ATLAS Offline Software
Loading...
Searching...
No Matches
LArRawChannelBuilderIterAlg Class Reference

#include <LArRawChannelBuilderIterAlg.h>

Inheritance diagram for LArRawChannelBuilderIterAlg:

Public Member Functions

StatusCode initialize () override
StatusCode execute (const EventContext &ctx) const override
StatusCode finalize () override
virtual StatusCode sysInitialize () override
 Override sysInitialize.
virtual bool isClonable () const override
 Specify if the algorithm is clonable.
virtual unsigned int cardinality () const override
 Cardinality (Maximum number of clones that can exist) special value 0 means that algorithm is reentrant.
virtual StatusCode sysExecute (const EventContext &ctx) override
 Execute an algorithm.
virtual const DataObjIDColl & extraOutputDeps () const override
 Return the list of extra output dependencies.
virtual bool filterPassed (const EventContext &ctx) const
virtual void setFilterPassed (bool state, const EventContext &ctx) const
ServiceHandle< StoreGateSvc > & evtStore ()
 The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.
const ServiceHandle< StoreGateSvc > & detStore () const
 The standard StoreGateSvc/DetectorStore Returns (kind of) a pointer to the StoreGateSvc.
virtual StatusCode sysStart () override
 Handle START transition.
virtual std::vector< Gaudi::DataHandle * > inputHandles () const override
 Return this algorithm's input handles.
virtual std::vector< Gaudi::DataHandle * > outputHandles () const override
 Return this algorithm's output handles.
Gaudi::Details::PropertyBase & declareProperty (Gaudi::Property< T, V, H > &t)
void updateVHKA (Gaudi::Details::PropertyBase &)
MsgStream & msg () const
bool msgLvl (const MSG::Level lvl) const

Protected Member Functions

void renounceArray (SG::VarHandleKeyArray &handlesArray)
 remove all handles from I/O resolution
std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > renounce (T &h)
void extraDeps_update_handler (Gaudi::Details::PropertyBase &ExtraDeps)
 Add StoreName to extra input/output deps as needed.

Private Types

typedef ServiceHandle< StoreGateSvcStoreGateSvc_t

Private Member Functions

LArOFIterResults peak (const std::vector< float > &samples, const HWIdentifier chID, const CaloGain::CaloGain gain, const float delayIn, const ILArOFC *ofcs, const ILArShape *shapes, const unsigned nIter=0, const unsigned npeak=2, unsigned peak_low=2, unsigned peak_high=2) const
Gaudi::Details::PropertyBase & declareGaudiProperty (Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyType &)
 specialization for handling Gaudi::Property<SG::VarHandleKey>

Private Attributes

SG::ReadHandleKey< LArDigitContainerm_digitKey
SG::WriteHandleKey< LArRawChannelContainerm_rawChannelKey
SG::ReadCondHandleKey< ILArPedestalm_pedestalKey {this,"PedestalKey","LArPedestal","SG Key of Pedestal conditions object"}
SG::ReadCondHandleKey< LArADC2MeVm_adc2MeVKey {this,"ADC2MeVKey","LArADC2MeV","SG Key of ADC2MeV conditions object"}
SG::ReadCondHandleKey< ILArOFCm_ofcKey {this,"OFCKey","LArOFC","SG Key of OFC conditions object"}
SG::ReadCondHandleKey< ILArShapem_shapeKey {this,"ShapeKey","LArShape","SG Key of Shape conditions object"}
SG::ReadCondHandleKey< LArOnOffIdMappingm_cablingKey {this,"CablingKey","LArOnOffIdMap","SG Key of LArOnOffIdMapping object"}
SG::ReadCondHandleKey< LArDSPThresholdsCompletem_run1DSPThresholdsKey {this, "Run1DSPThresholdsKey","", "SG Key for thresholds to compute time and quality, run 1"}
SG::ReadCondHandleKey< AthenaAttributeListm_run2DSPThresholdsKey {this, "Run2DSPThresholdsKey","", "SG Key for thresholds to compute time and quality, run 2"}
Gaudi::Property< float > m_eCutFortQ {this,"ECutFortQ",256.0,"Time and Quality will be computed only for channels with E above this value"}
Gaudi::Property< bool > m_absECutFortQ {this,"absECut",true,"Cut on fabs(E) for Q and t computation"}
Gaudi::Property< bool > m_useShapeDer {this,"useShapeDer",true,"Use shape derivative in Q-factor computation"}
Gaudi::Property< bool > m_useDBFortQ {this,"useDB",true,"Use DB for cut on t,Q"}
Gaudi::Property< int > m_firstSample {this,"firstSample",0,"first of the 32 sampels of the MC shape to be used"}
Gaudi::Property< unsigned short > m_AdcMax {this, "ADCMax", 4095, "Saturation cut"}
Gaudi::Property< bool > m_skipSaturatedCells {this, "Skip", false, "reconstruct saturated cells"}
Gaudi::Property< float > m_defaultPhase {this, "defaultPhase", 0, "starting phase for iterations"}
Gaudi::Property< unsigned short > m_minADCforIter {this, "minADCforIter", 30}
Gaudi::Property< float > m_minADCforIterInSigma {this, "minADCforIterInSigma", -1}
Gaudi::Property< unsigned short > m_minSample {this, "minSample", 0}
Gaudi::Property< unsigned short > m_maxSample {this, "maxSample",31}
Gaudi::Property< unsigned short > m_nIterProp {"nIterations", 10}
Gaudi::Property< int > m_defaultShiftTimeSamples {this, "DefaultShiftTimeSample", 0}
Gaudi::Property< bool > m_forceHighGain {this, "forceHighGain", false, "Force use of high gain for all shapes and OFC (default=false)"}
SG::WriteHandleKey< LArOFIterResultsContainerm_timingContKey {this, "TimingContainerKey", "", "Key of the LArOFIterResultsContainer in StoreGate"}
const LArOnlineIDm_onlineId = nullptr
DataObjIDColl m_extendedExtraObjects
 Extra output dependency collection, extended by AthAlgorithmDHUpdate to add symlinks.
StoreGateSvc_t m_evtStore
 Pointer to StoreGate (event store by default)
StoreGateSvc_t m_detStore
 Pointer to StoreGate (detector store by default)
std::vector< SG::VarHandleKeyArray * > m_vhka
bool m_varHandleArraysDeclared

Detailed Description

Definition at line 29 of file LArRawChannelBuilderIterAlg.h.

