ATLAS Offline Software
Functions
errors/trainNN.h File Reference
#include "TString.h"
Include dependency graph for errors/trainNN.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

void trainNN (TString inputfile, TString outputclass="JetFitterNN", int nIterations=10, int dilutionFactor=2, int nodesFirstLayer=10, int nodesSecondLayer=9, int restartTrainingFrom=0, int nParticlesTraining=2, bool useTrackEstimate=false, int numberBinsErrorEstimate=20, bool trainXerrors=true, int nPatternsPerUpdate=10, double learningRate=0.1, double learningRateDecrease=0.999, double learningRateMomentum=0.05)
 
int main ()
 

Function Documentation

◆ main()

int main ( )

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

Definition at line 18 of file hello.cxx.

18  {
19  using namespace asg::msgUserCode;
20  ANA_CHECK_SET_TYPE (int);
21 
22 
23  const string myname = "hello: ";
24  cout << myname << "Begin." << endl;
25  AsgHelloTool htool("myhello");
26  ANA_CHECK( htool.setProperty("Message", "Hello from ASG.") );
27  ANA_CHECK( htool.setProperty("OutputLevel", MSG::DEBUG) );
28  cout << myname << "Initialize" << endl;
29  ANA_CHECK( htool.initialize());
30  cout << myname << "Show properties" << endl;
31  htool.print();
32  cout << myname << "Extract property" << endl;
33  const string* message = htool.getProperty< string >( "Message" );
34  if( ! message ) {
35  cout << myname << "Couldn't extract property from the tool" << endl;
36  return 1;
37  }
38  htool.getProperty< string >( "UnknownProperty" );
39  htool.getProperty< int >( "Message" );
40  cout << myname << "The \"Message\" property of the tool: " << *message << endl;
41  cout << myname << "Run 10 times" << endl;
42  string line = "---------------------------------------------------";
43  cout << line << endl;
44  for ( int i=0; i<10; ++i ) {
45  if ( i == 3 ) {
46  ANA_CHECK( htool.setProperty("OutputLevel", MSG::INFO) );
47  }
48  htool.talk();
49  }
50  cout << line << endl;
51  cout << myname << "Check failure:" << endl;
52  ANA_CHECK( StatusCode (StatusCode::FAILURE));
53  cout << myname << "End of failure check" << endl;
54  cout << myname << "End." << endl;
55  return 0;
56 }

◆ trainNN()

void trainNN ( TString  inputfile,
TString  outputclass = "JetFitterNN",
int  nIterations = 10,
int  dilutionFactor = 2,
int  nodesFirstLayer = 10,
int  nodesSecondLayer = 9,
int  restartTrainingFrom = 0,
int  nParticlesTraining = 2,
bool  useTrackEstimate = false,
int  numberBinsErrorEstimate = 20,
bool  trainXerrors = true,
int  nPatternsPerUpdate = 10,
double  learningRate = 0.1,
double  learningRateDecrease = 0.999,
double  learningRateMomentum = 0.05 
)

Definition at line 174 of file errors/trainNN.cxx.

188  {
189 
190  double bweight=1;
191  double cweight=1.;
192  double lweight=1;
193 
194 
195 
196  gROOT->SetStyle("Plain");
197 
198  cout << "starting with settings: " << endl;
199  cout << " nIterations: " << nIterations << endl;
200  cout << " dilutionFactor: " << dilutionFactor << endl;
201  cout << " nodesFirstLayer: " << nodesFirstLayer << endl;
202  cout << " nodesSecondLayer: " << nodesSecondLayer << endl;
203 
204 
205 // TFile *file= TFile::Open(inputfile);
206 
207 // TTree *simu = (TTree*)file->Get("Validation/NNinput");
208  TChain *myChain = new TChain("Validation/NNinput");
209 
210 
211 if(!useTrackEstimate){
212  #include "../files.txt"
213 }
214 
215 if(useTrackEstimate){
216  #include "../filesOnTrack.txt"
217 }
218  TChain* simu=myChain;
219 
220  std::cout << " Training sample obtained... " << std::endl;
221 
222  vector<int> *NN_sizeX;
223  vector<int> *NN_sizeY;
224  vector<vector<float> > *NN_matrixOfToT;
225  vector<vector<float> > *NN_vectorOfPitchesY;
226  vector<int> *NN_ClusterPixLayer;
227  vector<int> *NN_ClusterPixBarrelEC;
228  vector<float> *NN_phiBS;
229  vector<float> *NN_thetaBS;
230  vector<float> *NN_etaModule;
231  vector<bool> *NN_useTrackInfo;
232  vector<int> *NN_columnWeightedPosition;
233  vector<int> *NN_rowWeightedPosition;
234  vector<double> *NN_localColumnWeightedPosition;
235  vector<double> *NN_localRowWeightedPosition;
236 
237  vector<vector<float> > *NN_positionX;
238  vector<vector<float> > *NN_positionY;
239  vector<vector<float> > *NN_position_idX;
240  vector<vector<float> > *NN_position_idY;
241  vector<vector<float> > *NN_theta;
242  vector<vector<float> > *NN_phi;
243 
244  // List of branches
245  TBranch *b_NN_sizeX;
246  TBranch *b_NN_sizeY;
247  TBranch *b_NN_matrixOfToT;
248  TBranch *b_NN_vectorOfPitchesY;
249  TBranch *b_NN_ClusterPixLayer;
250  TBranch *b_NN_ClusterPixBarrelEC;
251  TBranch *b_NN_phiBS;
252  TBranch *b_NN_thetaBS;
253  TBranch *b_NN_etaModule;
254  TBranch *b_NN_useTrackInfo;
255  TBranch *b_NN_columnWeightedPosition;
256  TBranch *b_NN_rowWeightedPosition;
257  TBranch *b_NN_localColumnWeightedPosition;
258  TBranch *b_NN_localRowWeightedPosition;
259  TBranch *b_NN_positionX;
260  TBranch *b_NN_positionY;
261  TBranch *b_NN_position_idX;
262  TBranch *b_NN_position_idY;
263  TBranch *b_NN_theta;
264  TBranch *b_NN_phi;
265 
266 
267 
268  NN_sizeX = 0;
269  NN_sizeY = 0;
270  NN_matrixOfToT = 0;
271  NN_vectorOfPitchesY = 0;
272  NN_ClusterPixLayer = 0;
273  NN_ClusterPixBarrelEC = 0;
274  NN_phiBS = 0;
275  NN_thetaBS = 0;
276  NN_etaModule = 0;
277  NN_useTrackInfo = 0;
278  NN_columnWeightedPosition = 0;
279  NN_rowWeightedPosition = 0;
280  NN_localColumnWeightedPosition = 0;
