binSize;
146  double maxInterval=min+(u+1)*binSize;
147 
148  if (minInterval<=errValue && errValue<maxInterval)
149  {
150  if (binNumber==u+1)
151  {
152  return true;
153  }
154  else
155  {
156  found=true;
157  }
158  }
159  }
160 
161  if (!found)
162  {
163  std::cout <<" Shouldn't arrive HERE !! errValue: " << errValue << std::endl;
164  }
165 
166  return false;
167 
168 }
169 
170 
171 
172 
173 
174 void trainNN(TString inputfile,
175  TString outputclass,
176  int nIterations,
177  int dilutionFactor,
178  int nodesFirstLayer,
179  int nodesSecondLayer,
180  int restartTrainingFrom,
181  int nParticlesTraining,
182  bool useTrackEstimate,
183  int numberBinsErrorEstimate,
184  bool trainXerrors,
185  int nPatternsPerUpdate,
186  double learningRate,
187  double learningRateDecrease,
188  double learningRateMomentum) {
189 
190  double bweight=1;
191  double cweight=1.;
192  double lweight=1;
193 
194 
195 
196  gROOT->SetStyle("Plain");
197 
198  cout << "starting with settings: " << endl;
199  cout << " nIterations: " << nIterations << endl;
200  cout << " dilutionFactor: " << dilutionFactor << endl;
201  cout << " nodesFirstLayer: " << nodesFirstLayer << endl;
202  cout << " nodesSecondLayer: " << nodesSecondLayer << endl;
203 
204 
205 // TFile *file= TFile::Open(inputfile);
206 
207 // TTree *simu = (TTree*)file->Get("Validation/NNinput");
208  TChain *myChain = new TChain("Validation/NNinput");
209 
210 
211 if(!useTrackEstimate){
212  #include "../files.txt"
213 }
214 
215 if(useTrackEstimate){
216  #include "../filesOnTrack.txt"
217 }
218  TChain* simu=myChain;
219 
220  std::cout << " Training sample obtained... " << std::endl;
221 
222  vector<int> *NN_sizeX;
223  vector<int> *NN_sizeY;
224  vector<vector<float> > *NN_matrixOfToT;
225  vector<vector<float> > *NN_vectorOfPitchesY;
226  vector<int> *NN_ClusterPixLayer;
227  vector<int> *NN_ClusterPixBarrelEC;
228  vector<float> *NN_phiBS;
229  vector<float> *NN_thetaBS;
230  vector<float> *NN_etaModule;
231  vector<bool> *NN_useTrackInfo;
232  vector<int> *NN_columnWeightedPosition;
233  vector<int> *NN_rowWeightedPosition;
234  vector<double> *NN_localColumnWeightedPosition;
235  vector<double> *NN_localRowWeightedPosition;
236 
237  vector<vector<float> > *NN_positionX;
238  vector<vector<float> > *NN_positionY;
239  vector<vector<float> > *NN_position_idX;
240  vector<vector<float> > *NN_position_idY;
241  vector<vector<float> > *NN_theta;
242  vector<vector<float> > *NN_phi;
243 
244  // List of branches
245  TBranch *b_NN_sizeX;
246  TBranch *b_NN_sizeY;
247  TBranch *b_NN_matrixOfToT;
248  TBranch *b_NN_vectorOfPitchesY;
249  TBranch *b_NN_ClusterPixLayer;
250  TBranch *b_NN_ClusterPixBarrelEC;
251  TBranch *b_NN_phiBS;
252  TBranch *b_NN_thetaBS;
253  TBranch *b_NN_etaModule;
254  TBranch *b_NN_useTrackInfo;
255  TBranch *b_NN_columnWeightedPosition;
256  TBranch *b_NN_rowWeightedPosition;
257  TBranch *b_NN_localColumnWeightedPosition;
258  TBranch *b_NN_localRowWeightedPosition;
259  TBranch *b_NN_positionX;
260  TBranch *b_NN_positionY;
261  TBranch *b_NN_position_idX;
262  TBranch *b_NN_position_idY;
263  TBranch *b_NN_theta;
264  TBranch *b_NN_phi;
265 
266 
267 
268  NN_sizeX = 0;
269  NN_sizeY = 0;
270  NN_matrixOfToT = 0;
271  NN_vectorOfPitchesY = 0;
272  NN_ClusterPixLayer = 0;
273  NN_ClusterPixBarrelEC = 0;
274  NN_phiBS = 0;
275  NN_thetaBS = 0;
276  NN_etaModule = 0;
277  NN_useTrackInfo = 0;
278  NN_columnWeightedPosition = 0;
279  NN_rowWeightedPosition = 0;
280  NN_localColumnWeightedPosition = 0;
281  NN_localRowWeightedPosition = 0;
282  NN_positionX = 0;
283  NN_positionY = 0;
284  NN_position_idX = 0;
285  NN_position_idY = 0;
286  NN_theta = 0;
287  NN_phi = 0;
288  // Set branch addresses and branch pointers
289  // if (!tree) return 0;
290  // TTree* simu = tree;
291  // fCurrent = -1;
292  simu->SetMakeClass(1);
293 
294  simu->SetBranchAddress("NN_sizeX", &NN_sizeX, &b_NN_sizeX);
295  simu->SetBranchAddress("NN_sizeY", &NN_sizeY, &b_NN_sizeY);
296  simu->SetBranchAddress("NN_matrixOfToT", &NN_matrixOfToT, &b_NN_matrixOfToT);
297  simu->SetBranchAddress("NN_vectorOfPitchesY", &NN_vectorOfPitchesY, &b_NN_vectorOfPitchesY);
298  simu->SetBranchAddress("NN_ClusterPixLayer", &NN_ClusterPixLayer, &b_NN_ClusterPixLayer);
299  simu->SetBranchAddress("NN_ClusterPixBarrelEC", &NN_ClusterPixBarrelEC, &b_NN_ClusterPixBarrelEC);
300  simu->SetBranchAddress("NN_phiBS", &NN_phiBS, &b_NN_phiBS);
301  simu->SetBranchAddress("NN_thetaBS", &NN_thetaBS, &b_NN_thetaBS);
302  simu->SetBranchAddress("NN_etaModule", &NN_etaModule, &b_NN_etaModule);
303  simu->SetBranchAddress("NN_useTrackInfo", &NN_useTrackInfo, &b_NN_useTrackInfo);
304  simu->SetBranchAddress("NN_columnWeightedPosition", &NN_columnWeightedPosition, &b_NN_columnWeightedPosition);
305  simu->SetBranchAddress("NN_rowWeightedPosition", &NN_rowWeightedPosition, &b_NN_rowWeightedPosition);
306 
307  simu->SetBranchAddress("NN_localColumnWeightedPosition", &NN_localColumnWeightedPosition, &b_NN_localColumnWeightedPosition);
308  simu->SetBranchAddress("NN_localRowWeightedPosition", &NN_localRowWeightedPosition, &b_NN_localRowWeightedPosition);
309 
310  simu->SetBranchAddress("NN_positionX", &NN_positionX, &b_NN_positionX);
311  simu->SetBranchAddress("NN_positionY", &NN_positionY, &b_NN_positionY);
312  simu->SetBranchAddress("NN_position_idX", &NN_position_idX, &b_NN_position_idX);
313  simu->SetBranchAddress("NN_position_idY", &NN_position_idY, &b_NN_position_idY);