Member Typedef Documentation

◆ StoreGateSvc_t

typedef ServiceHandle<StoreGateSvc> AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::StoreGateSvc_t
privateinherited

Definition at line 388 of file AthCommonDataStore.h.

Member Function Documentation

◆ cardinality()

unsigned int AthCommonReentrantAlgorithm< Gaudi::Algorithm >::cardinality ( ) const
overridevirtualinherited

Cardinality (Maximum number of clones that can exist) special value 0 means that algorithm is reentrant.

Override this to return 0 for reentrant algorithms.

Definition at line 75 of file AthCommonReentrantAlgorithm.cxx.

64{
65 return 0;
66}

◆ declareGaudiProperty()

Gaudi::Details::PropertyBase & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::declareGaudiProperty ( Gaudi::Property< T, V, H > & hndl,
const SG::VarHandleKeyType &  )
inlineprivateinherited

specialization for handling Gaudi::Property<SG::VarHandleKey>

Definition at line 156 of file AthCommonDataStore.h.

158 {
160 hndl.value(),
161 hndl.documentation());
162
163 }
Gaudi::Details::PropertyBase & declareProperty(Gaudi::Property< T, V, H > &t)

◆ declareProperty()

Gaudi::Details::PropertyBase & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::declareProperty ( Gaudi::Property< T, V, H > & t)
inlineinherited

Definition at line 145 of file AthCommonDataStore.h.

145 {
146 typedef typename SG::HandleClassifier<T>::type htype;
148 }
Gaudi::Details::PropertyBase & declareGaudiProperty(Gaudi::Property< T, V, H > &hndl, const SG::VarHandleKeyType &)
specialization for handling Gaudi::Property<SG::VarHandleKey>

◆ detStore()

const ServiceHandle< StoreGateSvc > & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::detStore ( ) const
inlineinherited

The standard StoreGateSvc/DetectorStore Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 95 of file AthCommonDataStore.h.

◆ evtStore()

ServiceHandle< StoreGateSvc > & AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::evtStore ( )
inlineinherited

The standard StoreGateSvc (event store) Returns (kind of) a pointer to the StoreGateSvc.

Definition at line 85 of file AthCommonDataStore.h.

◆ execute()

StatusCode LArRawChannelBuilderIterAlg::execute ( const EventContext & ctx) const
override

Definition at line 54 of file LArRawChannelBuilderIterAlg.cxx.