281  NN_localRowWeightedPosition = 0;
282  NN_positionX = 0;
283  NN_positionY = 0;
284  NN_position_idX = 0;
285  NN_position_idY = 0;
286  NN_theta = 0;
287  NN_phi = 0;
288  // Set branch addresses and branch pointers
289  // if (!tree) return 0;
290  // TTree* simu = tree;
291  // fCurrent = -1;
292  simu->SetMakeClass(1);
293 
294  simu->SetBranchAddress("NN_sizeX", &NN_sizeX, &b_NN_sizeX);
295  simu->SetBranchAddress("NN_sizeY", &NN_sizeY, &b_NN_sizeY);
296  simu->SetBranchAddress("NN_matrixOfToT", &NN_matrixOfToT, &b_NN_matrixOfToT);
297  simu->SetBranchAddress("NN_vectorOfPitchesY", &NN_vectorOfPitchesY, &b_NN_vectorOfPitchesY);
298  simu->SetBranchAddress("NN_ClusterPixLayer", &NN_ClusterPixLayer, &b_NN_ClusterPixLayer);
299  simu->SetBranchAddress("NN_ClusterPixBarrelEC", &NN_ClusterPixBarrelEC, &b_NN_ClusterPixBarrelEC);
300  simu->SetBranchAddress("NN_phiBS", &NN_phiBS, &b_NN_phiBS);
301  simu->SetBranchAddress("NN_thetaBS", &NN_thetaBS, &b_NN_thetaBS);
302  simu->SetBranchAddress("NN_etaModule", &NN_etaModule, &b_NN_etaModule);
303  simu->SetBranchAddress("NN_useTrackInfo", &NN_useTrackInfo, &b_NN_useTrackInfo);
304  simu->SetBranchAddress("NN_columnWeightedPosition", &NN_columnWeightedPosition, &b_NN_columnWeightedPosition);
305  simu->SetBranchAddress("NN_rowWeightedPosition", &NN_rowWeightedPosition, &b_NN_rowWeightedPosition);
306 
307  simu->SetBranchAddress("NN_localColumnWeightedPosition", &NN_localColumnWeightedPosition, &b_NN_localColumnWeightedPosition);
308  simu->SetBranchAddress("NN_localRowWeightedPosition", &NN_localRowWeightedPosition, &b_NN_localRowWeightedPosition);
309 
310  simu->SetBranchAddress("NN_positionX", &NN_positionX, &b_NN_positionX);
311  simu->SetBranchAddress("NN_positionY", &NN_positionY, &b_NN_positionY);
312  simu->SetBranchAddress("NN_position_idX", &NN_position_idX, &b_NN_position_idX);
313  simu->SetBranchAddress("NN_position_idY", &NN_position_idY, &b_NN_position_idY);
314 
315  simu->SetBranchAddress("NN_theta", &NN_theta, &b_NN_theta);
316  simu->SetBranchAddress("NN_phi", &NN_phi, &b_NN_phi);
317 
318 
319  cout << "Branches set..." << endl;
320 
321  TString name;
322  if(nParticlesTraining == 1 ) name+="WeightsOneTracks.root";
323  if(nParticlesTraining == 2 ) name+="WeightsTwoTracks.root";
324  if(nParticlesTraining == 3 ) name+="WeightsThreeTracks.root";
325 
326  if (!useTrackEstimate)
327  {
328  name.ReplaceAll(".root","_noTrack.root");
329  }
330 
331  // getting a postion trained network from file
332  TFile *_file0 = new TFile(name);
333  TTrainedNetwork* positionTrainedNetwork=(TTrainedNetwork*)_file0->Get("TTrainedNetwork");
334 
335  cout << " Reading back network with minimum" << endl;
336 
337 
338  TString filterTrain("Entry$%");
339  filterTrain+=dilutionFactor;
340  filterTrain+="==0";
341 
342  TString filterTest("Entry$%");
343  filterTest+=dilutionFactor;
344  filterTest+="==1";
345 
346  int* nneurons;
347  int nlayer=3;
348 
349  simu->GetEntry(0);
350 
351  cout << "First entry..." << endl;
352 
353  Int_t sizeX=-7;
354  Int_t sizeY=-7;
355 
356 
357  // loop over the clusters loking for the first cluster properly saved
358  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
359 
360  sizeX = (*NN_sizeX)[clus];
361  sizeY = (*NN_sizeY)[clus];
362 
363  if(sizeX>0)break;
364 
365  }
366 
367  cout << "Size obtained" << endl;
368 
369 
370 
371  int numberinputs=sizeX*(sizeY+1)+4+nParticlesTraining*2;//add also position information
372  if (!useTrackEstimate)
373  {
374  numberinputs=sizeX*(sizeY+1)+5+nParticlesTraining*2;
375  }
376 
377  int numberoutputs=nParticlesTraining*numberBinsErrorEstimate;
378  //2 for x and y
379  //nParticlesTraining
380  //numberBinsErrorEstimate
381 
382  if (nodesSecondLayer!=0)
383  {
384  nlayer=4;
385  }
386 
387  if (nodesSecondLayer!=0)
388  {
389  nneurons=new int[4];
390  }
391  else
392  {
393  nneurons=new int[3];
394  }
395 
396  nneurons[0]=numberinputs;
397 
398  nneurons[1]=nodesFirstLayer;
399 
400  if (nodesSecondLayer!=0)
401  {
402  nneurons[2]=nodesSecondLayer;
403  nneurons[3]=numberoutputs;//number of output nodes
404  }
405  else
406  {
407  nneurons[2]=numberoutputs;//number of output nodes
408  }
409 
410  for (int i=0;i<nlayer;i++)
411  {
412  cout << " layer i: " << i << " number neurons: " << nneurons[i] << endl;
413  }
414 
415 
416  // float eventWeight(0);
417  float trainingError(0);
418  float testError(0);
419 
420  //setting learning parameters
421 
422  cout << " now providing training events " << endl;
423 
424  Long64_t numberTrainingEvents=0;
425  Long64_t numberTestingEvents=0;
426  int iClus=0;
427  int part_0=0;
428  int part_1=0;
429  int part_2=0;
430  int part_3=0;
431 
432  int nTotal=simu->GetEntries();
433 
434 // int nTotal=200;
435 
436  // Loop over entries:
437  for (Int_t i = 0; i < nTotal; i++) {
438 
439  if (i % 1000000 == 0 ) {
440  std::cout << " Counting training / testing events in sample. Looping over event " << i << std::endl;
441  }
442 
443  simu->GetEntry(i);
444 
445  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
446 
447  vector<float> *matrixOfToT=0;
448  vector<float> *vectorOfPitchesY=0;
449 
450  Float_t phiBS;
451  Float_t thetaBS;
452  Float_t etaModule;
453  Int_t ClusterPixLayer;
454  Int_t ClusterPixBarrelEC;
455 
456  std::vector<float> * positionX=0;
457  std::vector<float> * positionY=0;