314 
315  simu->SetBranchAddress("NN_theta", &NN_theta, &b_NN_theta);
316  simu->SetBranchAddress("NN_phi", &NN_phi, &b_NN_phi);
317 
318 
319  cout << "Branches set..." << endl;
320 
321  TString name;
322  if(nParticlesTraining == 1 ) name+="WeightsOneTracks.root";
323  if(nParticlesTraining == 2 ) name+="WeightsTwoTracks.root";
324  if(nParticlesTraining == 3 ) name+="WeightsThreeTracks.root";
325 
326  if (!useTrackEstimate)
327  {
328  name.ReplaceAll(".root","_noTrack.root");
329  }
330 
331  // getting a postion trained network from file
332  TFile *_file0 = new TFile(name);
333  TTrainedNetwork* positionTrainedNetwork=(TTrainedNetwork*)_file0->Get("TTrainedNetwork");
334 
335  cout << " Reading back network with minimum" << endl;
336 
337 
338  TString filterTrain("Entry$%");
339  filterTrain+=dilutionFactor;
340  filterTrain+="==0";
341 
342  TString filterTest("Entry$%");
343  filterTest+=dilutionFactor;
344  filterTest+="==1";
345 
346  int* nneurons;
347  int nlayer=3;
348 
349  simu->GetEntry(0);
350 
351  cout << "First entry..." << endl;
352 
353  Int_t sizeX=-7;
354  Int_t sizeY=-7;
355 
356 
357  // loop over the clusters loking for the first cluster properly saved
358  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
359 
360  sizeX = (*NN_sizeX)[clus];
361  sizeY = (*NN_sizeY)[clus];
362 
363  if(sizeX>0)break;
364 
365  }
366 
367  cout << "Size obtained" << endl;
368 
369 
370 
371  int numberinputs=sizeX*(sizeY+1)+4+nParticlesTraining*2;//add also position information
372  if (!useTrackEstimate)
373  {
374  numberinputs=sizeX*(sizeY+1)+5+nParticlesTraining*2;
375  }
376 
377  int numberoutputs=nParticlesTraining*numberBinsErrorEstimate;
378  //2 for x and y
379  //nParticlesTraining
380  //numberBinsErrorEstimate
381 
382  if (nodesSecondLayer!=0)
383  {
384  nlayer=4;
385  }
386 
387  if (nodesSecondLayer!=0)
388  {
389  nneurons=new int[4];
390  }
391  else
392  {
393  nneurons=new int[3];
394  }
395 
396  nneurons[0]=numberinputs;
397 
398  nneurons[1]=nodesFirstLayer;
399 
400  if (nodesSecondLayer!=0)
401  {
402  nneurons[2]=nodesSecondLayer;
403  nneurons[3]=numberoutputs;//number of output nodes
404  }
405  else
406  {
407  nneurons[2]=numberoutputs;//number of output nodes
408  }
409 
410  for (int i=0;i<nlayer;i++)
411  {
412  cout << " layer i: " << i << " number neurons: " << nneurons[i] << endl;
413  }
414 
415 
416  // float eventWeight(0);
417  float trainingError(0);
418  float testError(0);
419 
420  //setting learning parameters
421 
422  cout << " now providing training events " << endl;
423 
424  Long64_t numberTrainingEvents=0;
425  Long64_t numberTestingEvents=0;
426  int iClus=0;
427  int part_0=0;
428  int part_1=0;
429  int part_2=0;
430  int part_3=0;
431 
432  int nTotal=simu->GetEntries();
433 
434 // int nTotal=200;
435 
436  // Loop over entries:
437  for (Int_t i = 0; i < nTotal; i++) {
438 
439  if (i % 1000000 == 0 ) {
440  std::cout << " Counting training / testing events in sample. Looping over event " << i << std::endl;
441  }
442 
443  simu->GetEntry(i);
444 
445  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
446 
447  vector<float> *matrixOfToT=0;
448  vector<float> *vectorOfPitchesY=0;
449 
450  Float_t phiBS;
451  Float_t thetaBS;
452  Float_t etaModule;
453  Int_t ClusterPixLayer;
454  Int_t ClusterPixBarrelEC;
455 
456  std::vector<float> * positionX=0;
457  std::vector<float> * positionY=0;
458  std::vector<float> * thetaTr=0;
459  std::vector<float> * phiTr=0;
460 
461 
462 
463  int sizeX = (*NN_sizeX)[clus];
464  positionX =&(*NN_positionX)[clus];
465  int nParticles = positionX->size();
466  //cout << "------" << endl;
467  if (nParticlesTraining!=nParticles)
468  {
469  continue;
470  }
471  if (isBadCluster(sizeX, nParticles ) )continue;
472 
473  thetaTr = &(*NN_theta)[clus];
474  phiTr = &(*NN_phi)[clus];
475 
476  // loop over the particles;
477  for( unsigned int P = 0; P < positionX->size(); P++){
478  double theta = (*thetaTr)[P];
479  if (theta!=theta) continue;
480 
481  iClus++;
482 
483  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
484 
485 
486 
487 
488 
489  if (iClus%dilutionFactor==0) numberTrainingEvents+=1;
490  if (iClus%dilutionFactor==1) numberTestingEvents+=1;
491 
492  if (iClus%dilutionFactor==1 && nParticles==1 ) part_1++;
493  if (iClus%dilutionFactor==1 && nParticles==2 ) part_2++;
494  if (iClus%dilutionFactor==1 && nParticles==3 ) part_3++;
495 
496 
497 
498  }// end loop over th particles
499  }// end loop over cluster
500  }// end Loop over entries
501 
502 
503 
504  cout << " N. training events: " << numberTrainingEvents <<
505  " N. testing events: " << numberTestingEvents << endl;
506 
507  cout << "now start to setup the network..." << endl;
508 
509  TJetNet* jn = new TJetNet( numberTestingEvents, numberTrainingEvents, nlayer, nneurons );
510 
511  cout << " setting learning method... " << endl;
512 
513 
514  jn->SetPatternsPerUpdate( nPatternsPerUpdate );
515  jn->SetUpdatesPerEpoch( (int)std::floor((float)numberTrainingEvents/(float)nPatternsPerUpdate) );
516  jn->SetUpdatingProcedure( 0 );
517  jn->SetErrorMeasure( 0 );
518  jn->SetActivationFunction( 1 );
519  jn->SetLearningRate( learningRate );//0.8
520  jn->SetMomentum( learningRateMomentum );//0.3 //is now 0.5
521  jn->SetInitialWeightsWidth( 1. );
522  jn->SetLearningRateDecrease( learningRateDecrease );//0.992
523 
524 
525  //jn->SetActivationFunction(4,nlayer-1-1); This is to have linear OUTPUT.