54 {
55
56 //Get event inputs from read handles:
57 SG::ReadHandle<LArDigitContainer> inputContainer(m_digitKey,ctx);
58
59 //Write output via write handle
60 SG::WriteHandle<LArRawChannelContainer>outputContainer(m_rawChannelKey,ctx);
61 ATH_CHECK(outputContainer.record(std::make_unique<LArRawChannelContainer>()));
62
63 //Should we store iter results ?
64 LArOFIterResultsContainer* outputTimingContainer{nullptr};
65 if(!m_timingContKey.empty()) {
66 SG::WriteHandle<LArOFIterResultsContainer> timingContHandle(m_timingContKey,ctx);
67 ATH_CHECK(timingContHandle.record(std::make_unique<LArOFIterResultsContainer>()));
68 outputTimingContainer = timingContHandle.ptr();
69 }
70 //Get Conditions input
71 SG::ReadCondHandle<ILArPedestal> pedHdl(m_pedestalKey,ctx);
72 const ILArPedestal* peds=*pedHdl;
73
74 SG::ReadCondHandle<LArADC2MeV> adc2mevHdl(m_adc2MeVKey,ctx);
75 const LArADC2MeV* adc2MeVs=*adc2mevHdl;
76
77 SG::ReadCondHandle<ILArOFC> ofcHdl(m_ofcKey,ctx);
78 const ILArOFC* ofcs=*ofcHdl;
79
80 SG::ReadCondHandle<ILArShape> shapeHdl(m_shapeKey,ctx);
81 const ILArShape* shapes=*shapeHdl;
82
83 SG::ReadCondHandle<LArOnOffIdMapping> cabling(m_cablingKey,ctx);
84
85 std::unique_ptr<LArDSPThresholdsFlat> run2DSPThresh;
86 const LArDSPThresholdsComplete* run1DSPThresh = nullptr;
87 if (m_useDBFortQ) {
88 if (!m_run2DSPThresholdsKey.empty()) {
89 SG::ReadCondHandle<AthenaAttributeList> dspThrshAttr (m_run2DSPThresholdsKey, ctx);
90 run2DSPThresh = std::make_unique<LArDSPThresholdsFlat>(*dspThrshAttr);
91 if (ATH_UNLIKELY(!run2DSPThresh->good())) {
92 ATH_MSG_ERROR( "Failed to initialize LArDSPThresholdFlat from attribute list loaded from " << m_run2DSPThresholdsKey.key()
93 << ". Aborting." );
94 return StatusCode::FAILURE;
95 }
96 }
97 else if (!m_run1DSPThresholdsKey.empty()) {
98 SG::ReadCondHandle<LArDSPThresholdsComplete> dspThresh (m_run1DSPThresholdsKey, ctx);
99 run1DSPThresh = dspThresh.cptr();
100 }
101 else {
102 ATH_MSG_ERROR( "No DSP threshold configured.");
103 return StatusCode::FAILURE;
104 }
105 }
106
107 std::vector<float> signal; //Pedestal-subtracted
108
109 const float fMAXINT = static_cast<float>(MAXINT);
110 const float fMAXINT2 = static_cast<float>(MAXINT2);
111
112 //Loop over digits:
113 for (const LArDigit* digit : *inputContainer) {
114
115 const HWIdentifier id=digit->hardwareID();
116 const bool connected=(*cabling)->isOnlineConnected(id);
117
118 ATH_MSG_VERBOSE("Working on channel " << m_onlineId->channel_name(id));
119
120 const std::vector<short>& samples=digit->samples();
121 auto gain=digit->gain();
122 const float p=peds->pedestal(id,gain);
123
124
125 //The following autos will resolve either into vectors or vector-proxies
126 const auto& adc2mev=adc2MeVs->ADC2MEV(id,gain);
127
129 if (!connected) continue; //No conditions for disconencted channel, who cares?
130 ATH_MSG_ERROR("No valid pedestal for connected channel " << m_onlineId->channel_name(id)
131 << " gain " << gain);
132 return StatusCode::FAILURE;
133 }
134
135 if(ATH_UNLIKELY(adc2mev.size()<2)) {
136 if (!connected) continue; //No conditions for disconencted channel, who cares?
137 ATH_MSG_ERROR("No valid ADC2MeV for connected channel " << m_onlineId->channel_name(id)
138 << " gain " << gain);
139 return StatusCode::FAILURE;
140 }
141
142 uint16_t prov=0;
143
144 float peakval = -999.;
145 unsigned short ipeak = 0;
146 float currval = 0.;
147 const unsigned int sampsize = (unsigned int) samples.size();
148
149 signal.resize(sampsize);
150 for (unsigned int ii = 0; ii < sampsize; ++ii) {
151 if (samples[ii]==0 || samples[ii]>=m_AdcMax) { //Check for saturation
152 ATH_MSG_DEBUG("Saturation on channel 0x" <<
153 MSG::hex << id.get_compact() << MSG::dec << " ADC=" << samples[ii]);
154 if ( m_skipSaturatedCells ) {
155 ATH_MSG_DEBUG(" Skipping channel...");
156 continue;
157 }
158 prov|=0x0400;
159 }
160 currval = (float)(samples[ii] - p);
161 signal[ii]=currval;
162 if ((ii >= m_minSample)&&(ii <= m_maxSample)&&(currval > peakval)) {
163 ipeak = ii; peakval = currval;
164 }
165 }
166 ATH_MSG_DEBUG("Peak value: " << peakval << ", peak sample:" << ipeak);
167
168 int nIteration = m_nIterProp;
169 bool doIter=false;
170 if (m_minADCforIterInSigma>0) {//threshold given in terms of pedestal-rms, get pedestal
171 float vRMS=peds->pedestalRMS(id,gain);
172 if (vRMS >= (1.0+LArElecCalib::ERRORCODE)) {
173 if (peakval > (vRMS*m_minADCforIterInSigma)) doIter=true;//enough signal...
174 }
175 else { //no pedestal found, use adc threshold
176 if (peakval > m_minADCforIter) doIter=true;//enough signal...
177 }
178 } else {
179 if (peakval >= m_minADCforIter) doIter=true;//enough signal...