458  std::vector<float> * thetaTr=0;
459  std::vector<float> * phiTr=0;
460 
461 
462 
463  int sizeX = (*NN_sizeX)[clus];
464  positionX =&(*NN_positionX)[clus];
465  int nParticles = positionX->size();
466  //cout << "------" << endl;
467  if (nParticlesTraining!=nParticles)
468  {
469  continue;
470  }
471  if (isBadCluster(sizeX, nParticles ) )continue;
472 
473  thetaTr = &(*NN_theta)[clus];
474  phiTr = &(*NN_phi)[clus];
475 
476  // loop over the particles;
477  for( unsigned int P = 0; P < positionX->size(); P++){
478  double theta = (*thetaTr)[P];
479  if (theta!=theta) continue;
480 
481  iClus++;
482 
483  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
484 
485 
486 
487 
488 
489  if (iClus%dilutionFactor==0) numberTrainingEvents+=1;
490  if (iClus%dilutionFactor==1) numberTestingEvents+=1;
491 
492  if (iClus%dilutionFactor==1 && nParticles==1 ) part_1++;
493  if (iClus%dilutionFactor==1 && nParticles==2 ) part_2++;
494  if (iClus%dilutionFactor==1 && nParticles==3 ) part_3++;
495 
496 
497 
498  }// end loop over th particles
499  }// end loop over cluster
500  }// end Loop over entries
501 
502 
503 
504  cout << " N. training events: " << numberTrainingEvents <<
505  " N. testing events: " << numberTestingEvents << endl;
506 
507  cout << "now start to setup the network..." << endl;
508 
509  TJetNet* jn = new TJetNet( numberTestingEvents, numberTrainingEvents, nlayer, nneurons );
510 
511  cout << " setting learning method... " << endl;
512 
513 
514  jn->SetPatternsPerUpdate( nPatternsPerUpdate );
515  jn->SetUpdatesPerEpoch( (int)std::floor((float)numberTrainingEvents/(float)nPatternsPerUpdate) );
516  jn->SetUpdatingProcedure( 0 );
517  jn->SetErrorMeasure( 0 );
518  jn->SetActivationFunction( 1 );
519  jn->SetLearningRate( learningRate );//0.8
520  jn->SetMomentum( learningRateMomentum );//0.3 //is now 0.5
521  jn->SetInitialWeightsWidth( 1. );
522  jn->SetLearningRateDecrease( learningRateDecrease );//0.992
523 
524 
525  //jn->SetActivationFunction(4,nlayer-1-1); This is to have linear OUTPUT.
526 
527 
528  TH1F* histoControlTestX=new TH1F("histoControlTestX","histoControlTestX",numberBinsErrorEstimate,0,numberBinsErrorEstimate);
529  TH1F* histoControlTestY=new TH1F("histoControlTestY","histoControlTestY",numberBinsErrorEstimate,0,numberBinsErrorEstimate);
530 
531 
532  int trainSampleNumber=0;
533  int testSampleNumber=1;
534 
535 
536 
537  cout << " copying over training events " << endl;
538  int counter=0;
539  int counter0=0;
540  int counter1=0;
541 
542  iClus=0;
543 
544 
545  for (Int_t i = 0; i < nTotal; i++) {
546 
547  if (i % 1000 == 0 ) {
548  std::cout << " Copying over training events. Looping over event " << i << std::endl;
549  }
550 
551  simu->GetEntry(i);
552  // loop over clusters
553  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
554 
555  vector<float> *matrixOfToT=0;
556  vector<float> *vectorOfPitchesY=0;
557 
558  Float_t phiBS;
559  Float_t thetaBS;
560  Float_t etaModule;
561  Int_t ClusterPixLayer;
562  Int_t ClusterPixBarrelEC;
563 
564  std::vector<float> * positionX=0;
565  std::vector<float> * positionY=0;
566 
567  std::vector<float> positionX_reorder;
568  std::vector<float> positionY_reorder;
569 
570 
571 
572 
573  std::vector<float> * thetaTr=0;
574  std::vector<float> * phiTr=0;
575 
576  double localColumnWeightedPosition;// = 0;
577  double localRowWeightedPosition;// = 0;
578 
579  sizeX = (*NN_sizeX)[clus];
580  sizeY = (*NN_sizeY)[clus];
581 
582  matrixOfToT=&(*NN_matrixOfToT)[clus];
583  vectorOfPitchesY=&(*NN_vectorOfPitchesY)[clus];
584 
585  phiBS = (*NN_phiBS)[clus];
586  thetaBS =(*NN_thetaBS)[clus];
587  etaModule =(*NN_etaModule)[clus];
588 
589  ClusterPixLayer=(*NN_ClusterPixLayer)[clus];
590  ClusterPixBarrelEC = (*NN_ClusterPixBarrelEC)[clus];
591 
592  positionX =&(*NN_positionX)[clus];
593  positionY =&(*NN_positionY)[clus];
594 
595  positionX_reorder=*positionX;
596  positionY_reorder.clear();
597 
598 
599 
600  thetaTr = &(*NN_theta)[clus];
601  phiTr = &(*NN_phi)[clus];
602 
603 
604  localColumnWeightedPosition =(*NN_localColumnWeightedPosition)[clus];
605  localRowWeightedPosition =(*NN_localRowWeightedPosition)[clus];
606 
607 
608 
609  int nParticles = positionX->size();
610  if (nParticlesTraining!=nParticles)
611  {
612  continue;
613  }
614 
615  if(isBadCluster(sizeX, nParticles ) )continue;
616 
617 
618 
619 
620 
621 
622  std::sort(positionX_reorder.begin(),
623  positionX_reorder.end());
624 
625  for (int o=0;o<positionX->size();o++)
626  {
627  double corry=-1000;
628  for (int e=0;e<positionX->size();e++)
629  {
630  if (fabs(positionX_reorder[o]-(*positionX)[e])<1e-10)
631  {
632  if (fabs(corry+1000)>1e-6)
633  {
634  cout << " Value find more than once! " << endl;
635  for (int p=0;p<positionX->size();p++)
636  {
637  cout << " X n. : " << p << " is: " << (*positionX)[p] << endl;
638  }
639  }
640  corry=(*positionY)[e];
641  }
642  }
643  positionY_reorder.push_back(corry);
644  }
645 
646 
647 
648  for( unsigned int P = 0; P < positionX->size(); P++){
649 
650 
651  double theta = (*thetaTr)[P];
652  double phi = (*phiTr)[P];
653 
654  if (theta!=theta) continue;
655 
656  if (ClusterPixBarrelEC==2)
657  {
658  theta=-theta;
659  phi=-phi;
660  }
661 
662 
663  iClus++;
664 
665  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
666 
667  // formatting cluster infos for the NN input
668 