526 
527 
528  TH1F* histoControlTestX=new TH1F("histoControlTestX","histoControlTestX",numberBinsErrorEstimate,0,numberBinsErrorEstimate);
529  TH1F* histoControlTestY=new TH1F("histoControlTestY","histoControlTestY",numberBinsErrorEstimate,0,numberBinsErrorEstimate);
530 
531 
532  int trainSampleNumber=0;
533  int testSampleNumber=1;
534 
535 
536 
537  cout << " copying over training events " << endl;
538  int counter=0;
539  int counter0=0;
540  int counter1=0;
541 
542  iClus=0;
543 
544 
545  for (Int_t i = 0; i < nTotal; i++) {
546 
547  if (i % 1000 == 0 ) {
548  std::cout << " Copying over training events. Looping over event " << i << std::endl;
549  }
550 
551  simu->GetEntry(i);
552  // loop over clusters
553  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
554 
555  vector<float> *matrixOfToT=0;
556  vector<float> *vectorOfPitchesY=0;
557 
558  Float_t phiBS;
559  Float_t thetaBS;
560  Float_t etaModule;
561  Int_t ClusterPixLayer;
562  Int_t ClusterPixBarrelEC;
563 
564  std::vector<float> * positionX=0;
565  std::vector<float> * positionY=0;
566 
567  std::vector<float> positionX_reorder;
568  std::vector<float> positionY_reorder;
569 
570 
571 
572 
573  std::vector<float> * thetaTr=0;
574  std::vector<float> * phiTr=0;
575 
576  double localColumnWeightedPosition;// = 0;
577  double localRowWeightedPosition;// = 0;
578 
579  sizeX = (*NN_sizeX)[clus];
580  sizeY = (*NN_sizeY)[clus];
581 
582  matrixOfToT=&(*NN_matrixOfToT)[clus];
583  vectorOfPitchesY=&(*NN_vectorOfPitchesY)[clus];
584 
585  phiBS = (*NN_phiBS)[clus];
586  thetaBS =(*NN_thetaBS)[clus];
587  etaModule =(*NN_etaModule)[clus];
588 
589  ClusterPixLayer=(*NN_ClusterPixLayer)[clus];
590  ClusterPixBarrelEC = (*NN_ClusterPixBarrelEC)[clus];
591 
592  positionX =&(*NN_positionX)[clus];
593  positionY =&(*NN_positionY)[clus];
594 
595  positionX_reorder=*positionX;
596  positionY_reorder.clear();
597 
598 
599 
600  thetaTr = &(*NN_theta)[clus];
601  phiTr = &(*NN_phi)[clus];
602 
603 
604  localColumnWeightedPosition =(*NN_localColumnWeightedPosition)[clus];
605  localRowWeightedPosition =(*NN_localRowWeightedPosition)[clus];
606 
607 
608 
609  int nParticles = positionX->size();
610  if (nParticlesTraining!=nParticles)
611  {
612  continue;
613  }
614 
615  if(isBadCluster(sizeX, nParticles ) )continue;
616 
617 
618 
619 
620 
621 
622  std::sort(positionX_reorder.begin(),
623  positionX_reorder.end());
624 
625  for (int o=0;o<positionX->size();o++)
626  {
627  double corry=-1000;
628  for (int e=0;e<positionX->size();e++)
629  {
630  if (fabs(positionX_reorder[o]-(*positionX)[e])<1e-10)
631  {
632  if (fabs(corry+1000)>1e-6)
633  {
634  cout << " Value find more than once! " << endl;
635  for (int p=0;p<positionX->size();p++)
636  {
637  cout << " X n. : " << p << " is: " << (*positionX)[p] << endl;
638  }
639  }
640  corry=(*positionY)[e];
641  }
642  }
643  positionY_reorder.push_back(corry);
644  }
645 
646 
647 
648  for( unsigned int P = 0; P < positionX->size(); P++){
649 
650 
651  double theta = (*thetaTr)[P];
652  double phi = (*phiTr)[P];
653 
654  if (theta!=theta) continue;
655 
656  if (ClusterPixBarrelEC==2)
657  {
658  theta=-theta;
659  phi=-phi;
660  }
661 
662 
663  iClus++;
664 
665  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
666 
667  // formatting cluster infos for the NN input
668 
669  std::vector<Double_t> inputData;
670 
671  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++){
672 
673  inputData.push_back(norm_ToT((*matrixOfToT)[ME]));
674  }
675 
676  for (int s=0;s<sizeY;s++)
677  {
678  inputData.push_back(norm_pitch((*vectorOfPitchesY)[s]));
679  }
680 
681  inputData.push_back(norm_layerNumber(ClusterPixLayer));
682  inputData.push_back(norm_layerType(ClusterPixBarrelEC));
683 
684  if (useTrackEstimate)
685  {
686  inputData.push_back(norm_phi(phi));
687  inputData.push_back(norm_theta(theta));
688  }
689  else
690  {
691  inputData.push_back(norm_phiBS(phiBS));
692  inputData.push_back(norm_thetaBS(thetaBS));
693  inputData.push_back(norm_etaModule(etaModule));
694  }
695  // cout << "formatted" << endl;
696 
697 
698  vector<double> outputNN_idX;
699  vector<double> outputNN_idY;
700 
701 
702  vector<double> resultNN = positionTrainedNetwork->calculateOutputValues(inputData);
703 
704 
705 
706 
707  // storing the obtained X and Y position in vectors of position // nParticlesTraining
708 
709  if(nParticlesTraining==1){
710  outputNN_idX.push_back(back_posX(resultNN[0]));
711  outputNN_idY.push_back(back_posY(resultNN[1]));
712  }
713 
714 
715  if(nParticlesTraining==2){
716  outputNN_idX.push_back(back_posX(resultNN[0]));
717  outputNN_idX.push_back(back_posX(resultNN[2]));
718  outputNN_idY.push_back(back_posY(resultNN[1]));
719  outputNN_idY.push_back(back_posY(resultNN[3]));
720  }
721 
722  if(nParticlesTraining==3){
723  outputNN_idX.push_back(back_posX(resultNN[0]));
724  outputNN_idX.push_back(back_posX(resultNN[2]));
725  outputNN_idX.push_back(back_posX(resultNN[4]));
726  outputNN_idY.push_back(back_posY(resultNN[1]));
727  outputNN_idY.push_back(back_posY(resultNN[3]));
728  outputNN_idY.push_back(back_posY(resultNN[5]));
729  }
730 
731 
732 
733  // HERE WE NEED THE CONVERSION OF THE POSITION RESPECT WITH CLUSTER CENTER FROM LOCAL POSITION!!!
734  vector<float> outputNN_X ;
735  vector<float> outputNN_Y ;
736 