180 }
181
182 if (!doIter) {//No iteration, insufficient signal
183 nIteration=1;
184 ipeak = m_defaultShiftTimeSamples + 2 ;
185 }
186
187 if (ipeak > sampsize - 3) ipeak = sampsize - 3 ;
188 if (ipeak < 2) ipeak = 2;
189
190 unsigned int peak_min = ipeak - 1 ;
191 unsigned int peak_max = ipeak + 1 ;
192
193 float ADCPeak=0;
194 float time=0.;
195
196 const LArOFIterResults results = peak(signal, id, gain, m_defaultPhase, ofcs, shapes,
197 nIteration, ipeak,peak_min, peak_max );
198 if(outputTimingContainer) {
199 outputTimingContainer->push_back(results);
200 }
201 if (results.getValid()) {
202 ADCPeak = results.getAmplitude();
203 // this should be ~0 if the peak is at curr_shiftTimeSamples
204 // FIXME: this time definition still misses the tstart from the OFC to be absolutely computed
205 time = (25.*((int)(results.getPeakSample_final())
207 -(results.getDelay_final()-results.getTau()));
208
209 ATH_MSG_DEBUG("Peak and time properly retrieved with OFPeakRecoTool: ADCPeak = "
210 << ADCPeak <<", time = "<< time);
211 } else {
212 ATH_MSG_DEBUG(". OFC iteration not valid for channel 0x"<< MSG::hex <<
213 id.get_compact() << MSG::dec << " Gain = " << gain <<
214 ". Skipping channel.");
215 continue;
216 }
217
218 //Apply Ramp
219 float E=adc2mev[0]+ADCPeak*adc2mev[1];
220
221 if (E>fMAXINT) E=fMAXINT;
222 if (E<fMAXINT2) E=fMAXINT2;
223
224 if (results.getConverged()) prov |= 0x0100;
225 prov = prov & 0x3FFF;
226
227 uint16_t iquaShort=0;
228 float tau=0;
229
230
231 //uint16_t prov=0xa5; //Means all constants from DB
232
233 const float E1=m_absECutFortQ.value() ? std::fabs(E) : E;
234 float ecut(0.);
235 if (m_useDBFortQ) {
236 if (run2DSPThresh) {
237 ecut = run2DSPThresh->tQThr(id);
238 }
239 else if (run1DSPThresh) {
240 ecut = run1DSPThresh->tQThr(id);
241 }
242 else {
243 ATH_MSG_ERROR ("DSP threshold problem");
244 return StatusCode::FAILURE;
245 }
246 }
247 else {
248 ecut = m_eCutFortQ;
249 }
250
251 if (E1 > ecut) { // fill also time and quality
252 ATH_MSG_VERBOSE("Channel " << m_onlineId->channel_name(id) << " gain " <<
253 gain << " above threshold for tQ computation");
254 prov|=0x2000; // fill bit in provenance that time+quality information are available
255
256 tau=time*(Gaudi::Units::nanosecond/Gaudi::Units::picosecond); //Convert time to ps
257 if (tau>fMAXINT) tau=fMAXINT;
258 if (tau<fMAXINT2) tau=fMAXINT2;
259
260 //Get Q-factor
261
262 int iqua = (int)(results.getQuality());
263 if (iqua > 0xFFFF) iqua=0xFFFF;
264 iquaShort = static_cast<uint16_t>(iqua & 0xFFFF);
265
266 }//end if above cut
267
268
269 outputContainer->emplace_back(id,static_cast<int>(std::floor(E+0.5)),
270 static_cast<int>(std::floor(tau+0.5)),
271 iquaShort,prov,(CaloGain::CaloGain)gain);
272 }
273
274 return StatusCode::SUCCESS;
275}
#define MAXINT
#define ATH_CHECK
Evaluate an expression and check for errors.
#define ATH_MSG_ERROR(x)
#define ATH_MSG_VERBOSE(x)
#define ATH_MSG_DEBUG(x)
#define ATH_UNLIKELY(x)
virtual float pedestal(const HWIdentifier &id, int gain) const =0
virtual float pedestalRMS(const HWIdentifier &id, int gain) const =0
access to RMS of Pedestal index by Identifier, and gain setting
const LArVectorProxy ADC2MEV(const HWIdentifier &id, int gain) const
Definition LArADC2MeV.h:32
float tQThr(const HWIdentifier chid) const
Gaudi::Property< unsigned short > m_minSample
Gaudi::Property< unsigned short > m_AdcMax
SG::WriteHandleKey< LArRawChannelContainer > m_rawChannelKey
SG::ReadCondHandleKey< ILArPedestal > m_pedestalKey
Gaudi::Property< int > m_defaultShiftTimeSamples
Gaudi::Property< unsigned short > m_nIterProp
SG::ReadCondHandleKey< LArOnOffIdMapping > m_cablingKey
LArOFIterResults peak(const std::vector< float > &samples, const HWIdentifier chID, const CaloGain::CaloGain gain, const float delayIn, const ILArOFC *ofcs, const ILArShape *shapes, const unsigned nIter=0, const unsigned npeak=2, unsigned peak_low=2, unsigned peak_high=2) const
SG::ReadCondHandleKey< ILArShape > m_shapeKey
SG::ReadCondHandleKey< LArADC2MeV > m_adc2MeVKey
Gaudi::Property< bool > m_skipSaturatedCells
SG::ReadHandleKey< LArDigitContainer > m_digitKey
Gaudi::Property< unsigned short > m_minADCforIter
SG::WriteHandleKey< LArOFIterResultsContainer > m_timingContKey
Gaudi::Property< float > m_defaultPhase
SG::ReadCondHandleKey< ILArOFC > m_ofcKey
Gaudi::Property< unsigned short > m_maxSample
SG::ReadCondHandleKey< LArDSPThresholdsComplete > m_run1DSPThresholdsKey
Gaudi::Property< float > m_minADCforIterInSigma
SG::ReadCondHandleKey< AthenaAttributeList > m_run2DSPThresholdsKey
time(flags, cells_name, *args, **kw)
setWord1 uint16_t