669  std::vector<Double_t> inputData;
670 
671  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++){
672 
673  inputData.push_back(norm_ToT((*matrixOfToT)[ME]));
674  }
675 
676  for (int s=0;s<sizeY;s++)
677  {
678  inputData.push_back(norm_pitch((*vectorOfPitchesY)[s]));
679  }
680 
681  inputData.push_back(norm_layerNumber(ClusterPixLayer));
682  inputData.push_back(norm_layerType(ClusterPixBarrelEC));
683 
684  if (useTrackEstimate)
685  {
686  inputData.push_back(norm_phi(phi));
687  inputData.push_back(norm_theta(theta));
688  }
689  else
690  {
691  inputData.push_back(norm_phiBS(phiBS));
692  inputData.push_back(norm_thetaBS(thetaBS));
693  inputData.push_back(norm_etaModule(etaModule));
694  }
695  // cout << "formatted" << endl;
696 
697 
698  vector<double> outputNN_idX;
699  vector<double> outputNN_idY;
700 
701 
702  vector<double> resultNN = positionTrainedNetwork->calculateOutputValues(inputData);
703 
704 
705 
706 
707  // storing the obtained X and Y position in vectors of position // nParticlesTraining
708 
709  if(nParticlesTraining==1){
710  outputNN_idX.push_back(back_posX(resultNN[0]));
711  outputNN_idY.push_back(back_posY(resultNN[1]));
712  }
713 
714 
715  if(nParticlesTraining==2){
716  outputNN_idX.push_back(back_posX(resultNN[0]));
717  outputNN_idX.push_back(back_posX(resultNN[2]));
718  outputNN_idY.push_back(back_posY(resultNN[1]));
719  outputNN_idY.push_back(back_posY(resultNN[3]));
720  }
721 
722  if(nParticlesTraining==3){
723  outputNN_idX.push_back(back_posX(resultNN[0]));
724  outputNN_idX.push_back(back_posX(resultNN[2]));
725  outputNN_idX.push_back(back_posX(resultNN[4]));
726  outputNN_idY.push_back(back_posY(resultNN[1]));
727  outputNN_idY.push_back(back_posY(resultNN[3]));
728  outputNN_idY.push_back(back_posY(resultNN[5]));
729  }
730 
731 
732 
733  // HERE WE NEED THE CONVERSION OF THE POSITION RESPECT WITH CLUSTER CENTER FROM LOCAL POSITION!!!
734  vector<float> outputNN_X ;
735  vector<float> outputNN_Y ;
736 
737  for(unsigned int t=0; t < outputNN_idX.size(); t++){
738 
739  double PitchX=0.05; //50 micron pitch in Y
740 
741  // local position respect with the cluster center questa e' la posizione locale corrispondente al centro del cluster
742  // defined as the center of matrixOfToT (definito come centro della matrice per la rete neuronale)
743  double centerPosY = localColumnWeightedPosition;
744  double centerPosX = localRowWeightedPosition;
745 // cout << sizeX << " " << "centerPosX: " << centerPosX << endl;
746  //questi sono gli unput che la rete restituisce (coordinate rispetto al centro)
747  // output of the NN (respect with the cluster center
748  double indexX = outputNN_idX[t];
749  double indexY = outputNN_idY[t];
750  double indexPositionToTranslateY = indexY+(double)(sizeY-1)/2;
751  //cout << indexX << " " << centerPosX << endl;
752  double pos_idX = centerPosX + (double)indexX * PitchX;
753 // cout << " pos_idX = " << pos_idX << endl;
754 
755  //now for Y it is slightly more complicated (but not much)
756  double positionYFromZero = -100;
757  double positionCenterYFromZero = -100;
758  double actualPositionFromZero=0.;
759 
760  //start both indices and positions at zero
761 
762  for (int i=0;i<sizeY;i++)
763  {
764  if (indexPositionToTranslateY>=(double)i && indexPositionToTranslateY<=(double)(i+1))
765  {
766  positionYFromZero = actualPositionFromZero + (double)(indexPositionToTranslateY-(double)i+0.5)*(*vectorOfPitchesY)[i];
767  // cout << "positionYFromZero: " << positionYFromZero << endl;
768  }
769  if (i==(sizeY-1)/2)
770  {
771  positionCenterYFromZero = actualPositionFromZero + 0.5* (*vectorOfPitchesY)[i];
772  // cout << "positionCenterYFromZero: " << positionCenterYFromZero << endl;
773  }
774  actualPositionFromZero+=(*vectorOfPitchesY)[i];
775  }
776 
777  double pos_idY = centerPosY + positionYFromZero - positionCenterYFromZero;
778 // cout << " pos_idY " << pos_idY << endl;
779 
780 
781  //
782  outputNN_X.push_back(pos_idX);
783  outputNN_Y.push_back(pos_idY);
784  }
785 
786 
787 
788 
789  if (matrixOfToT->size()!=sizeX*sizeY)
790  {
791  std::cout << " Event: " << i << " PROBLEM: size Y is: " << matrixOfToT->size() << std::endl;
792  throw std::runtime_error("Error in errors/trainNN.cxx");
793  }
794 
795  // loop over elements of matrixOfTot which is actually a vector
796  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++){
797 
798  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, ME, norm_ToT((*matrixOfToT)[ME]));
799  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, ME, norm_ToT((*matrixOfToT)[ME]));
800 
801  if (counter1 == 0) std::cout << " element: " << ME << " ToT set to: " << norm_ToT((*matrixOfToT)[ME]) << std::endl;
802 
803  }
804 
805 
806  // loop over vector of pitches
807  for (int s=0;s<sizeY;s++)
808  {
809  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
810  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
811 
812  if (counter0 == 0) std::cout << " s: " << s << " pitch set to: " << norm_pitch((*vectorOfPitchesY)[s]) << std::endl;
813  }
814 
815  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
816  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
817 
818  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
819  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
820 
821 
822 