737  for(unsigned int t=0; t < outputNN_idX.size(); t++){
738 
739  double PitchX=0.05; //50 micron pitch in Y
740 
741  // local position respect with the cluster center questa e' la posizione locale corrispondente al centro del cluster
742  // defined as the center of matrixOfToT (definito come centro della matrice per la rete neuronale)
743  double centerPosY = localColumnWeightedPosition;
744  double centerPosX = localRowWeightedPosition;
745 // cout << sizeX << " " << "centerPosX: " << centerPosX << endl;
746  //questi sono gli unput che la rete restituisce (coordinate rispetto al centro)
747  // output of the NN (respect with the cluster center
748  double indexX = outputNN_idX[t];
749  double indexY = outputNN_idY[t];
750  double indexPositionToTranslateY = indexY+(double)(sizeY-1)/2;
751  //cout << indexX << " " << centerPosX << endl;
752  double pos_idX = centerPosX + (double)indexX * PitchX;
753 // cout << " pos_idX = " << pos_idX << endl;
754 
755  //now for Y it is slightly more complicated (but not much)
756  double positionYFromZero = -100;
757  double positionCenterYFromZero = -100;
758  double actualPositionFromZero=0.;
759 
760  //start both indices and positions at zero
761 
762  for (int i=0;i<sizeY;i++)
763  {
764  if (indexPositionToTranslateY>=(double)i && indexPositionToTranslateY<=(double)(i+1))
765  {
766  positionYFromZero = actualPositionFromZero + (double)(indexPositionToTranslateY-(double)i+0.5)*(*vectorOfPitchesY)[i];
767  // cout << "positionYFromZero: " << positionYFromZero << endl;
768  }
769  if (i==(sizeY-1)/2)
770  {
771  positionCenterYFromZero = actualPositionFromZero + 0.5* (*vectorOfPitchesY)[i];
772  // cout << "positionCenterYFromZero: " << positionCenterYFromZero << endl;
773  }
774  actualPositionFromZero+=(*vectorOfPitchesY)[i];
775  }
776 
777  double pos_idY = centerPosY + positionYFromZero - positionCenterYFromZero;
778 // cout << " pos_idY " << pos_idY << endl;
779 
780 
781  //
782  outputNN_X.push_back(pos_idX);
783  outputNN_Y.push_back(pos_idY);
784  }
785 
786 
787 
788 
789  if (matrixOfToT->size()!=sizeX*sizeY)
790  {
791  std::cout << " Event: " << i << " PROBLEM: size Y is: " << matrixOfToT->size() << std::endl;
792  throw std::runtime_error("Error in errors/trainNN.cxx");
793  }
794 
795  // loop over elements of matrixOfTot which is actually a vector
796  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++){
797 
798  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, ME, norm_ToT((*matrixOfToT)[ME]));
799  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, ME, norm_ToT((*matrixOfToT)[ME]));
800 
801  if (counter1 == 0) std::cout << " element: " << ME << " ToT set to: " << norm_ToT((*matrixOfToT)[ME]) << std::endl;
802 
803  }
804 
805 
806  // loop over vector of pitches
807  for (int s=0;s<sizeY;s++)
808  {
809  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
810  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
811 
812  if (counter0 == 0) std::cout << " s: " << s << " pitch set to: " << norm_pitch((*vectorOfPitchesY)[s]) << std::endl;
813  }
814 
815  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
816  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
817 
818  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
819  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
820 
821 
822 
823  if (counter0 == 0) std::cout << " ClusterPixLayer " << norm_layerNumber(ClusterPixLayer) << " ClusterPixBarrelEC " << norm_layerType(ClusterPixBarrelEC) << std::endl;
824 
825  if (useTrackEstimate)
826  {
827  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phi(phi) );
828  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_theta(theta) );
829 
830  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phi(phi) );
831  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_theta(theta) );
832 
833  if (counter0==0) std::cout << " phi " << norm_phi(phi) << " theta: " << norm_theta(theta) << std::endl;
834 
835  }
836  else
837  {
838  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
839  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
840  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
841 
842  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
843  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
844  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
845 
846 
847  if (counter0==0) std::cout <<
848  " phiBS " << norm_phiBS(phiBS) <<
849  " thetaBS: " << norm_thetaBS(thetaBS) <<
850  " etaModule: " << norm_etaModule(etaModule) << std::endl;
851  }
852 
853  int addNumber=5;
854  if (useTrackEstimate) addNumber=4;
855 
856 
857 
858  for (int o=0;o<nParticlesTraining;o++)
859  {
860  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+addNumber+2*o,norm_posX(outputNN_idX[o]) );
861  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+addNumber+2*o+1,norm_posY(outputNN_idY[o]) );
862 
863  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+addNumber+2*o,norm_posX(outputNN_idX[o]) );
864  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+addNumber+2*o+1,norm_posY(outputNN_idY[o]) );
865 
866 
867 
868  if (counter==0) std::cout << " n. " << o <<
869  " posX: " << norm_posX((outputNN_idX)[o]) <<
870  " posY: " << norm_posY((outputNN_idY)[o]) << std::endl;
871 
872  }
873 
874 
875 
876 // cout << " nParticlesTraining " << nParticlesTraining << endl;