◆ extraDeps_update_handler()

void AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::extraDeps_update_handler ( Gaudi::Details::PropertyBase & ExtraDeps)
protectedinherited

Add StoreName to extra input/output deps as needed.

use the logic of the VarHandleKey to parse the DataObjID keys supplied via the ExtraInputs and ExtraOuputs Properties to add the StoreName if it's not explicitly given

◆ extraOutputDeps()

const DataObjIDColl & AthCommonReentrantAlgorithm< Gaudi::Algorithm >::extraOutputDeps ( ) const
overridevirtualinherited

Return the list of extra output dependencies.

This list is extended to include symlinks implied by inheritance relations.

Definition at line 94 of file AthCommonReentrantAlgorithm.cxx.

90{
91 // If we didn't find any symlinks to add, just return the collection
92 // from the base class. Otherwise, return the extended collection.
93 if (!m_extendedExtraObjects.empty()) {
95 }
97}
An algorithm that can be simultaneously executed in multiple threads.

◆ filterPassed()

virtual bool AthCommonReentrantAlgorithm< Gaudi::Algorithm >::filterPassed ( const EventContext & ctx) const
inlinevirtualinherited

Definition at line 96 of file AthCommonReentrantAlgorithm.h.

96 {
97 return execState( ctx ).filterPassed();
98 }
virtual bool filterPassed(const EventContext &ctx) const

◆ finalize()

StatusCode LArRawChannelBuilderIterAlg::finalize ( )
override

Definition at line 50 of file LArRawChannelBuilderIterAlg.cxx.

50 {
51 return StatusCode::SUCCESS;
52}

◆ initialize()

StatusCode LArRawChannelBuilderIterAlg::initialize ( )
override

Definition at line 20 of file LArRawChannelBuilderIterAlg.cxx.

20 {
21 ATH_CHECK(m_digitKey.initialize());
22 ATH_CHECK(m_rawChannelKey.initialize());
23 ATH_CHECK(m_pedestalKey.initialize());
24 ATH_CHECK(m_adc2MeVKey.initialize());
25 ATH_CHECK(m_ofcKey.initialize());
26 ATH_CHECK(m_shapeKey.initialize());
27 ATH_CHECK(m_cablingKey.initialize() );
30 if (m_useDBFortQ) {
31 if (m_run1DSPThresholdsKey.empty() && m_run2DSPThresholdsKey.empty()) {
32 ATH_MSG_ERROR ("useDB requested but neither Run1DSPThresholdsKey nor Run2DSPThresholdsKey initialized.");
33 return StatusCode::FAILURE;
34 }
35 }
36
37 ATH_CHECK(detStore()->retrieve(m_onlineId,"LArOnlineID"));
38
39 const std::string cutmsg = m_absECutFortQ.value() ? " fabs(E) < " : " E < ";
40 ATH_MSG_INFO("Energy cut for time and quality computation: " << cutmsg <<
41 " taken from COOL folder "<<
42 m_run1DSPThresholdsKey.key() << " (run1) " <<
43 m_run2DSPThresholdsKey.key() << " (run2) ");
44
46
47 return StatusCode::SUCCESS;
48}
#define ATH_MSG_INFO(x)
const ServiceHandle< StoreGateSvc > & detStore() const
retrieve(aClass, aKey=None)
Definition PyKernel.py:110

◆ inputHandles()

virtual std::vector< Gaudi::DataHandle * > AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::inputHandles ( ) const
overridevirtualinherited

Return this algorithm's input handles.

We override this to include handle instances from key arrays if they have not yet been declared. See comments on updateVHKA.

◆ isClonable()

◆ msg()

MsgStream & AthCommonMsg< Gaudi::Algorithm >::msg ( ) const
inlineinherited

Definition at line 24 of file AthCommonMsg.h.

24 {
25 return this->msgStream();
26 }

◆ msgLvl()

bool AthCommonMsg< Gaudi::Algorithm >::msgLvl ( const MSG::Level lvl) const
inlineinherited

Definition at line 30 of file AthCommonMsg.h.

30 {
31 return this->msgLevel(lvl);
32 }

◆ outputHandles()

virtual std::vector< Gaudi::DataHandle * > AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::outputHandles ( ) const
overridevirtualinherited

Return this algorithm's output handles.

We override this to include handle instances from key arrays if they have not yet been declared. See comments on updateVHKA.

◆ peak()

LArOFIterResults LArRawChannelBuilderIterAlg::peak ( const std::vector< float > & samples,
const HWIdentifier chID,
const CaloGain::CaloGain gain,
const float delayIn,
const ILArOFC * ofcs,
const ILArShape * shapes,
const unsigned nIter = 0,
const unsigned npeak = 2,
unsigned peak_low = 2,
unsigned peak_high = 2 ) const
private

Definition at line 277 of file LArRawChannelBuilderIterAlg.cxx.