823  if (counter0 == 0) std::cout << " ClusterPixLayer " << norm_layerNumber(ClusterPixLayer) << " ClusterPixBarrelEC " << norm_layerType(ClusterPixBarrelEC) << std::endl;
824 
825  if (useTrackEstimate)
826  {
827  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phi(phi) );
828  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_theta(theta) );
829 
830  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phi(phi) );
831  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_theta(theta) );
832 
833  if (counter0==0) std::cout << " phi " << norm_phi(phi) << " theta: " << norm_theta(theta) << std::endl;
834 
835  }
836  else
837  {
838  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
839  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
840  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
841 
842  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
843  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
844  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
845 
846 
847  if (counter0==0) std::cout <<
848  " phiBS " << norm_phiBS(phiBS) <<
849  " thetaBS: " << norm_thetaBS(thetaBS) <<
850  " etaModule: " << norm_etaModule(etaModule) << std::endl;
851  }
852 
853  int addNumber=5;
854  if (useTrackEstimate) addNumber=4;
855 
856 
857 
858  for (int o=0;o<nParticlesTraining;o++)
859  {
860  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+addNumber+2*o,norm_posX(outputNN_idX[o]) );
861  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+addNumber+2*o+1,norm_posY(outputNN_idY[o]) );
862 
863  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+addNumber+2*o,norm_posX(outputNN_idX[o]) );
864  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+addNumber+2*o+1,norm_posY(outputNN_idY[o]) );
865 
866 
867 
868  if (counter==0) std::cout << " n. " << o <<
869  " posX: " << norm_posX((outputNN_idX)[o]) <<
870  " posY: " << norm_posY((outputNN_idY)[o]) << std::endl;
871 
872  }
873 
874 
875 
876 // cout << " nParticlesTraining " << nParticlesTraining << endl;
877 
878 
879  for (int r=0;r<nParticlesTraining;r++)
880  {
881 
882 // cout << " numberBinsErrorEstimate " << numberBinsErrorEstimate << endl;
883  // if (counter==0) std::cout << " particle: " << r << std::endl;
884 
885  for (int u=0;u<numberBinsErrorEstimate;u++)
886  {
887  if (trainXerrors)
888  {
889 // cout << " outputNN_X["<<r<<"]="<<outputNN_X[r] <<
890 // " positionX_reorder["<<r<<"] "<< positionX_reorder[r] << endl;
891  bool full=binIsFull(u,true,(outputNN_X[r]-positionX_reorder[r]),nParticlesTraining,numberBinsErrorEstimate);
892  int nValueFull=0;
893  if (full) nValueFull=1;
894  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet(counter0, r*numberBinsErrorEstimate+u, nValueFull);
895  if (iClus%dilutionFactor==1) jn->SetOutputTestSet(counter1, r*numberBinsErrorEstimate+u, nValueFull);
896 
897  if (counter==0) std::cout << " X bin: " << u << " gl: "<< r*2*numberBinsErrorEstimate+u << " val: " << nValueFull;
898  histoControlTestX->Fill(u+1,nValueFull);
899  }
900  }
901  for (int u=0;u<numberBinsErrorEstimate;u++)
902  {
903  if (!trainXerrors)
904  {
905 // cout << " outputNN_Y["<<r<<"]="<<outputNN_Y[r] <<
906 // " positionY_reorder["<<r<<"] "<< positionY_reorder[r] << endl;
907 
908  bool full=binIsFull(u,false,(outputNN_Y[r]-positionY_reorder[r]),nParticlesTraining,numberBinsErrorEstimate);
909  int nValueFull=0;
910  if (full) nValueFull=1;
911  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet(counter0, r*numberBinsErrorEstimate+u, nValueFull);
912  if (iClus%dilutionFactor==1) jn->SetOutputTestSet(counter1, r*numberBinsErrorEstimate+u, nValueFull);
913 
914  if (counter0==0) std::cout << " Y bin: " << u << " gl: " << r*2*numberBinsErrorEstimate+numberBinsErrorEstimate+u << " val: " << nValueFull;
915  if (iClus%dilutionFactor==0) histoControlTestY->Fill(u+1,nValueFull);
916  }
917 
918  }
919  }
920 
921  if (counter0==0) std::cout << std::endl << " total number of bins: " << numberoutputs << std::endl;
922 
923 
924 
925  if (iClus%dilutionFactor==0) jn->SetEventWeightTrainSet( counter0, 1 );
926  if (iClus%dilutionFactor==1) jn->SetEventWeightTestSet( counter1, 1 );
927 
928  counter+=1;
929 
930  if (iClus%dilutionFactor==0) counter0+=1;
931  if (iClus%dilutionFactor==1) counter1+=1;
932 
933 
934  }
935  }
936  }
937 
938  if (counter0!=numberTrainingEvents)
939  {
940  cout << " counter up to: " << counter0 << " while events in training sample are " << numberTrainingEvents << endl;
941  return;
942  }
943 
944  if (counter1!=numberTestingEvents)
945  {
946  cout << " counter up to: " << counter1 << " while events in testing sample are " << numberTestingEvents << endl;
947  return;
948  }
949 
950 
951 
952 
953 
954 
955 
956 
957  jn->Shuffle(true,false);
958 
959  std::cout << " Potts units are: " << jn->GetPottsUnits() << std::endl;
960 
961 
962  cout << " setting pattern for training events " << endl;
963 
964  if (restartTrainingFrom==0)
965  {
966  jn->Init();
967  }
968  else
969  {
970  TString name("Weights");
971  name+=restartTrainingFrom;
972  name+=".w";
973 
974  jn->ReadFromFile(name);
975  }
976 
977 
978 
979  float minimumError=1e10;
980  int epochesWithRisingError=0;
981  int epochWithMinimum=0;
982 
983  int updatesPerEpoch=jn->GetUpdatesPerEpoch();
984 
985  TString directory("weights");
986  directory+="_nPat";
987  directory+=nPatternsPerUpdate;
988  directory+="_rate";
989  directory+=(int)(learningRate*100);
990  directory+="_rdec";
991  directory+=(int)(100*learningRateDecrease);
992  directory+="_mom";
993  directory+=(int)(100*learningRateMomentum);
994  directory+="_";
995  directory+=nParticlesTraining;
996  directory+="_";
997  if (trainXerrors)
998  {
999  directory+="X";
1000  }
1001  else
1002  {
1003  directory+="Y";
1004  }
1005 
1006  if (useTrackEstimate)
1007  {
1008  directory+="_withTracks";
1009  }
1010 
1011  TString command("mkdir ");
1012  command+=directory;
1013 
1014  gSystem->Exec(command);
1015 
1016  TString nameCronology=directory;
1017 
1018  nameCronology+="/trainingCronology.txt";
1019 
1020  //prepare output stream
1021 
1022  ofstream cronology(nameCronology,ios_base::out);//|ios_base::app);
1023 
1024  cronology << "-------------SETTINGS----------------" << endl;
1025  cronology << "Epochs: " << jn->GetEpochs() << std::endl;
1026  cronology << "Updates Per Epoch: " << jn->GetUpdatesPerEpoch() << std::endl;
1027  cronology << "Updating Procedure: " << jn->GetUpdatingProcedure() << std::endl;
1028  cronology << "Error Measure: " << jn->GetErrorMeasure() << std::endl;
1029  cronology << "Patterns Per Update: " << jn->GetPatternsPerUpdate() << std::endl;
1030  cronology << "Learning Rate: " << jn->GetLearningRate() << std::endl;
1031  cronology << "Momentum: " << jn->GetMomentum() << std::endl;
1032  cronology << "Initial Weights Width: " << jn->GetInitialWeightsWidth() << std::endl;
1033  cronology << "Learning Rate Decrease: " << jn->GetLearningRateDecrease() << std::endl;
1034  cronology << "Activation Function: " << jn->GetActivationFunction() << std::endl;
1035  cronology << "-------------LAYOUT------------------" << endl;
1036  cronology << "Input variables: " << jn->GetInputDim() << endl;
1037  cronology << "Output variables: " << jn->GetOutputDim() << endl;
1038  cronology << "Hidden layers: " << jn->GetHiddenLayerDim() << endl;
1039  cronology << "Layout : ";
1040  for (Int_t s=0;s<jn->GetHiddenLayerDim()+2;++s)
1041  {
1042  cronology << jn->GetHiddenLayerSize(s);
1043  if (s<jn->GetHiddenLayerDim()+1) cronology << "-";
1044  }
1045  cronology << endl;
1046  cronology << "--------------HISTORY-----------------" << endl;
1047  cronology << "History of iterations: " << endl;
1048  cronology.close();
1049 
1050  //prepare training histo
1051  TH1F* histoTraining=new TH1F("training","training",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
1052  TH1F* histoTesting=new TH1F("testing","testing",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
1053 
1054  double maximumTrain=0;
1055  double minimumTrain=1e10;
1056 
1057  for(int epoch=restartTrainingFrom+1;epoch<=nIterations;++epoch)
1058  {
1059  if (epoch!=restartTrainingFrom+1)
1060  {
1061  trainingError = jn->Train();
1062  }
1063 
1064  if (epoch%10==0 || epoch==restartTrainingFrom+1)
1065  {
1066 
1067  cronology.open(nameCronology,ios_base::app);
1068 
1069  testError = jn->Test();
1070 
1071  if (trainingError>maximumTrain) maximumTrain=trainingError;
1072  if (testError>maximumTrain) maximumTrain=testError;
1073  if (trainingError<minimumTrain) minimumTrain=trainingError;
1074  if (testError<minimumTrain) minimumTrain=testError;
1075 
1076 
1077  histoTraining->Fill(epoch/10.,trainingError);
1078  histoTesting->Fill(epoch/10.,testError);
1079 
1080  if (testError<minimumError)
1081  {
1082  minimumError=testError;
1083  epochesWithRisingError=0;
1084  epochWithMinimum=epoch;
1085  }
1086  else
1087  {
1088  epochesWithRisingError+=10;
1089 
1090  }
1091 
1092 
1093  if (epochesWithRisingError>300)
1094  {
1095  if (trainingError<minimumError)
1096  {
1097  cout << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
1098  cronology << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
1099  break;
1100  }
1101  }
1102 
1103  cronology << "Epoch: [" << epoch <<
1104  "] Error: " << trainingError <<
1105  " Test: " << testError << endl;
1106 
1107  cout << "Epoch: [" << epoch <<
1108  "] Error: " << trainingError <<
1109  " Test: " << testError << endl;
1110 
1111  cronology.close();
1112 
1113  TString name=directory;
1114  name+="/Weights";
1115  name+=epoch;
1116  name+=".root";
1117 
1118  TFile* file=new TFile(name,"recreate");
1119  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
1120 
1121 
1122 
1123  trainedNetwork->Write();
1124  histoControlTestX->Write();
1125  histoControlTestY->Write();
1126  file->Write();
1127  file->Close();
1128  delete file;
1129 
1130 
1131 
1132  // jn->DumpToFile(name);
1133  }
1134  }
1135 
1136  jn->writeNetworkInfo(1);
1137  jn->writeNetworkInfo(2);
1138 
1139 
1140 
1141 
1143  Int_t nInput=jn->GetInputDim();
1144 
1145  cout << " create Trained Network object..." << endl;
1146 
1147  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
1148 
1149 
1150 
1151  cout << " Now getting histograms from trainingResult" << endl;
1152  cronology << " Now getting histograms from trainingResult" << endl;
1153 
1154  TNetworkToHistoTool myHistoTool;
1155 
1156  cout << " From network to histo..." << endl;
1157  std::vector<TH1*> myHistos=myHistoTool.fromTrainedNetworkToHisto(trainedNetwork);
1158 
1159  cout << " From histo to network back..." << endl;
1160  TTrainedNetwork* trainedNetwork2=myHistoTool.fromHistoToTrainedNetwork(myHistos);
1161 
1162  cout << " reading back " << endl;
1163  jn->readBackTrainedNetwork(trainedNetwork2);
1164 
1165 
1166 
1167 
1168 
1169  if (epochWithMinimum!=0)
1170  {
1171  cronology << "Minimum stored from Epoch: " << epochWithMinimum << endl;
1172  } else
1173  {
1174  cronology << "Minimum not reached" << endl;
1175  }
1176 
1177  cronology.close();
1178 
1179  if (epochWithMinimum!=0)
1180  {
1181 
1182  TString name=directory;
1183  name+="/Weights";
1184  name+=epochWithMinimum;
1185  name+=".root";
1186  std::cout << " reading back from minimum " << endl;
1187 
1188 
1189  TFile *_file0 = new TFile(name);
1190  TTrainedNetwork* trainedNetwork=(TTrainedNetwork*)_file0->Get("TTrainedNetwork");
1191 
1192  cout << " Reading back network with minimum" << endl;
1193  jn->readBackTrainedNetwork(trainedNetwork);
1194 
1195  TString nameFile=directory;
1196  nameFile+="/weightMinimum.root";
1197 
1198  TFile* file=new TFile(nameFile,"recreate");
1199  trainedNetwork->Write();
1200  file->Write();
1201  file->Close();
1202  delete file;
1203 
1204  cout << " -------------------- " << endl;
1205  cout << " Writing OUTPUT histos " << endl;
1206  TString histoFName=directory;
1207  histoFName+="/histoWeights.root";
1208 
1209  TFile* fileHistos=new TFile(histoFName,"recreate");
1210  TNetworkToHistoTool histoTool;
1211  std::vector<TH1*> myHistos=histoTool.fromTrainedNetworkToHisto(trainedNetwork);
1212  std::vector<TH1*>::const_iterator histoBegin=myHistos.begin();
1213  std::vector<TH1*>::const_iterator histoEnd=myHistos.end();
1214  for (std::vector<TH1*>::const_iterator histoIter=histoBegin;
1215  histoIter!=histoEnd;++histoIter)
1216  {
1217  (*histoIter)->Write();
1218  }
1219  fileHistos->Write();
1220  fileHistos->Close();
1221  delete fileHistos;
1222 
1223 
1224 
1225  }
1226  else
1227  {
1228  cout << " using network at last iteration (minimum not reached..." << endl;
1229  }
1230 
1231  //here you should create the class... Still open how to deal with this...
1232  // char* myname=const_cast<char*>(static_cast<const char*>(outputclass));
1233  // ierr=mlpsavecf_(myname);
1234 
1235  TString histoTName=directory;
1236  histoTName+="/trainingInfo.root";
1237 
1238  TFile* histoFile=new TFile(histoTName,"recreate");
1239  histoTraining->Write();
1240  histoTesting->Write();
1241  histoFile->Write();
1242  histoFile->Close();
1243  delete histoFile;
1244 
1245  TCanvas* trainingCanvas=new TCanvas("trainingCanvas","trainingCanvas");
1246  histoTraining->SetLineColor(2);
1247  histoTesting->SetLineColor(4);
1248 
1249  histoTraining->GetYaxis()->SetRangeUser(minimumTrain,maximumTrain);
1250  histoTraining->Draw("l");
1251  histoTesting->Draw("lsame");
1252  TString canvasName=directory;
1253  canvasName+="/trainingCurve.eps";
1254  trainingCanvas->SaveAs(canvasName);
1255 
1256 
1257  TCanvas* mlpa_canvas = new TCanvas("jetnet_canvas","Network analysis");
1258  mlpa_canvas->Divide(2,4);
1259 
1260 
1261 
1262 }
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
beamspotman.r
def r
Definition: beamspotman.py:676
norm_etaModule
double norm_etaModule(const double input)
Definition: NnNormalization.cxx:101
TTrainedNetwork::calculateOutputValues
std::vector< Double_t > calculateOutputValues(std::vector< Double_t > &input) const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.cxx:99
checkFileSG.line
line
Definition: checkFileSG.py:75
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
TJetNet::GetErrorMeasure
Int_t GetErrorMeasure(void)
Definition: TJetNet.cxx:1156
phi
Scalar phi() const
phi method
Definition: AmgMatrixBasePlugin.h:67
TJetNet::GetLearningRate
Double_t GetLearningRate(void)
Definition: TJetNet.cxx:1177
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
TJetNet::SetPatternsPerUpdate
void SetPatternsPerUpdate(Int_t aValue)
Definition: TJetNet.cxx:1105
DMTest::P
P_v1 P
Definition: P.h:23
extractSporadic.nameFile
string nameFile
Definition: extractSporadic.py:84
TJetNet::readBackTrainedNetwork
void readBackTrainedNetwork(const TTrainedNetwork *)
Definition: TJetNet.cxx:207
TJetNet::writeNetworkInfo
void writeNetworkInfo(Int_t typeOfInfo=0)
Definition: TJetNet.cxx:664
norm_pitch
double norm_pitch(const double input, bool addIBL=false)
Definition: NnNormalization.cxx:32
isBadCluster
bool isBadCluster(int sizeX, int nParticles)
Definition: errors/trainNN.cxx:42
theta
Scalar theta() const
theta method
Definition: AmgMatrixBasePlugin.h:75
TJetNet::GetMomentum
Double_t GetMomentum(void)
Definition: TJetNet.cxx:1182
TJetNet::Init
void Init(void)
Definition: TJetNet.cxx:670
python.AthDsoLogger.out
out
Definition: AthDsoLogger.py:71
TJetNet::SetOutputTestSet
void SetOutputTestSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.h:196
TJetNet::GetLearningRateDecrease
Double_t GetLearningRateDecrease(void)
Definition: TJetNet.cxx:1192
norm_phi
double norm_phi(const double input)
Definition: NnNormalization.cxx:71
TJetNet::SetUpdatingProcedure
void SetUpdatingProcedure(Int_t aValue)
Definition: TJetNet.cxx:1078
ANA_CHECK
#define ANA_CHECK(EXP)
check whether the given expression was successful
Definition: Control/AthToolSupport/AsgMessaging/AsgMessaging/MessageCheck.h:324
TNetworkToHistoTool
Definition: TNetworkToHistoTool.h:18
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
norm_theta
double norm_theta(const double input)
Definition: NnNormalization.cxx:79
TJetNet::GetUpdatesPerEpoch
Int_t GetUpdatesPerEpoch(void)
Definition: TJetNet.cxx:1146
ReweightUtils.message
message
Definition: ReweightUtils.py:15
Trk::u
@ u
Enums for curvilinear frames.
Definition: ParamDefs.h:77
TJetNet::SetInputTestSet
void SetInputTestSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:740
TJetNet::SetEventWeightTrainSet
void SetEventWeightTrainSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:752
TJetNet::SetMomentum
void SetMomentum(Double_t aValue)
Definition: TJetNet.cxx:1118
TJetNet::Shuffle
void Shuffle(Bool_t aShuffleTrainSet=true, Bool_t aShuffleTestSet=true)
Definition: TJetNet.cxx:1222
norm_posY
double norm_posY(const double input)
Definition: NnNormalization.cxx:118
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
norm_layerNumber
double norm_layerNumber(const double input)
Definition: NnNormalization.cxx:57
TNetworkToHistoTool::fromHistoToTrainedNetwork
TTrainedNetwork * fromHistoToTrainedNetwork(std::vector< TH1 * > &) const
TNetworkToHistoTool::fromTrainedNetworkToHisto
std::vector< TH1 * > fromTrainedNetworkToHisto(TTrainedNetwork *) const
DeMoScan.directory
string directory
Definition: DeMoScan.py:80
lumiFormat.i
int i
Definition: lumiFormat.py:85
TJetNet
Definition: TJetNet.h:41
EL::StatusCode
::StatusCode StatusCode
StatusCode definition for legacy code.
Definition: PhysicsAnalysis/D3PDTools/EventLoop/EventLoop/StatusCode.h:22
back_posY
double back_posY(const double input)
Definition: NnNormalization.cxx:122
TJetNet::ReadFromFile
void ReadFromFile(TString aFileName="fort.8")
Definition: TJetNet.cxx:962
norm_ToT
double norm_ToT(const double input)
Definition: NnNormalization.cxx:24
file
TFile * file
Definition: tile_monitor.h:29
TJetNet::SetOutputTrainSet
void SetOutputTrainSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.cxx:734
norm_layerType
double norm_layerType(const double input)
Definition: NnNormalization.cxx:64
TJetNet::SetInputTrainSet
void SetInputTrainSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:728
xAOD::double
double
Definition: CompositeParticle_v1.cxx:159
badTrackInfo
bool badTrackInfo(bool useTrackEstimate, double theta)
Definition: errors/trainNN.cxx:78
TJetNet::GetPatternsPerUpdate
Int_t GetPatternsPerUpdate(void)
Definition: TJetNet.cxx:1172
TTrainedNetwork
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:21
TJetNet::GetEpochs
Int_t GetEpochs(void)
Definition: TJetNet.h:78
norm_phiBS
double norm_phiBS(const double input)
Definition: NnNormalization.cxx:86
TJetNet::GetActivationFunction
Int_t GetActivationFunction(void) const
Definition: TJetNet.cxx:1161
TJetNet::SetErrorMeasure
void SetErrorMeasure(Int_t aValue)
Definition: TJetNet.cxx:1085
TJetNet::SetLearningRate
void SetLearningRate(Double_t aValue)
Definition: TJetNet.cxx:1111
TJetNet::GetOutputDim
Int_t GetOutputDim(void) const
Definition: TJetNet.h:57
TJetNet::SetLearningRateDecrease
void SetLearningRateDecrease(Double_t aValue)
Definition: TJetNet.cxx:1130
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
TJetNet::GetInitialWeightsWidth
Double_t GetInitialWeightsWidth(void)
Definition: TJetNet.cxx:1187
TJetNet::GetPottsUnits
Int_t GetPottsUnits()
Definition: TJetNet.cxx:1197
find_data.full
full
Definition: find_data.py:27
TJetNet::SetUpdatesPerEpoch
void SetUpdatesPerEpoch(Int_t aValue)
Definition: TJetNet.cxx:1071
TJetNet::SetInitialWeightsWidth
void SetInitialWeightsWidth(Double_t aValue)
Definition: TJetNet.cxx:1124
back_posX
double back_posX(const double input, const bool recenter=false)
Definition: NnNormalization.cxx:113
norm_posX
double norm_posX(const double input, const bool recenter=false)
Definition: NnNormalization.cxx:108
TJetNet::SetActivationFunction
void SetActivationFunction(Int_t aValue)
Definition: TJetNet.cxx:1091
binIsFull
bool binIsFull(int binNumber, bool isX, double errValue, int nParticles, int numberBins)
Definition: errors/trainNN.cxx:99
std::sort
void sort(typename std::reverse_iterator< DataModel_detail::iterator< DVL > > beg, typename std::reverse_iterator< DataModel_detail::iterator< DVL > > end, const Compare &comp)
Specialization of sort for DataVector/List.
Definition: DVL_algorithms.h:623
ANA_CHECK_SET_TYPE
#define ANA_CHECK_SET_TYPE(TYPE)
set the type for ANA_CHECK to report failures
Definition: Control/AthToolSupport/AsgMessaging/AsgMessaging/MessageCheck.h:314
TJetNet::GetInputDim
Int_t GetInputDim(void) const
Definition: TJetNet.h:54
DEBUG
#define DEBUG
Definition: page_access.h:11
TJetNet::GetHiddenLayerSize
Int_t GetHiddenLayerSize(Int_t number) const
Definition: TJetNet.h:56
TJetNet::createTrainedNetwork
TTrainedNetwork * createTrainedNetwork() const
Definition: TJetNet.cxx:104
python.TrigEgammaMonitorHelper.TH1F
def TH1F(name, title, nxbins, bins_par2, bins_par3=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:24
TJetNet::Test
Double_t Test(void)
Definition: TJetNet.cxx:320
test_pyathena.counter
counter
Definition: test_pyathena.py:15
TJetNet::SetEventWeightTestSet
void SetEventWeightTestSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:758
get_generator_info.command
string command
Definition: get_generator_info.py:38
norm_thetaBS
double norm_thetaBS(const double input)
Definition: NnNormalization.cxx:94
MCP::TrackType::ME
@ ME
TJetNet::Train
Double_t Train(void)
Definition: TJetNet.cxx:618
TJetNet::GetUpdatingProcedure
Int_t GetUpdatingProcedure(void)
Definition: TJetNet.cxx:1151
TJetNet::GetHiddenLayerDim
Int_t GetHiddenLayerDim(void) const
Definition: TJetNet.h:55