877 
878 
879  for (int r=0;r<nParticlesTraining;r++)
880  {
881 
882 // cout << " numberBinsErrorEstimate " << numberBinsErrorEstimate << endl;
883  // if (counter==0) std::cout << " particle: " << r << std::endl;
884 
885  for (int u=0;u<numberBinsErrorEstimate;u++)
886  {
887  if (trainXerrors)
888  {
889 // cout << " outputNN_X["<<r<<"]="<<outputNN_X[r] <<
890 // " positionX_reorder["<<r<<"] "<< positionX_reorder[r] << endl;
891  bool full=binIsFull(u,true,(outputNN_X[r]-positionX_reorder[r]),nParticlesTraining,numberBinsErrorEstimate);
892  int nValueFull=0;
893  if (full) nValueFull=1;
894  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet(counter0, r*numberBinsErrorEstimate+u, nValueFull);
895  if (iClus%dilutionFactor==1) jn->SetOutputTestSet(counter1, r*numberBinsErrorEstimate+u, nValueFull);
896 
897  if (counter==0) std::cout << " X bin: " << u << " gl: "<< r*2*numberBinsErrorEstimate+u << " val: " << nValueFull;
898  histoControlTestX->Fill(u+1,nValueFull);
899  }
900  }
901  for (int u=0;u<numberBinsErrorEstimate;u++)
902  {
903  if (!trainXerrors)
904  {
905 // cout << " outputNN_Y["<<r<<"]="<<outputNN_Y[r] <<
906 // " positionY_reorder["<<r<<"] "<< positionY_reorder[r] << endl;
907 
908  bool full=binIsFull(u,false,(outputNN_Y[r]-positionY_reorder[r]),nParticlesTraining,numberBinsErrorEstimate);
909  int nValueFull=0;
910  if (full) nValueFull=1;
911  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet(counter0, r*numberBinsErrorEstimate+u, nValueFull);
912  if (iClus%dilutionFactor==1) jn->SetOutputTestSet(counter1, r*numberBinsErrorEstimate+u, nValueFull);
913 
914  if (counter0==0) std::cout << " Y bin: " << u << " gl: " << r*2*numberBinsErrorEstimate+numberBinsErrorEstimate+u << " val: " << nValueFull;
915  if (iClus%dilutionFactor==0) histoControlTestY->Fill(u+1,nValueFull);
916  }
917 
918  }
919  }
920 
921  if (counter0==0) std::cout << std::endl << " total number of bins: " << numberoutputs << std::endl;
922 
923 
924 
925  if (iClus%dilutionFactor==0) jn->SetEventWeightTrainSet( counter0, 1 );
926  if (iClus%dilutionFactor==1) jn->SetEventWeightTestSet( counter1, 1 );
927 
928  counter+=1;
929 
930  if (iClus%dilutionFactor==0) counter0+=1;
931  if (iClus%dilutionFactor==1) counter1+=1;
932 
933 
934  }
935  }
936  }
937 
938  if (counter0!=numberTrainingEvents)
939  {
940  cout << " counter up to: " << counter0 << " while events in training sample are " << numberTrainingEvents << endl;
941  return;
942  }
943 
944  if (counter1!=numberTestingEvents)
945  {
946  cout << " counter up to: " << counter1 << " while events in testing sample are " << numberTestingEvents << endl;
947  return;
948  }
949 
950 
951 
952 
953 
954 
955 
956 
957  jn->Shuffle(true,false);
958 
959  std::cout << " Potts units are: " << jn->GetPottsUnits() << std::endl;
960 
961 
962  cout << " setting pattern for training events " << endl;
963 
964  if (restartTrainingFrom==0)
965  {
966  jn->Init();
967  }
968  else
969  {
970  TString name("Weights");
971  name+=restartTrainingFrom;
972  name+=".w";
973 
974  jn->ReadFromFile(name);
975  }
976 
977 
978 
979  float minimumError=1e10;
980  int epochesWithRisingError=0;
981  int epochWithMinimum=0;
982 
983  int updatesPerEpoch=jn->GetUpdatesPerEpoch();
984 
985  TString directory("weights");
986  directory+="_nPat";
987  directory+=nPatternsPerUpdate;
988  directory+="_rate";
989  directory+=(int)(learningRate*100);
990  directory+="_rdec";
991  directory+=(int)(100*learningRateDecrease);
992  directory+="_mom";
993  directory+=(int)(100*learningRateMomentum);
994  directory+="_";
995  directory+=nParticlesTraining;
996  directory+="_";
997  if (trainXerrors)
998  {
999  directory+="X";
1000  }
1001  else
1002  {
1003  directory+="Y";
1004  }
1005 
1006  if (useTrackEstimate)
1007  {
1008  directory+="_withTracks";
1009  }
1010 
1011  TString command("mkdir ");
1012  command+=directory;
1013 
1014  gSystem->Exec(command);
1015 
1016  TString nameCronology=directory;
1017 
1018  nameCronology+="/trainingCronology.txt";
1019 
1020  //prepare output stream
1021 
1022  ofstream cronology(nameCronology,ios_base::out);//|ios_base::app);
1023 
1024  cronology << "-------------SETTINGS----------------" << endl;
1025  cronology << "Epochs: " << jn->GetEpochs() << std::endl;
1026  cronology << "Updates Per Epoch: " << jn->GetUpdatesPerEpoch() << std::endl;
1027  cronology << "Updating Procedure: " << jn->GetUpdatingProcedure() << std::endl;
1028  cronology << "Error Measure: " << jn->GetErrorMeasure() << std::endl;
1029  cronology << "Patterns Per Update: " << jn->GetPatternsPerUpdate() << std::endl;
1030  cronology << "Learning Rate: " << jn->GetLearningRate() << std::endl;
1031  cronology << "Momentum: " << jn->GetMomentum() << std::endl;
1032  cronology << "Initial Weights Width: " << jn->GetInitialWeightsWidth() << std::endl;
1033  cronology << "Learning Rate Decrease: " << jn->GetLearningRateDecrease() << std::endl;
1034  cronology << "Activation Function: " << jn->GetActivationFunction() << std::endl;
1035  cronology << "-------------LAYOUT------------------" << endl;
1036  cronology << "Input variables: " << jn->GetInputDim() << endl;
1037  cronology << "Output variables: " << jn->GetOutputDim() << endl;
1038  cronology << "Hidden layers: " << jn->GetHiddenLayerDim() << endl;
1039  cronology << "Layout : ";
1040  for (Int_t s=0;s<jn->GetHiddenLayerDim()+2;++s)
1041  {
1042  cronology << jn->GetHiddenLayerSize(s);
1043  if (s<jn->GetHiddenLayerDim()+1) cronology << "-";
1044  }
1045  cronology << endl;
1046  cronology << "--------------HISTORY-----------------" << endl;
1047  cronology << "History of iterations: " << endl;
1048  cronology.close();
1049 
1050  //prepare training histo
1051  TH1F* histoTraining=new TH1F("training","training",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
1052  TH1F* histoTesting=new TH1F("testing","testing",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
1053 
1054  double maximumTrain=0;
1055  double minimumTrain=1e10;
1056 
1057  for(int epoch=restartTrainingFrom+1;epoch<=nIterations;++epoch)
1058  {
1059  if (epoch!=restartTrainingFrom+1)
1060  {
1061  trainingError = jn->Train();
1062  }
1063 
1064  if (epoch%10==0 || epoch==restartTrainingFrom+1)
1065  {
1066 
1067  cronology.open(nameCronology,ios_base::app);
1068 
1069  testError = jn->Test();
1070 
1071  if (trainingError>maximumTrain) maximumTrain=trainingError;
1072  if (testError>maximumTrain) maximumTrain=testError;
1073  if (trainingError<minimumTrain) minimumTrain=trainingError;
1074  if (testError<minimumTrain) minimumTrain=testError;
1075 
1076 
1077  histoTraining->Fill(epoch/10.,trainingError);
1078  histoTesting->Fill(epoch/10.,testError);
1079 
1080  if (testError<minimumError)
1081  {
1082  minimumError=testError;
1083  epochesWithRisingError=0;
1084  epochWithMinimum=epoch;
1085  }
1086  else
1087  {
1088  epochesWithRisingError+=10;
1089 
1090  }
1091 
1092 
1093  if (epochesWithRisingError>300)
1094  {
1095  if (trainingError<minimumError)
1096  {
1097  cout << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
1098  cronology << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
1099  break;
1100  }
1101  }
1102 
1103  cronology << "Epoch: [" << epoch <<
1104  "] Error: " << trainingError <<
1105  " Test: " << testError << endl;
1106 
1107  cout << "Epoch: [" << epoch <<
1108  "] Error: " << trainingError <<
1109  " Test: " << testError << endl;
1110 
1111  cronology.close();
1112 
1113  TString name=directory;
1114  name+="/Weights";
1115  name+=epoch;
1116  name+=".root";
1117 
1118  TFile* file=new TFile(name,"recreate");
1119  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
1120 
1121 
1122 
1123  trainedNetwork->Write();
1124  histoControlTestX->Write();
1125  histoControlTestY->Write();
1126  file->Write();
1127  file->Close();
1128  delete file;
1129 
1130 
1131 
1132  // jn->DumpToFile(name);
1133  }
1134  }
1135 
1136  jn->writeNetworkInfo(1);
1137  jn->writeNetworkInfo(2);
1138 
1139 
1140 
1141 
1143  Int_t nInput=jn->GetInputDim();
1144 
1145  cout << " create Trained Network object..." << endl;
1146 
1147  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
1148 
1149 
1150 
1151  cout << " Now getting histograms from trainingResult" << endl;
1152  cronology << " Now getting histograms from trainingResult" << endl;
1153 
1154  TNetworkToHistoTool myHistoTool;
1155 
1156  cout << " From network to histo..." << endl;
1157  std::vector<TH1*> myHistos=myHistoTool.fromTrainedNetworkToHisto(trainedNetwork);
1158 
1159  cout << " From histo to network back..." << endl;
1160  TTrainedNetwork* trainedNetwork2=myHistoTool.fromHistoToTrainedNetwork(myHistos);
1161 
1162  cout << " reading back " << endl;
1163  jn->readBackTrainedNetwork(trainedNetwork2);
1164 
1165 
1166 
1167 
1168 
1169  if (epochWithMinimum!=0)
1170  {
1171  cronology << "Minimum stored from Epoch: " << epochWithMinimum << endl;
1172  } else
1173  {
1174  cronology << "Minimum not reached" << endl;
1175  }
1176 
1177  cronology.close();
1178 
1179  if (epochWithMinimum!=0)
1180  {
1181 
1182  TString name=directory;
1183  name+="/Weights";
1184  name+=epochWithMinimum;
1185  name+=".root";
1186  std::cout << " reading back from minimum " << endl;
1187 
1188 
1189  TFile *_file0 = new TFile(name);
1190  TTrainedNetwork* trainedNetwork=(TTrainedNetwork*)_file0->Get("TTrainedNetwork");
1191 
1192  cout << " Reading back network with minimum" << endl;
1193  jn->readBackTrainedNetwork(trainedNetwork);
1194 
1195  TString nameFile=directory;
1196  nameFile+="/weightMinimum.root";
1197 
1198  TFile* file=new TFile(nameFile,"recreate");
1199  trainedNetwork->Write();
1200  file->Write();
1201  file->Close();
1202  delete file;
1203 
1204  cout << " -------------------- " << endl;
1205  cout << " Writing OUTPUT histos " << endl;
1206  TString histoFName=directory;
1207  histoFName+="/histoWeights.root";
1208 
1209  TFile* fileHistos=new TFile(histoFName,"recreate");
1210  TNetworkToHistoTool histoTool;
1211  std::vector<TH1*> myHistos=histoTool.fromTrainedNetworkToHisto(trainedNetwork);
1212  std::vector<TH1*>::const_iterator histoBegin=myHistos.begin();
1213  std::vector<TH1*>::const_iterator histoEnd=myHistos.end();
1214  for (std::vector<TH1*>::const_iterator histoIter=histoBegin;
1215  histoIter!=histoEnd;++histoIter)
1216  {
1217  (*histoIter)->Write();
1218  }
1219  fileHistos->Write();
1220  fileHistos->Close();
1221  delete fileHistos;
1222 
1223 
1224 
1225  }
1226  else
1227  {
1228  cout << " using network at last iteration (minimum not reached..." << endl;
1229  }
1230 
1231  //here you should create the class... Still open how to deal with this...