281{
282 const float epsilon=0.001;
283 const double samplingPeriod=1./(40.08*Gaudi::Units::megahertz);
284 LArOFIterResults result;
285
286 //Fill m_result with default/input values,
287 //calculation will be done with this object
288 result.m_valid=false;
289 result.m_converged=false;
290 result.m_amplitude= 0;
291 result.m_tau = 0;
292 result.m_quality = 0;
293 result.m_delay_final = delayIn;
294 result.m_peakSample_init = npeak;
295 result.m_peakSample_final = npeak; //Assumed index of highest sample (may change in the process)
296 result.m_chid = chID;
297
298 //Set some reference to improve readablity of the code:
299 unsigned& kMax = result.m_peakSample_final; //Make reference just to have code more readable
300 float& delay = result.m_delay_final;
301 float& q=result.m_quality;
302 unsigned& delayIdx=result.m_ofcIndex;
303 //Quantities used during iteration
304 unsigned kIter=0;
305 //Computation is done as double
306 double At=0;
307 double A=0;
308
309 //Tying to avoid doing all checks for every event/channel/iteation step by assuming that
310 //the number of OFC samples is the same for all delays of a certain cell/gain.
311 //Code will segfault if not the case.
312
313 const unsigned nSamples=samples.size();
314 // force uses of high gain if required for OFC and shape
315 CaloGain::CaloGain usedGain = gain;
316 if (m_forceHighGain) {
317 if (m_onlineId->isHECchannel(chID)) usedGain = CaloGain::LARMEDIUMGAIN;
318 else usedGain = CaloGain::LARHIGHGAIN;
319 }
320
321 // Quantities depending on this cell
322 const unsigned nOFCPhase=ofcs->nTimeBins(chID,usedGain);
323 float timeOffset = ofcs->timeOffset(chID,usedGain);
324
325 // convert delay to internal OFC delay (from 0 to Nphases*timeBinWidth)
326 delay = delay-timeOffset;
327
328 float timeBinWidth;
329 float timeMax;
330 if (nOFCPhase<2) { //Only one time bin
331 delayIdx=0;
332 timeBinWidth=25.; //ns
333 timeMax=(nOFCPhase-1)*timeBinWidth;
334 } else { //Have more than one OFC bin
335 timeBinWidth=ofcs->timeBinWidth(chID,usedGain);
336 timeMax = (nOFCPhase-1)*timeBinWidth;
337 if (timeBinWidth==0.) {
338 ATH_MSG_ERROR( "timeBinWidth is zero for channel " << m_onlineId->channel_name(chID) );
339 return result;
340 }
341 //Check if initial delay isn't too big
342 if (delay>timeMax) delay=timeMax-epsilon;
343 if (delay<0.) delay=0.;
344 //Index of the in in the vector according to the delay
345 delayIdx=(unsigned)floor(0.5+delay/timeBinWidth);
346 }
347
348 //Get first set of OFC's
349 ILArOFC::OFCRef_t this_OFC_a = ofcs->OFC_a(chID,(int)usedGain,delayIdx);
350 ILArOFC::OFCRef_t this_OFC_b = ofcs->OFC_b(chID,(int)usedGain,delayIdx);
351 const unsigned ofcSize=this_OFC_a.size(); //Assumed to be the same of all delay-indices
352
353 //some sanity check on the OFCs
354 if ( ofcSize == 0 || this_OFC_b.size() == 0 ) {
355 ATH_MSG_DEBUG("OFC not found for channel " << m_onlineId->channel_name(chID));
356 return result;
357 }
358
359 if ( this_OFC_a.size() != this_OFC_b.size() ) {
360 ATH_MSG_ERROR( "OFC a (" << this_OFC_a.size() <<
361 ")and b (" << this_OFC_b.size() << ") are not the same size for channel 0x"
362 << std::hex << chID.get_compact() << std::dec );
363 return result;
364 }
365
366 //Coerce kmax, peak_high and peak_low to someting that can work
367 if (peak_low<2) peak_low=2; //By convention we expect at least 2 samples before the peak
368 if (peak_high>(nSamples+2-ofcSize)) peak_high=(nSamples+2-ofcSize);
369 if (peak_high<peak_low) {
370 ATH_MSG_WARNING( "Channel 0x" << std::hex << chID.get_compact() << std::dec
371 << "Not enough ADC samples (" << nSamples << ") to apply " << ofcSize << " OFCs." );
372 return result;
373 }
374 if(kMax<peak_low) kMax=peak_low;
375 if(kMax>peak_high) kMax=peak_high;
376
377 float amplitude_save=0.;
378 float tau_save= 99999.;
379 unsigned int kMax_save=0;
380 float delay_save=0.;
381 unsigned int delayIdx_save=0;
382
383 unsigned int mynIter = nIter;
384
385 do {
386
387 // Uncomment the following if you suspect that the ofc are corrupt for some phases:
388 /*
389 if ( this_OFC_a.size() == 0 || this_OFC_b.size() == 0 ) {
390 ATH_MSG_DEBUG( "OFC not found for channel 0x" << std::hex << chID.get_compact() << std::dec );
391 std::cout << "OFC not found for channel 0x" << std::hex << chID.get_compact() << std::dec << std::endl;
392 return result;
393 }
394
395 if ( this_OFC_a.size() != this_OFC_b.size() ) {
396 ATH_MSG_ERROR( "OFC a (" << this_OFC_a.size() <<
397 ")and b (" << this_OFC_b.size() << ") are not the same size for channel 0x"
398 << std::hex << chID.get_compact() << std::dec );
399 return result;
400 }
401 */
402
403
404 //Apply Optimal Filtering coefficients
405 A = At = 0 ;
406 for ( unsigned k=0 ; (k<ofcSize); k++ ) {
407 //for ( unsigned k=0 ; (k<ofcSize) && (kMax-2+k<nSamples); k++ ) {
408 const float& this_sample = samples[kMax-2+k];
409 A += this_OFC_a.at(k) * this_sample ;
410 At += this_OFC_b.at(k) * this_sample ;
411 }
412 //Validate the result
413 result.m_valid = true; //Doesn't mean that the result is really good, but we have something
414 if ( A == 0 ) {
415 ATH_MSG_DEBUG("Null amplitude: " << A << " for channel" << m_onlineId->channel_name(chID));
416 result.m_amplitude=0;
417 result.m_tau=0;
418 return result;
419 }
420 result.m_amplitude=A;
421 result.m_tau = At / A ;
422
423 //First iteration done, break loop if possible....
424 if (mynIter<=1) {
425 delay = delayIdx*timeBinWidth;
426 break; //No iteration requested
427 }
428
429 // Nsamples=OFCsize and only one phase available, no point to iterate
430 if (samples.size() == ofcSize && nOFCPhase<2) {
431 delay = delayIdx*timeBinWidth;
432 break;
433 }
434
435 // if we are within +-0.5*Dt of time bin, we have converged for sure
436 if (std::fabs(result.m_tau) <= (0.5*timeBinWidth)) {
437 result.m_converged=true;
438 delay = delayIdx*timeBinWidth;
439 break;
440 }
441
442 if (kIter>=mynIter) { //Max. number of iterations reached
443 delay = delayIdx*timeBinWidth;
444 if (result.m_converged) {
445 if (std::fabs(tau_save) < std::fabs(result.m_tau)) {
446 result.m_amplitude = amplitude_save;
447 result.m_tau = tau_save;
448 kMax = kMax_save;
449 delay = delay_save;
450 delayIdx = delayIdx_save;
451 }
452 }
453 if (std::fabs(result.m_tau) <= timeBinWidth) result.m_converged=true;
454 break;
455 }
456
457 // if we are within +-Dt of time bin, we consider that we have converged but we allow for one more
458 // iteration to see if we can find a smaller tau, if not we keep the previous one
459 if (std::fabs(result.m_tau) <= timeBinWidth) {
460 result.m_converged = true;
461 mynIter = kIter+1; // allow only for more iteration
462 amplitude_save = result.m_amplitude;
463 tau_save = result.m_tau;
464 kMax_save = kMax;
465 delay_save = delayIdx*timeBinWidth;
466 delayIdx_save = delayIdx;
467 }
468
469 delay = delay - result.m_tau; // moved this line up so first iteration delay results treated like subsequent
470
471 if(delay<(-0.5*timeBinWidth)) {
472 if(kMax<peak_high){
473 kMax = kMax+1 ;
474 delay=delay+samplingPeriod;
475 if( delay < 0 ) delay = 0;
476 if (delay > timeMax ) delay = timeMax-epsilon;
477 } else { // don't shift sample
478 delay = 0 ;
479 }
480 }//else if delay<0
481 else
482 if( delay>(timeMax+0.5*timeBinWidth) ) {
483 if(kMax>peak_low){
484 kMax = kMax-1 ;
485 delay=delay-samplingPeriod;
486 if (delay < 0 ) delay=0.;
487 if( delay > timeMax ) delay = timeMax-epsilon;
488 } else {
489 // don't shift sample
490 delay = timeMax-epsilon;
491 }
492 }//end if delay>nOFCPhase
493 //Prepare next iteration step:
494 kIter++;
495 delayIdx=(unsigned)floor(0.5+delay/timeBinWidth);
496 if (delayIdx>=nOFCPhase) delayIdx = nOFCPhase-1;
497 //Get next set of OFC's
498 this_OFC_a = ofcs->OFC_a(chID,(int)usedGain,delayIdx);
499 this_OFC_b = ofcs->OFC_b(chID,(int)usedGain,delayIdx);
500 }
501 while(1); // end for iteration loop
502
503 // go back to overal time
504 delay = delay + timeOffset; // sign to check
505
506 q = 0.;
507 ILArShape::ShapeRef_t thisShape = shapes->Shape(chID,(int)usedGain,delayIdx) ;
508 ILArShape::ShapeRef_t thisShapeDer;
509 if (m_useShapeDer) thisShapeDer = shapes->ShapeDer(chID,(int)usedGain,delayIdx) ;
510 if( thisShape.size() >= ofcSize ) {
511 for ( unsigned k=0 ; k<ofcSize ; k++ ) {
512 const float& this_sample = samples[kMax-2+k];
513 if (m_useShapeDer && thisShapeDer.size() >= ofcSize)
514 q += std::pow((result.m_amplitude*(thisShape[k]-result.m_tau*thisShapeDer[k]) - this_sample),2);
515 else
516 q += std::pow((result.m_amplitude*thisShape[k] - this_sample),2);
517 }
518 }
519 else {
520 ATH_MSG_DEBUG("No shape for this channel");
521 }
522
523 result.m_nIterPerf = kIter;
524 result.m_valid = true;
525 return result;
526
527}
#define ATH_MSG_WARNING(x)
double delay(std::size_t d)
virtual OFCRef_t OFC_b(const HWIdentifier &id, int gain, int tbin=0) const =0
virtual unsigned nTimeBins(const HWIdentifier &CellID, int gain) const =0
virtual OFCRef_t OFC_a(const HWIdentifier &id, int gain, int tbin=0) const =0
access to OFCs by online ID, gain, and tbin (!=0 for testbeam)
virtual float timeBinWidth(const HWIdentifier &CellID, int gain) const =0
LArVectorProxy OFCRef_t
This class defines the interface for accessing Optimal Filtering coefficients for each channel provid...
Definition ILArOFC.h:26
virtual float timeOffset(const HWIdentifier &CellID, int gain) const =0
LArVectorProxy ShapeRef_t
This class defines the interface for accessing Shape (Nsample variable, Dt = 25 ns fixed) @stereotype...
Definition ILArShape.h:26
virtual ShapeRef_t Shape(const HWIdentifier &id, int gain, int tbin=0, int mode=0) const =0
virtual ShapeRef_t ShapeDer(const HWIdentifier &id, int gain, int tbin=0, int mode=0) const =0
value_type get_compact() const
Get the compact id.
value_type at(size_t i) const
Vector indexing with bounds check.
@ LARMEDIUMGAIN
Definition CaloGain.h:18
@ LARHIGHGAIN
Definition CaloGain.h:18