1232  // char* myname=const_cast<char*>(static_cast<const char*>(outputclass));
1233  // ierr=mlpsavecf_(myname);
1234 
1235  TString histoTName=directory;
1236  histoTName+="/trainingInfo.root";
1237 
1238  TFile* histoFile=new TFile(histoTName,"recreate");
1239  histoTraining->Write();
1240  histoTesting->Write();
1241  histoFile->Write();
1242  histoFile->Close();
1243  delete histoFile;
1244 
1245  TCanvas* trainingCanvas=new TCanvas("trainingCanvas","trainingCanvas");
1246  histoTraining->SetLineColor(2);
1247  histoTesting->SetLineColor(4);
1248 
1249  histoTraining->GetYaxis()->SetRangeUser(minimumTrain,maximumTrain);
1250  histoTraining->Draw("l");
1251  histoTesting->Draw("lsame");
1252  TString canvasName=directory;
1253  canvasName+="/trainingCurve.eps";
1254  trainingCanvas->SaveAs(canvasName);
1255 
1256 
1257  TCanvas* mlpa_canvas = new TCanvas("jetnet_canvas","Network analysis");
1258  mlpa_canvas->Divide(2,4);
1259 
1260 
1261 
1262 }
1263 
sigmoid
Double_t sigmoid(Double_t x)
Definition: errors/trainNN.cxx:34
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
beamspotman.r
def r
Definition: beamspotman.py:676
trainNN.h
norm_etaModule
double norm_etaModule(const double input)
Definition: NnNormalization.cxx:101
TTrainedNetwork::calculateOutputValues
std::vector< Double_t > calculateOutputValues(std::vector< Double_t > &input) const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.cxx:99
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
trainNN
void trainNN(TString inputfile, TString outputclass, int nIterations, int dilutionFactor, int nodesFirstLayer, int nodesSecondLayer, int restartTrainingFrom, int nParticlesTraining, bool useTrackEstimate, int numberBinsErrorEstimate, bool trainXerrors, int nPatternsPerUpdate, double learningRate, double learningRateDecrease, double learningRateMomentum)
Definition: errors/trainNN.cxx:174
TJetNet::GetErrorMeasure
Int_t GetErrorMeasure(void)
Definition: TJetNet.cxx:1156
phi
Scalar phi() const
phi method
Definition: AmgMatrixBasePlugin.h:67
TJetNet::GetLearningRate
Double_t GetLearningRate(void)
Definition: TJetNet.cxx:1177
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
TJetNet::SetPatternsPerUpdate
void SetPatternsPerUpdate(Int_t aValue)
Definition: TJetNet.cxx:1105
max
constexpr double max()
Definition: ap_fixedTest.cxx:33
DMTest::P
P_v1 P
Definition: P.h:23
min
constexpr double min()
Definition: ap_fixedTest.cxx:26
extractSporadic.nameFile
string nameFile
Definition: extractSporadic.py:84
TJetNet::readBackTrainedNetwork
void readBackTrainedNetwork(const TTrainedNetwork *)
Definition: TJetNet.cxx:207
TJetNet::writeNetworkInfo
void writeNetworkInfo(Int_t typeOfInfo=0)
Definition: TJetNet.cxx:664
norm_pitch
double norm_pitch(const double input, bool addIBL=false)
Definition: NnNormalization.cxx:32
isBadCluster
bool isBadCluster(int sizeX, int nParticles)
Definition: errors/trainNN.cxx:42
theta
Scalar theta() const
theta method
Definition: AmgMatrixBasePlugin.h:75
TJetNet::GetMomentum
Double_t GetMomentum(void)
Definition: TJetNet.cxx:1182
TJetNet::Init
void Init(void)
Definition: TJetNet.cxx:670
python.AthDsoLogger.out
out
Definition: AthDsoLogger.py:71
TJetNet::SetOutputTestSet
void SetOutputTestSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.h:196
TJetNet::GetLearningRateDecrease
Double_t GetLearningRateDecrease(void)
Definition: TJetNet.cxx:1192
norm_phi
double norm_phi(const double input)
Definition: NnNormalization.cxx:71
TJetNet::SetUpdatingProcedure
void SetUpdatingProcedure(Int_t aValue)
Definition: TJetNet.cxx:1078
TNetworkToHistoTool
Definition: TNetworkToHistoTool.h:18
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
drawFromPickle.exp
exp
Definition: drawFromPickle.py:36
norm_theta
double norm_theta(const double input)
Definition: NnNormalization.cxx:79
x
#define x
TJetNet::GetUpdatesPerEpoch
Int_t GetUpdatesPerEpoch(void)
Definition: TJetNet.cxx:1146
Trk::u
@ u
Enums for curvilinear frames.
Definition: ParamDefs.h:77
TJetNet::SetInputTestSet
void SetInputTestSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:740
TJetNet::SetEventWeightTrainSet
void SetEventWeightTrainSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:752
TJetNet::SetMomentum
void SetMomentum(Double_t aValue)
Definition: TJetNet.cxx:1118
TJetNet::Shuffle
void Shuffle(Bool_t aShuffleTrainSet=true, Bool_t aShuffleTestSet=true)
Definition: TJetNet.cxx:1222
norm_posY
double norm_posY(const double input)
Definition: NnNormalization.cxx:118
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
norm_layerNumber
double norm_layerNumber(const double input)
Definition: NnNormalization.cxx:57
TNetworkToHistoTool::fromHistoToTrainedNetwork
TTrainedNetwork * fromHistoToTrainedNetwork(std::vector< TH1 * > &) const
TNetworkToHistoTool::fromTrainedNetworkToHisto
std::vector< TH1 * > fromTrainedNetworkToHisto(TTrainedNetwork *) const
DeMoScan.directory
string directory
Definition: DeMoScan.py:80
lumiFormat.i
int i
Definition: lumiFormat.py:85
TJetNet
Definition: TJetNet.h:41
main
int main()
Definition: errors/trainNN.cxx:85
back_posY
double back_posY(const double input)
Definition: NnNormalization.cxx:122
getLatestRuns.interval
interval
Definition: getLatestRuns.py:24
TJetNet::ReadFromFile
void ReadFromFile(TString aFileName="fort.8")
Definition: TJetNet.cxx:962
norm_ToT
double norm_ToT(const double input)
Definition: NnNormalization.cxx:24
file
TFile * file
Definition: tile_monitor.h:29
TJetNet::SetOutputTrainSet
void SetOutputTrainSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.cxx:734
norm_layerType
double norm_layerType(const double input)
Definition: NnNormalization.cxx:64
TJetNet::SetInputTrainSet
void SetInputTrainSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:728
xAOD::double
double
Definition: CompositeParticle_v1.cxx:159
badTrackInfo
bool badTrackInfo(bool useTrackEstimate, double theta)
Definition: errors/trainNN.cxx:78
TJetNet::GetPatternsPerUpdate
Int_t GetPatternsPerUpdate(void)
Definition: TJetNet.cxx:1172
TTrainedNetwork
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:21
TJetNet::GetEpochs
Int_t GetEpochs(void)
Definition: TJetNet.h:78
norm_phiBS
double norm_phiBS(const double input)
Definition: NnNormalization.cxx:86
TJetNet::GetActivationFunction
Int_t GetActivationFunction(void) const
Definition: TJetNet.cxx:1161
TJetNet::SetErrorMeasure
void SetErrorMeasure(Int_t aValue)
Definition: TJetNet.cxx:1085
TJetNet::SetLearningRate
void SetLearningRate(Double_t aValue)
Definition: TJetNet.cxx:1111
errorHalfIntervalY
double errorHalfIntervalY(const int nParticles)
Definition: NnNormalization.cxx:144
TJetNet::GetOutputDim
Int_t GetOutputDim(void) const
Definition: TJetNet.h:57
TJetNet::SetLearningRateDecrease
void SetLearningRateDecrease(Double_t aValue)
Definition: TJetNet.cxx:1130
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
TJetNet::GetInitialWeightsWidth
Double_t GetInitialWeightsWidth(void)
Definition: TJetNet.cxx:1187
TJetNet::GetPottsUnits
Int_t GetPottsUnits()
Definition: TJetNet.cxx:1197
find_data.full
full
Definition: find_data.py:27
TJetNet::SetUpdatesPerEpoch
void SetUpdatesPerEpoch(Int_t aValue)
Definition: TJetNet.cxx:1071
TJetNet::SetInitialWeightsWidth
void SetInitialWeightsWidth(Double_t aValue)
Definition: TJetNet.cxx:1124
back_posX
double back_posX(const double input, const bool recenter=false)
Definition: NnNormalization.cxx:113
errorHalfIntervalX
double errorHalfIntervalX(const int nParticles)
Definition: NnNormalization.cxx:140
norm_posX
double norm_posX(const double input, const bool recenter=false)
Definition: NnNormalization.cxx:108
TJetNet::SetActivationFunction
void SetActivationFunction(Int_t aValue)
Definition: TJetNet.cxx:1091
binIsFull
bool binIsFull(int binNumber, bool isX, double errValue, int nParticles, int numberBins)
Definition: errors/trainNN.cxx:99
CondAlgsOpts.found
int found
Definition: CondAlgsOpts.py:101
std::sort
void sort(typename std::reverse_iterator< DataModel_detail::iterator< DVL > > beg, typename std::reverse_iterator< DataModel_detail::iterator< DVL > > end, const Compare &comp)
Specialization of sort for DataVector/List.
Definition: DVL_algorithms.h:623
skipSingle
bool skipSingle(int nParticles, int iClus, int dilutionFactor)
Definition: errors/trainNN.cxx:57
FullCPAlgorithmsTest_CA.inputfile
dictionary inputfile
Definition: FullCPAlgorithmsTest_CA.py:62
TJetNet::GetInputDim
Int_t GetInputDim(void) const
Definition: TJetNet.h:54
TJetNet::GetHiddenLayerSize
Int_t GetHiddenLayerSize(Int_t number) const
Definition: TJetNet.h:56
TJetNet::createTrainedNetwork
TTrainedNetwork * createTrainedNetwork() const
Definition: TJetNet.cxx:104
python.TrigEgammaMonitorHelper.TH1F
def TH1F(name, title, nxbins, bins_par2, bins_par3=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:24
TJetNet::Test
Double_t Test(void)
Definition: TJetNet.cxx:320
test_pyathena.counter
counter
Definition: test_pyathena.py:15
TJetNet::SetEventWeightTestSet
void SetEventWeightTestSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:758
get_generator_info.command
string command
Definition: get_generator_info.py:38
norm_thetaBS
double norm_thetaBS(const double input)
Definition: NnNormalization.cxx:94
TJetNet::Train
Double_t Train(void)
Definition: TJetNet.cxx:618
fitman.k
k
Definition: fitman.py:528
TJetNet::GetUpdatingProcedure
Int_t GetUpdatingProcedure(void)
Definition: TJetNet.cxx:1151
TJetNet::GetHiddenLayerDim
Int_t GetHiddenLayerDim(void) const
Definition: TJetNet.h:55