◆ renounce()

std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::renounce ( T & h)
inlineprotectedinherited

Definition at line 380 of file AthCommonDataStore.h.

381 {
382 h.renounce();
384 }
std::enable_if_t< std::is_void_v< std::result_of_t< decltype(&T::renounce)(T)> > &&!std::is_base_of_v< SG::VarHandleKeyArray, T > &&std::is_base_of_v< Gaudi::DataHandle, T >, void > renounce(T &h)

◆ renounceArray()

void AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::renounceArray ( SG::VarHandleKeyArray & handlesArray)
inlineprotectedinherited

remove all handles from I/O resolution

Definition at line 364 of file AthCommonDataStore.h.

364 {
366 }

◆ setFilterPassed()

virtual void AthCommonReentrantAlgorithm< Gaudi::Algorithm >::setFilterPassed ( bool state,
const EventContext & ctx ) const
inlinevirtualinherited

Definition at line 100 of file AthCommonReentrantAlgorithm.h.

100 {
102 }
virtual void setFilterPassed(bool state, const EventContext &ctx) const

◆ sysExecute()

StatusCode AthCommonReentrantAlgorithm< Gaudi::Algorithm >::sysExecute ( const EventContext & ctx)
overridevirtualinherited

Execute an algorithm.

We override this in order to work around an issue with the Algorithm base class storing the event context in a member variable that can cause crashes in MT jobs.

Definition at line 85 of file AthCommonReentrantAlgorithm.cxx.

77{
78 return BaseAlg::sysExecute (ctx);
79}

◆ sysInitialize()

StatusCode AthCommonReentrantAlgorithm< Gaudi::Algorithm >::sysInitialize ( )
overridevirtualinherited

Override sysInitialize.

Override sysInitialize from the base class.

Loop through all output handles, and if they're WriteCondHandles, automatically register them and this Algorithm with the CondSvc

Scan through all outputHandles, and if they're WriteCondHandles, register them with the CondSvc

Reimplemented from AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >.

Reimplemented in HypoBase, and InputMakerBase.

Definition at line 61 of file AthCommonReentrantAlgorithm.cxx.

107 {
109
110 if (sc.isFailure()) {
111 return sc;
112 }
113
114 ServiceHandle<ICondSvc> cs("CondSvc",name());
115 for (auto h : outputHandles()) {
116 if (h->isCondition() && h->mode() == Gaudi::DataHandle::Writer) {
117 // do this inside the loop so we don't create the CondSvc until needed
118 if ( cs.retrieve().isFailure() ) {
119 ATH_MSG_WARNING("no CondSvc found: won't autoreg WriteCondHandles");
120 return StatusCode::SUCCESS;
121 }
122 if (cs->regHandle(this,*h).isFailure()) {
124 ATH_MSG_ERROR("unable to register WriteCondHandle " << h->fullKey()
125 << " with CondSvc");
126 }
127 }
128 }
129 return sc;
130}
virtual std::vector< Gaudi::DataHandle * > outputHandles() const override

◆ sysStart()

virtual StatusCode AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::sysStart ( )
overridevirtualinherited

Handle START transition.

We override this in order to make sure that conditions handle keys can cache a pointer to the conditions container.

◆ updateVHKA()

void AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::updateVHKA ( Gaudi::Details::PropertyBase & )
inlineinherited

Definition at line 308 of file AthCommonDataStore.h.

308 {
309 // debug() << "updateVHKA for property " << p.name() << " " << p.toString()
310 // << " size: " << m_vhka.size() << endmsg;
311 for (auto &a : m_vhka) {
313 for (auto k : keys) {
314 k->setOwner(this);
315 }
316 }
317 }

Member Data Documentation

◆ m_absECutFortQ

Gaudi::Property<bool> LArRawChannelBuilderIterAlg::m_absECutFortQ {this,"absECut",true,"Cut on fabs(E) for Q and t computation"}
private

Definition at line 62 of file LArRawChannelBuilderIterAlg.h.

62{this,"absECut",true,"Cut on fabs(E) for Q and t computation"};

◆ m_adc2MeVKey

SG::ReadCondHandleKey<LArADC2MeV> LArRawChannelBuilderIterAlg::m_adc2MeVKey {this,"ADC2MeVKey","LArADC2MeV","SG Key of ADC2MeV conditions object"}
private

Definition at line 49 of file LArRawChannelBuilderIterAlg.h.

49{this,"ADC2MeVKey","LArADC2MeV","SG Key of ADC2MeV conditions object"};

◆ m_AdcMax

Gaudi::Property<unsigned short> LArRawChannelBuilderIterAlg::m_AdcMax {this, "ADCMax", 4095, "Saturation cut"}
private

Definition at line 71 of file LArRawChannelBuilderIterAlg.h.

71{this, "ADCMax", 4095, "Saturation cut"};

◆ m_cablingKey

SG::ReadCondHandleKey<LArOnOffIdMapping> LArRawChannelBuilderIterAlg::m_cablingKey {this,"CablingKey","LArOnOffIdMap","SG Key of LArOnOffIdMapping object"}
private

Definition at line 54 of file LArRawChannelBuilderIterAlg.h.

54{this,"CablingKey","LArOnOffIdMap","SG Key of LArOnOffIdMapping object"};

◆ m_defaultPhase

Gaudi::Property<float> LArRawChannelBuilderIterAlg::m_defaultPhase {this, "defaultPhase", 0, "starting phase for iterations"}
private

Definition at line 73 of file LArRawChannelBuilderIterAlg.h.

73{this, "defaultPhase", 0, "starting phase for iterations"};

◆ m_defaultShiftTimeSamples

Gaudi::Property<int> LArRawChannelBuilderIterAlg::m_defaultShiftTimeSamples {this, "DefaultShiftTimeSample", 0}
private

Definition at line 79 of file LArRawChannelBuilderIterAlg.h.

79{this, "DefaultShiftTimeSample", 0};

◆ m_detStore

StoreGateSvc_t AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_detStore
privateinherited

Pointer to StoreGate (detector store by default)

Definition at line 393 of file AthCommonDataStore.h.

◆ m_digitKey

SG::ReadHandleKey<LArDigitContainer> LArRawChannelBuilderIterAlg::m_digitKey
private
Initial value:
{this, "LArDigitKey","FREE",
"SG Key of LArDigitContaiiner"}

Definition at line 41 of file LArRawChannelBuilderIterAlg.h.

41 {this, "LArDigitKey","FREE",
42 "SG Key of LArDigitContaiiner"};

◆ m_eCutFortQ

Gaudi::Property<float> LArRawChannelBuilderIterAlg::m_eCutFortQ {this,"ECutFortQ",256.0,"Time and Quality will be computed only for channels with E above this value"}
private

Definition at line 60 of file LArRawChannelBuilderIterAlg.h.

60{this,"ECutFortQ",256.0,"Time and Quality will be computed only for channels with E above this value"};

◆ m_evtStore

StoreGateSvc_t AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_evtStore
privateinherited

Pointer to StoreGate (event store by default)

Definition at line 390 of file AthCommonDataStore.h.

◆ m_extendedExtraObjects

DataObjIDColl AthCommonReentrantAlgorithm< Gaudi::Algorithm >::m_extendedExtraObjects
privateinherited

Extra output dependency collection, extended by AthAlgorithmDHUpdate to add symlinks.

Empty if no symlinks were found.

Definition at line 114 of file AthCommonReentrantAlgorithm.h.

◆ m_firstSample

Gaudi::Property<int> LArRawChannelBuilderIterAlg::m_firstSample {this,"firstSample",0,"first of the 32 sampels of the MC shape to be used"}
private

Definition at line 68 of file LArRawChannelBuilderIterAlg.h.

68{this,"firstSample",0,"first of the 32 sampels of the MC shape to be used"};

◆ m_forceHighGain

Gaudi::Property<bool> LArRawChannelBuilderIterAlg::m_forceHighGain {this, "forceHighGain", false, "Force use of high gain for all shapes and OFC (default=false)"}
private

Definition at line 80 of file LArRawChannelBuilderIterAlg.h.

80{this, "forceHighGain", false, "Force use of high gain for all shapes and OFC (default=false)"};

◆ m_maxSample

Gaudi::Property<unsigned short> LArRawChannelBuilderIterAlg::m_maxSample {this, "maxSample",31}
private

Definition at line 77 of file LArRawChannelBuilderIterAlg.h.

77{this, "maxSample",31};

◆ m_minADCforIter

Gaudi::Property<unsigned short> LArRawChannelBuilderIterAlg::m_minADCforIter {this, "minADCforIter", 30}
private

Definition at line 74 of file LArRawChannelBuilderIterAlg.h.

74{this, "minADCforIter", 30};

◆ m_minADCforIterInSigma

Gaudi::Property<float> LArRawChannelBuilderIterAlg::m_minADCforIterInSigma {this, "minADCforIterInSigma", -1}
private

Definition at line 75 of file LArRawChannelBuilderIterAlg.h.

75{this, "minADCforIterInSigma", -1};

◆ m_minSample

Gaudi::Property<unsigned short> LArRawChannelBuilderIterAlg::m_minSample {this, "minSample", 0}
private

Definition at line 76 of file LArRawChannelBuilderIterAlg.h.

76{this, "minSample", 0};

◆ m_nIterProp

Gaudi::Property<unsigned short> LArRawChannelBuilderIterAlg::m_nIterProp {"nIterations", 10}
private

Definition at line 78 of file LArRawChannelBuilderIterAlg.h.

78{"nIterations", 10};

◆ m_ofcKey

SG::ReadCondHandleKey<ILArOFC> LArRawChannelBuilderIterAlg::m_ofcKey {this,"OFCKey","LArOFC","SG Key of OFC conditions object"}
private

Definition at line 50 of file LArRawChannelBuilderIterAlg.h.

50{this,"OFCKey","LArOFC","SG Key of OFC conditions object"};

◆ m_onlineId

const LArOnlineID* LArRawChannelBuilderIterAlg::m_onlineId = nullptr
private

Definition at line 85 of file LArRawChannelBuilderIterAlg.h.

◆ m_pedestalKey

SG::ReadCondHandleKey<ILArPedestal> LArRawChannelBuilderIterAlg::m_pedestalKey {this,"PedestalKey","LArPedestal","SG Key of Pedestal conditions object"}
private

Definition at line 48 of file LArRawChannelBuilderIterAlg.h.

48{this,"PedestalKey","LArPedestal","SG Key of Pedestal conditions object"};

◆ m_rawChannelKey

SG::WriteHandleKey<LArRawChannelContainer> LArRawChannelBuilderIterAlg::m_rawChannelKey
private
Initial value:
{this,"LArRawChannelKey","LArRawChannels",
"SG key of the LArRawChannelContainer"}

Definition at line 44 of file LArRawChannelBuilderIterAlg.h.

44 {this,"LArRawChannelKey","LArRawChannels",
45 "SG key of the LArRawChannelContainer"};

◆ m_run1DSPThresholdsKey

SG::ReadCondHandleKey<LArDSPThresholdsComplete> LArRawChannelBuilderIterAlg::m_run1DSPThresholdsKey {this, "Run1DSPThresholdsKey","", "SG Key for thresholds to compute time and quality, run 1"}
private

Definition at line 55 of file LArRawChannelBuilderIterAlg.h.

55{this, "Run1DSPThresholdsKey","", "SG Key for thresholds to compute time and quality, run 1"};

◆ m_run2DSPThresholdsKey

SG::ReadCondHandleKey<AthenaAttributeList> LArRawChannelBuilderIterAlg::m_run2DSPThresholdsKey {this, "Run2DSPThresholdsKey","", "SG Key for thresholds to compute time and quality, run 2"}
private

Definition at line 56 of file LArRawChannelBuilderIterAlg.h.

56{this, "Run2DSPThresholdsKey","", "SG Key for thresholds to compute time and quality, run 2"};

◆ m_shapeKey

SG::ReadCondHandleKey<ILArShape> LArRawChannelBuilderIterAlg::m_shapeKey {this,"ShapeKey","LArShape","SG Key of Shape conditions object"}
private

Definition at line 51 of file LArRawChannelBuilderIterAlg.h.

51{this,"ShapeKey","LArShape","SG Key of Shape conditions object"};

◆ m_skipSaturatedCells

Gaudi::Property<bool> LArRawChannelBuilderIterAlg::m_skipSaturatedCells {this, "Skip", false, "reconstruct saturated cells"}
private

Definition at line 72 of file LArRawChannelBuilderIterAlg.h.

72{this, "Skip", false, "reconstruct saturated cells"};

◆ m_timingContKey

SG::WriteHandleKey<LArOFIterResultsContainer> LArRawChannelBuilderIterAlg::m_timingContKey {this, "TimingContainerKey", "", "Key of the LArOFIterResultsContainer in StoreGate"}
private

Definition at line 82 of file LArRawChannelBuilderIterAlg.h.

82{this, "TimingContainerKey", "", "Key of the LArOFIterResultsContainer in StoreGate"};

◆ m_useDBFortQ

Gaudi::Property<bool> LArRawChannelBuilderIterAlg::m_useDBFortQ {this,"useDB",true,"Use DB for cut on t,Q"}
private

Definition at line 65 of file LArRawChannelBuilderIterAlg.h.

65{this,"useDB",true,"Use DB for cut on t,Q"};

◆ m_useShapeDer

Gaudi::Property<bool> LArRawChannelBuilderIterAlg::m_useShapeDer {this,"useShapeDer",true,"Use shape derivative in Q-factor computation"}
private

Definition at line 63 of file LArRawChannelBuilderIterAlg.h.

63{this,"useShapeDer",true,"Use shape derivative in Q-factor computation"};

◆ m_varHandleArraysDeclared

bool AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_varHandleArraysDeclared
privateinherited

Definition at line 399 of file AthCommonDataStore.h.

◆ m_vhka

std::vector<SG::VarHandleKeyArray*> AthCommonDataStore< AthCommonMsg< Gaudi::Algorithm > >::m_vhka
privateinherited

Definition at line 398 of file AthCommonDataStore.h.


The documentation for this class was generated from the following files: