ATLAS Offline Software
Loading...
Searching...
No Matches
LArRodBlockPhysicsV6.cxx
Go to the documentation of this file.
1//Dear emacs, this is -*- c++ -*-
2
3/*
4 Copyright (C) 2002-2025 CERN for the benefit of the ATLAS collaboration
5*/
6
7// Implementation of a LArRODBlockStructure class
8// This version contains LArDigits in fixed gain.
9// See .h file for more details.
10
11#include "GaudiKernel/MsgStream.h"
13//#include <cstdio>
17#include "GaudiKernel/Bootstrap.h"
18#include "GaudiKernel/ISvcLocator.h"
19#include <iostream>
20
21//#define LARBSDBGOUTPUT
22#ifdef LARBSDBGOUTPUT
23#define MYLEVEL (MSG::FATAL)
24#define LARBSDBG(text) logstr<<MYLEVEL<<text<<endmsg
25#else
26#define LARBSDBG(text)
27#endif
28
29//int mycheck_tot=0;
30//int mycheck_err=0;
31
32namespace {
33union ShortLong {
34 uint16_t s[2];
35 uint32_t l;
36};
37}
38
41 m_onlineHelper(nullptr)
42{
43 m_iHeadBlockSize=endtag/2; // The implicit cast rounds down to the right size
49 m_OffTimeCut=0; //FIXME: Nowhere set to a sensible value ???
51 // retrieve onlineHelper
52 SmartIF<StoreGateSvc> detStore{Gaudi::svcLocator()->service("DetectorStore")};
53 if (!detStore) {
54 std::cout << "Unable to locate DetectorStore" << std::endl;
55 std::abort();
56 }
57 StatusCode sc = detStore->retrieve(m_onlineHelper, "LArOnlineID");
58 if (sc.isFailure()) {
59 std::cout << "Could not get LArOnlineID helper !" << std::endl;
60 std::abort();
61 }
62}
63
64
84
86{
88 {
89 int off = -8;
90 int ns = getHeader16(NSamples) & 0xff;
91 if (m_requiredNSamples > 0 && m_requiredNSamples != ns) return false;
92 int radd = (ns+1)/2;
93 int dim1 = getHeader16(ResultsDim1);
94 int off1 = getHeader16(ResultsOff1);
95 int off2 = getHeader16(ResultsOff2);
96 int dim2 = getHeader16(ResultsDim2);
97 int off3 = getHeader16(RawDataBlkOff);
98 int dim3 = getHeader16(RawDataBlkDim);
99 if ( !(ns&0x1) ) radd++;
100
101 if (off1 && dim1+off1+off<m_FebBlockSize) {
102 off1 += off;
103 if (dim1>=8)
104 m_GainPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+off1);
105 if (dim1>=12)
106 m_MaskTimeQualityPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+off1+8);
107 if (dim1>=16)
108 m_MaskDigitsPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+off1+12);
109 if (dim1>=16+radd)
110 m_RaddPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off1+16);
111 if (dim1>=80+radd)
112 m_EnergyPointer=reinterpret_cast<const uint16_t*> (m_FebBlock+off1+16+radd);
113 if (dim1>=84+radd)
114 m_SumPointer=reinterpret_cast<const int32_t*>(m_FebBlock+off1+80+radd);
115 if (dim1>84+radd)
116 m_TimeQualityPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off1+84+radd);
117 off1 -= off;
118 }
119 if (off2 && dim2+off2+off<m_FebBlockSize) {
120 m_DigitsPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off2+off);
121 }
122 if (off3 && dim3+off3+off<m_FebBlockSize) {
123 m_RawDataPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off3+off);
124 }
125
126 // Check for offsets problems
127 uint32_t problem = 0;
128 int n1, n2;
129 int n1_tmp, n2_tmp;
130 int off1_tmp, dim1_tmp;
131 int off2_tmp, dim2_tmp;
132 int off3_tmp, dim3_tmp;
133 if(off1==0) {
134 n1 = n2 = 0;
135 n1_tmp = n2_tmp =0;
136 off1_tmp = dim1_tmp = 0;
137 off2_tmp = dim2_tmp = 0;
138 off3_tmp = dim3_tmp = 0;
139 }
140 else {
141 m_RaddPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+26);
142 m_MaskTimeQualityPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+18);
143 m_MaskDigitsPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+22);
144 n1 = getNbSweetCells1();
145 n2 = getNbSweetCells2();
146 n1_tmp = getNbSweetCells1FromMask();
147 n2_tmp = getNbSweetCells2FromMask();
148 off1_tmp = 10-off;
149 dim1_tmp = 84+(ns+1)/2+n1;
150 if ( !(ns&0x1) ) dim1_tmp++;
151 if ( m_requiredNSamples > 0 ){
152 dim1_tmp = 84 +(m_requiredNSamples+1)/2+n1;
153 if ( !(m_requiredNSamples&0x1) ) dim1_tmp++;
154 }
155 off2_tmp = off1_tmp+dim1_tmp;
156 dim2_tmp = (n2*ns+1)/2;
157 off3_tmp = off2_tmp+dim2_tmp;
158 dim3_tmp = getNumberOfWords()-3-off3_tmp-off;
159 if(dim2_tmp==0) off2_tmp = 0;
160 if(dim3_tmp==0) off3_tmp = 0;
161 }
162
163 if(off1 != off1_tmp) problem=1;
164 if(dim1 != dim1_tmp) problem=2;
165 if(off2 != off2_tmp) problem=3;
166 if(dim2 != dim2_tmp) problem=4;
167 if(off3 != off3_tmp) problem=5;
168 if(dim3 != dim3_tmp) problem=6;
169 if(n1 != n1_tmp) problem=7;
170 if(n2 != n2_tmp) problem=8;
171 if (m_requiredNSamples > 0 &&
172 getHeader32(NGains) != (uint32_t)0x10000 + m_requiredNSamples) problem=9;
173 //if(getHeader32(NGains)!=0x10000 + (unsigned int)ns) problem=9;
174 //if(getHeader32(InFPGAFormat)!=1) problem=10;
175 //if(m_FebBlock[getNumberOfWords()-2]!=0x12345678) problem=11;
176
177 if(problem) { // Try to recompute offsets
178 std::cout << "LArByteStreamProblem " << problem << std::endl;
179 std::cout << "NSamples = " << std::dec << ns << std::endl;
180 std::cout << "getHeader32(NGains) = " << std::hex << getHeader32(NGains) << std::endl;
181 std::cout << "NWTot: " << std::hex << getNumberOfWords() << " n1=" << n1 << " (" << n1_tmp << ") n2=" << n2 << " (" << n2_tmp << ")" << std::endl;
182 std::cout << "Found 1: " << off1 << " " << dim1 << std::endl;
183 std::cout << "Found 2: " << off2 << " " << dim2 << std::endl;
184 std::cout << "Found 3: " << off3 << " " << dim3 << std::dec << std::endl;
185
186 if(n1==n1_tmp && n2==n2_tmp) { // Check consistency of cells above threshold
187 off1 = off1_tmp;
188 dim1 = dim1_tmp;
189 off2 = off2_tmp;
190 dim2 = dim2_tmp;
191 off3 = off3_tmp;
192 dim3 = dim3_tmp;
193 std::cout << "Recomputed 1: " << std::hex << off1 << " " << dim1 << std::endl;
194 std::cout << "Recomputed 2: " << off2 << " " << dim2 << std::endl;
195 std::cout << "Recomputed 3: " << off3 << " " << dim3 << std::dec << std::endl;
196
197 if (off1 && dim1+off1+off<m_FebBlockSize) {
198 off1 += off;
199 if (dim1>=8)
200 m_GainPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+off1);
201 if (dim1>=12)
202 m_MaskTimeQualityPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+off1+8);
203 if (dim1>=16)
204 m_MaskDigitsPointer=reinterpret_cast<const uint32_t*>(m_FebBlock+off1+12);
205 if (dim1>=16+radd)
206 m_RaddPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off1+16);
207 if (dim1>=80+radd)
208 m_EnergyPointer=reinterpret_cast<const uint16_t*> (m_FebBlock+off1+16+radd);
209 if (dim1>=84+radd)
210 m_SumPointer=reinterpret_cast<const int32_t*>(m_FebBlock+off1+80+radd);
211 if (dim1>84+radd)
212 m_TimeQualityPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off1+84+radd);
213 }
214 if (off2 && dim2+off2+off<m_FebBlockSize) {
215 m_DigitsPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off2+off);
216 }
217 if (off3 && dim3+off3+off<m_FebBlockSize) {
218 m_RawDataPointer=reinterpret_cast<const uint16_t*>(m_FebBlock+off3+off);
219 }
220 }
221 }
222
223 problem=0;
224 // Recheck offsets
225 if(off1< off2 && off1 + dim1 > off2) problem = 1;
226 if(off1< off3 && off1 + dim1 > off3) problem = 2;
227 if(off2< off1 && off2 + dim2 > off1) problem = 3;
228 if(off2< off3 && off2 + dim2 > off3) problem = 4;
229 if(off3< off1 && off3 + dim3 > off1) problem = 5;
230 if(off3< off2 && off3 + dim3 > off2) problem = 6;
231
232 if(problem) {
234 std::cout << "LArByteStreamProblem " << problem << std::endl;
235 std::cout << "Unrecoverable problem" << std::endl;
236 }
237
238 //uint32_t febId = getHeader32(FEBID);
239 //uint32_t onCheck = onlineCheckSum();
240 //uint32_t offCheck = offlineCheckSum();
241 //
242 //mycheck_tot++;
243 //if(onCheck!=offCheck)
244 //{
245 // mycheck_err++;
246 // std::cout << "FebID checksum " << std::hex << febId << std::endl;
247 // std::cout << "Online checksum " << std::hex << onCheck << " Offline checksum " << offCheck << std::dec << std::endl;
248 // std::cout << "Diff1 checksum " << std::hex << onCheck-offCheck << " Diff2 checksum " << offCheck-onCheck << std::dec << std::endl;
249 // double x=mycheck_err/((double) mycheck_tot)*100.0;
250 // std::cout << "Number of FEB in error: " << mycheck_err << " / " << mycheck_tot << " = " << x << " %" << std::endl;
251 //}
252
253 //
254 //if(febId==0x3b1b8000 || febId==0x398b0000 || febId==0x3a988000) {
255 //if(onCheck!=offCheck) {
256 // std::cout << "***********************************************************************"<< std::endl;
257 // std::cout << "Problem :" << problem << std::endl;
258 // std::cout << "Header values :"<< std::endl;
259 // std::cout << "************************************************************************"<< std::endl;
260 // std::cout << "FebBlockSize = " << m_FebBlockSize << std::endl;
261 // std::cout << "EnergyIndex = " << m_EnergyIndex << std::endl;
262 // std::cout << "TimeQualityIndex = " << m_TimeQualityIndex << std::endl;
263 // std::cout << "DigitsIndex = " << m_DigitsIndex << std::endl;
264 // std::cout << "DigitsChannel = " << m_DigitsChannel << std::endl;
265 // std::cout << "RawDataIndex = " << m_RawDataIndex << std::endl;
266 // std::cout << "GainPointer = " << m_GainPointer << std::endl;
267 // std::cout << "MaskTimeQualityPointer = " << m_MaskTimeQualityPointer << std::endl;
268 // std::cout << "MaskDigitsPointer = " << m_MaskDigitsPointer << std::endl;
269 // std::cout << "RaddPointer = " << m_RaddPointer << std::endl;
270 // std::cout << "EnergyPointer = " << m_EnergyPointer << std::endl;
271 // std::cout << "SumPointer = " << m_SumPointer << std::endl;
272 // std::cout << "TimeQualityPointer = " << m_TimeQualityPointer << std::endl;
273 // std::cout << "DigitsPointer = " << m_DigitsPointer << std::endl;
274 // std::cout << "RawDataPointer = " << m_RawDataPointer << std::endl;
275 // std::cout << "numberHotCell = " << std::dec << getNbSweetCells1() << " " << getNbSweetCells2() << std::endl;
276 // std::cout << "Fragment @ = 0x" << std::hex << m_FebBlock << std::endl;
277 // std::cout << "NWTot = " << std::dec << getNumberOfWords() << std::endl;
278 // std::cout << "FebID = 0x" << std::hex << getHeader32(FEBID) << std::endl;
279 // std::cout << "FebSN = 0x" << std::hex << getHeader32(FEB_SN) << std::endl;
280 // std::cout << "ResultsOff1 = 0x" << std::hex << getHeader16(ResultsOff1) << std::endl;
281 // std::cout << "ResultsDim1 = 0x" << std::hex << getHeader16(ResultsDim1) << std::endl;
282 // std::cout << "ResultsOff2 = 0x" << std::hex << getHeader16(ResultsOff2) << std::endl;
283 // std::cout << "ResultsDim2 = 0x" << std::hex << getHeader16(ResultsDim2) << std::endl;
284 // std::cout << "RawDataBlkOff = 0x" << std::hex << getHeader16(RawDataBlkOff) << std::endl;
285 // std::cout << "RawDataBlkDim = 0x" << std::hex << getHeader16(RawDataBlkDim) << std::endl;
286 // std::cout << "Event status = 0x" << std::hex << getStatus() << std::dec << std::endl;
287 // std::cout << "************************************************************************"<< std::dec << std::endl;
288 // int size = getNumberOfWords();
289 // for(int i=0;i<size;i++) {
290 // std::cout << std::hex << i << " : " << std::hex << m_FebBlock+i << " : " << std::hex << m_FebBlock[i] << std::endl;
291 // }
292 //}
293
294 }
295
296 return true;
297}
298
299int LArRodBlockPhysicsV6::getNextRawData(int& channelNumber, std::vector<short>& samples, uint32_t& gain)
300{
301#ifdef LARBSDBGOUTPUT
302 MsgStream logstr(Athena::getMessageSvc(), BlockType());
303 //Debug output
304 logstr << MYLEVEL << "Let s go in getNextRawData..." << endmsg;
305 logstr << MYLEVEL << "GetNextRawData for FEB 0x" << MSG::hex << (uint32_t)getHeader32(FEBID) << MSG::dec << endmsg;
306 logstr << MYLEVEL << "m_RawDataPointer=" << m_RawDataPointer << " m_RawDataIndex="<< m_RawDataIndex
307 << " m_channelsPerFEB=" << m_channelsPerFEB << endmsg;
308#endif
309
310 if (m_RawDataIndex>=m_channelsPerFEB) { //Already beyond maximal number of channels
311#ifdef LARBSDBGOUTPUT
312 logstr << MYLEVEL << "Maximum number of channels reached" << endmsg;
313#endif
314 return 0;
315 }
316 //const uint16_t block = getHeader16(m_RawDataOff);//Position of the raw FEB data block
317 if (!m_RawDataPointer) { //Block does not exist
318 // Try to get samples and gain from getNextDigits
319 return getNextDigits(channelNumber,samples,gain);
320 }
321
322 // Get next channel
323 unsigned rodChannelNumber=m_RawDataIndex; // Index of Channel in ROD-Block
324 channelNumber=((rodChannelNumber&0xe)<<2) + ((rodChannelNumber&0x1)<<6) + (rodChannelNumber>>4); //channel number of the FEB
325 //channelNumber=(rodChannelNumber>>4) + ((rodChannelNumber&0xf)<<3); //channel number of the FEB
326 uint32_t febgain;
327 const unsigned int nsamples = getHeader16(NSamples) & 0xff;
328 const unsigned int ngains = getHeader16(NGains);
329
330#ifdef LARBSDBGOUTPUT
331 logstr << MYLEVEL << "This FEB has " << nsamples << " samples" << endmsg;
332 logstr << MYLEVEL << "This FEB has " << ngains << " gains" << endmsg;
333#endif
334
335 if(ngains==0 || nsamples==0) return 0;
336 int s_size = nsamples+1;
337 int offset = (10+nsamples)&0xfffc;
338 int index;
339 index = s_size*m_RawDataIndex + offset;
340 uint16_t s[2];
341 //for(unsigned int i=0;i<nsamples+1;i++) {
342 // if(m_RawDataPointer[index+i]>>14) {
343 // std::cout << "Trying to decode strange raw data value: " << std::hex << m_RawDataPointer[index+i] << std::dec << std::endl;
344 // }
345 //}
346 if((nsamples+1)&0x7) {
347 s[0] = m_RawDataPointer[index++]>>2;
348 febgain = m_RawDataPointer[index++];
349 samples.push_back(s[0]);
350 for(unsigned int i=0;i<nsamples/2;i++) {
351 s[1] = m_RawDataPointer[index++]>>2;
352 s[0] = m_RawDataPointer[index++]>>2;
353 samples.push_back(s[0]);
354 samples.push_back(s[1]);
355 }
356 } // End of check for 5 samples
357 else {
358 if (!(m_RawDataIndex%2)) {
359 s[0] = m_RawDataPointer[index++]>>2;
360 febgain = m_RawDataPointer[index++];
361 samples.push_back(s[0]);
362 for(unsigned int i=0;i<nsamples/2;i++) {
363 s[1] = m_RawDataPointer[index++]>>2;
364 s[0] = m_RawDataPointer[index++]>>2;
365 samples.push_back(s[0]);
366 samples.push_back(s[1]);
367 }
368 } else {
369 for(unsigned int i=0;i<nsamples/2;i++) {
370 s[1] = m_RawDataPointer[index++]>>2;
371 s[0] = m_RawDataPointer[index++]>>2;
372 samples.push_back(s[0]);
373 samples.push_back(s[1]);
374 }
375 febgain = m_RawDataPointer[index++];
376 s[0] = m_RawDataPointer[index++]>>2;
377 samples.push_back(s[0]);
378 }
379 } // End of >5 check
380 gain=RawToOfflineGain(febgain);
381
382#ifdef LARBSDBGOUTPUT
383 logstr << MYLEVEL << " ===> ROD Channel = " << m_RawDataIndex << endmsg;
384 logstr << MYLEVEL << " ===> FEB Channel = " << channelNumber << endmsg;
385 logstr << MYLEVEL << " ===> Gain = " << gain << endmsg;
386 for(int i=0;i<nsamples;i++)
387 logstr << MYLEVEL << " ===> sample " << i << " = " << samples[i] << endmsg;
388 int n = m_RawDataIndex;
389 int32_t e,t,q;
390 uint32_t g;
392#endif
393 //std::cout << "Gain= " << gain << " Febgain=" << febgain << std::endl;
395 unsigned rearrangeFirstSample=0;
397 rearrangeFirstSample=m_rearrangeFirstSample; //Overwrite by jobOptions
398 else
399 rearrangeFirstSample=getFirstSampleIndex();
400 //std::cout << "FebConfig: "<< getFebConfig() << " FirstSampleIndex " << rearrangeFirstSample <<std::endl;
401 if (rearrangeFirstSample && rearrangeFirstSample<samples.size()) //FIXME: Very ugly hack! See explanation in LArRodDecoder.h file
402 {//Change e.g. 3 0 1 2 4 to 0 1 2 3 4
403 short movedSample=samples[0];
404 for (unsigned i=1;i<=rearrangeFirstSample;i++)
405 samples[i-1]=samples[i];
406 samples[rearrangeFirstSample]=movedSample;
407 }
408#ifdef LARBSDBGOUTPUT
409 logstr << MYLEVEL << "GetNextRawData for FEB finished 0x" << MSG::hex << (uint32_t)getHeader32(FEBID) << MSG::dec << endmsg;
410#endif
411 return 1;
412}
413
414int LArRodBlockPhysicsV6::getNextDigits(int& channelNumber, std::vector<short>& samples, uint32_t& gain)
415{
416 //std::cout << " I am here !!!!!!!!!!!!!!!!!!!!!! " << std::endl;
417#ifdef LARBSDBGOUTPUT
418 MsgStream logstr(Athena::getMessageSvc(), BlockType());
419 //Debug output
420 logstr << MYLEVEL << "Let s go in getNextDigits..." << endmsg;
421 logstr << MYLEVEL << "GetNextDigits for FEB 0x" << MSG::hex << (uint32_t)getHeader32(FEBID) << MSG::dec << endmsg;
422 logstr << MYLEVEL << "m_DigitsPointer=" << m_DigitsPointer << " m_DigitsIndex="<< m_DigitsIndex
423 << " m_DigitsChannel="<< m_DigitsChannel
424 << " m_channelsPerFEB=" << m_channelsPerFEB << endmsg;
425#endif
426
427 if (m_DigitsChannel>=m_channelsPerFEB) { //Already beyond maximal number of channels
428#ifdef LARBSDBGOUTPUT
429 logstr << MYLEVEL << "Maximum number of channels reached" << endmsg;
430#endif
431 return 0;
432 }
433 //const uint16_t block = getHeader16(m_DigitsOff);//Position of the raw FEB data block
434 if (!m_DigitsPointer) { //Block does not exist
435#ifdef LARBSDBGOUTPUT
436 logstr << MYLEVEL << "No Digits Block in this FEB" << endmsg;
437#endif
438 return 0;
439 }
440 if (!m_MaskDigitsPointer) { //Block does not exist
441#ifdef LARBSDBGOUTPUT
442 logstr << MYLEVEL << "No Mask Digits Block in this FEB" << endmsg;
443#endif
444 return 0;
445 }
446
447 // Get Digits if the information is present according to summary block
448 uint32_t hasDigits;
449
450 hasDigits = (uint32_t) ((m_MaskDigitsPointer[m_DigitsChannel>>5] >> (m_DigitsChannel&0x1f)) &0x1);
451 // Increment channel number until digits are found
452 while(hasDigits==0) {
454 if (m_DigitsChannel>=m_channelsPerFEB) { //Already beyond maximal number of channels
455#ifdef LARBSDBGOUTPUT
456 logstr << MYLEVEL << "Maximum number of channels reached" << endmsg;
457#endif
458 return 0;
459 }
460 hasDigits = (uint32_t) ((m_MaskDigitsPointer[m_DigitsChannel>>5] >> (m_DigitsChannel&0x1f)) &0x1);
461 }
462
463 // Get next channel
464 unsigned rodChannelNumber=m_DigitsChannel; // Index of Channel in ROD-Block
465 channelNumber=((rodChannelNumber&0xe)<<2) + ((rodChannelNumber&0x1)<<6) + (rodChannelNumber>>4); //channel number of the FEB
466 //channelNumber=(rodChannelNumber>>4) + ((rodChannelNumber&0xf)<<3); //channel number of the FEB
467 const unsigned int nsamples = getHeader16(NSamples) & 0xff;
468
469 // gain in 2 bits of a 32 bits word
470 if(m_GainPointer) {
471 gain = (uint32_t) ((m_GainPointer[m_DigitsChannel>>4] >> (m_DigitsChannel&0xf)*2) & 0x3);
472 gain=RawToOfflineGain(gain);
473 } else gain=0xffffffff;
474
475#ifdef LARBSDBGOUTPUT
476 logstr << MYLEVEL << "This FEB has " << nsamples << " samples" << endmsg;
477#endif
478
479 if(nsamples==0) return 0;
480 int s_size = nsamples;
481 int index;
482 index = s_size*m_DigitsIndex;
483 //uint16_t s;
484 //for(unsigned int i=0;i<nsamples;i++) {
485 // s = m_DigitsPointer[index++]>>2;
486 // samples.push_back(s);
487 //}
488 //int ok=1;
489 //for(unsigned int i=0;i<nsamples;i++) {
490 // if(m_DigitsPointer[index+i]>>14 && m_DigitsIndex<getNbSweetCells2()-1) {
491 // std::cout << "Trying to decode strange digits value: " << std::hex << m_DigitsPointer[index+i] << std::dec << std::endl;
492 // ok=0;
493 // }
494 //}
495 if( nsamples&0x1){
496 if(m_DigitsIndex&0x1) {
497 samples.push_back(m_DigitsPointer[index-1]>>2);
498 samples.push_back(m_DigitsPointer[index+2]>>2);
499 samples.push_back(m_DigitsPointer[index+1]>>2);
500 samples.push_back(m_DigitsPointer[index+4]>>2);
501 samples.push_back(m_DigitsPointer[index+3]>>2);
502 if(nsamples==7) {
503 samples.push_back(m_DigitsPointer[index+6]>>2);
504 samples.push_back(m_DigitsPointer[index+5]>>2);
505 }
506 } else {
507 samples.push_back(m_DigitsPointer[index+1]>>2);
508 samples.push_back(m_DigitsPointer[index+0]>>2);
509 samples.push_back(m_DigitsPointer[index+3]>>2);
510 samples.push_back(m_DigitsPointer[index+2]>>2);
511 samples.push_back(m_DigitsPointer[index+5]>>2);
512 if(nsamples==7) {
513 samples.push_back(m_DigitsPointer[index+4]>>2);
514 samples.push_back(m_DigitsPointer[index+7]>>2);
515 }
516 }
517 } else {
518 samples.push_back(m_DigitsPointer[index+1]>>2);
519 samples.push_back(m_DigitsPointer[index+0]>>2);
520 samples.push_back(m_DigitsPointer[index+3]>>2);
521 samples.push_back(m_DigitsPointer[index+2]>>2);
522 }
523
524#ifdef LARBSDBGOUTPUT
525 logstr << MYLEVEL << " ===> ROD Channel = " << m_DigitsChannel << endmsg;
526 logstr << MYLEVEL << " ===> FEB Channel = " << channelNumber << endmsg;
527 logstr << MYLEVEL << " ===> Gain = " << gain << endmsg;
528 for(int i=0;i<nsamples;i++)
529 logstr << MYLEVEL << " ===> sample " << i << " = " << samples[i] << endmsg;
530#endif
531 //std::cout << "Gain= " << gain << " Febgain=" << febgain << std::endl;
534 unsigned rearrangeFirstSample=0;
536 rearrangeFirstSample=m_rearrangeFirstSample; //Overwrite by jobOptions
537 else
538 rearrangeFirstSample=getFirstSampleIndex();
539 //std::cout << "FebConfig: "<< getFebConfig() << " FirstSampleIndex " << getFirstSampleIndex() <<std::endl;
540 if (rearrangeFirstSample && rearrangeFirstSample<samples.size()) //FIXME: Very ugly hack! See explanation in LArRodDecoder.h file
541 {//Change e.g. 3 0 1 2 4 to 0 1 2 3 4
542 short movedSample=samples[0];
543 for (unsigned i=1;i<=rearrangeFirstSample;i++)
544 samples[i-1]=samples[i];
545 samples[rearrangeFirstSample]=movedSample;
546 }
547#ifdef LARBSDBGOUTPUT
548 logstr << MYLEVEL << "GetNextDigits for FEB finished 0x" << MSG::hex << (uint32_t)getHeader32(FEBID) << MSG::dec << endmsg;
549#endif
550 return 1;
551}
552
554{
555 if(!m_RaddPointer) return 0;
556 return m_RaddPointer[1]>>8;
557}
558
560{
561 if(!m_RaddPointer) return 0;
562 return m_RaddPointer[1] & 0xff;
563}
564
566{
567 if(!m_MaskTimeQualityPointer) return 0;
568 int n=0;
569 for(int i=0;i<4;i++)
570 for(int j=0;j<32;j++)
571 if((m_MaskTimeQualityPointer[i] >> j) &0x1) n++;
572 return n;
573}
574
576{
577 if(!m_MaskDigitsPointer) return 0;
578 int n=0;
579 for(int i=0;i<4;i++)
580 for(int j=0;j<32;j++)
581 if((m_MaskDigitsPointer[i] >> j) &0x1) n++;
582 return n;
583}
584
586{
587 return getHeader16(NSamples);
588}
589
591{
592 return getHeader16(NGains);
593}
594
596{
597 return getHeader16(ResultsDim1);
598}
599
601{
602 return getHeader16(ResultsDim2);
603}
604
606{
608}
609
610uint32_t LArRodBlockPhysicsV6::getRadd(uint32_t adc, uint32_t sample) const
611{
612 if(!m_RawDataPointer) {
613 if(!m_RaddPointer) return 0;
614 if(sample%2) sample+=2;
615 return m_RaddPointer[sample];
616 }
617 int index;
618 if(sample==0) index=6;
619 else if(sample & 0x1) index=7+sample-1;
620 else index=7+sample+1;
621 uint32_t x=m_RawDataPointer[index];
622 if(adc>=8) return x>>8;
623 return x&0xff;
624}
625
626uint16_t LArRodBlockPhysicsV6::getCtrl1(uint32_t /*adc*/) const
627{
628 if(!m_RawDataPointer) return 0;
629 int index=5;
630 uint16_t x=m_RawDataPointer[index];
631 return x;
632}
633
634uint16_t LArRodBlockPhysicsV6::getCtrl2(uint32_t /*adc*/) const
635{
636 if(!m_RawDataPointer) return 0;
637 int index=4;
638 uint16_t x=m_RawDataPointer[index];
639 return x;
640}
641
642uint16_t LArRodBlockPhysicsV6::getCtrl3(uint32_t /*adc*/) const
643{
644 if(!m_RawDataPointer) return 0;
645 int index=7;
646 uint16_t x=m_RawDataPointer[index];
647 return x;
648}
649
651{
652 if(getNumberOfWords()<EventStatus/2) return 0;
653 uint32_t x=getHeader32(EventStatus);
654 return x;
655}
656
657/*
658uint32_t LArRodBlockPhysicsV6::onlineCheckSum() const
659{
660 //int size = getNumberOfWords();
661 int index = getNumberOfWords()-1;
662 if(index<m_iHeadBlockSize) return 0;
663 uint32_t sum = m_FebBlock[index];
664 //for(int i=size-10;i<size;i++) {
665 // std::cout << i << " : " << std::hex << m_FebBlock+i << " : " << m_FebBlock[i] << std::endl;
666 //}
667 return sum;
668}
669
670uint32_t LArRodBlockPhysicsV6::offlineCheckSum() const
671{
672 int end = getNumberOfWords()-3;
673 //int start = 0; //m_iHeadBlockSize;
674 uint32_t sum = 0;
675 for(int i=0;i<end;i++) {
676 sum += m_FebBlock[i];
677 //std::cout << i << " : " << std::hex << sum << " : " << m_FebBlock[i] << std::endl;
678 }
679 return sum & 0x7fffffff;
680}
681*/
682
683// start of encoding methods
684void LArRodBlockPhysicsV6::initializeFragment(std::vector<uint32_t>& fragment ){
685 m_pRODblock=&fragment; //remember pointer to fragment
686 if (fragment.size()>m_iHeadBlockSize) { //Got filled fragment
687 unsigned int sizeRead=0;
688 //Store existing data in the FEB-Map
689 while (sizeRead<fragment.size()) {
690 std::vector<uint32_t>::iterator FebIter;
691 FebIter=fragment.begin()+sizeRead; //Store pointer to current Feb-Header
692 m_FebBlock=&(*FebIter); //Set m_FebBlock in order to use getHeader-functions.
693 uint32_t currFEBid=getHeader32(FEBID); //Get this FEB-ID
694 uint16_t currFebSize=getNumberOfWords(); //Size of this FEB-Block
695 if (FebIter+currFebSize>fragment.end()) {
696 fragment.clear(); //Clear existing vector
697 //*m_logstr << MSG::ERROR << "Got inconsistent ROD-Fragment!" << endmsg;
698 return;
699 }
700 m_mFebBlocks[currFEBid].assign(FebIter,FebIter+currFebSize); //Copy data from ROD-fragment into FEB-Block
701 sizeRead+=currFebSize+m_MiddleHeaderSize; //6 is the middle header size
702 //LARBSDBG("Found FEB-id " << currFEBid << " in existing ROD-Fragment");
703 } // end while
704 }
705 fragment.clear(); //Clear existing vector
706 return;
707
708}
709
710//For writing: Initalizes a single FEB-Block
712{
714 if (m_vFragment->size()<m_iHeadBlockSize) //Got empty or spoiled fragment
715 {
716 m_vFragment->resize(m_iHeadBlockSize,0); //Initialize FEB-Header
717 setHeader32(FEBID,id); //Set Feb ID
718 // At least 10 (head) + 16 (gain/sumblks) + 64 (energies)
719 m_vFragment->reserve(90);
720 }
721
722 m_SumBlkBlockE1.resize(4);
723 for(unsigned int i=0;i<4;i++) m_SumBlkBlockE1[i]=0x0;
724 m_SumBlkBlockE2.resize(4);
725 for(unsigned int i=0;i<4;i++) m_SumBlkBlockE2[i]=0x0;
726 m_GainBlock.resize(8);
727 for(unsigned int i=0;i<8;i++) m_GainBlock[i]=0x0;
728// m_RawDataBlock.resize(0);
729 m_TimeQualityBlock.resize(8);
730 for(unsigned int i=0;i<8;i++) m_TimeQualityBlock[i]=0x0;
731 m_EnergyBlockEncode.resize(128);
732 for(unsigned int i=0;i<128;i++) m_EnergyBlockEncode[i]=0x0;
733 m_DigitsEncode.clear();
734
736
737}
738
739void LArRodBlockPhysicsV6::setNextEnergy(const int channel, const int32_t energy,
740 const int32_t time, const int32_t quality, const uint32_t gain)
741{
742 //LARBSDBG("setNextEnergy-------------------->>>>>********************** format V4 ***********");
743 //LARBSDBG("Channel=" << channel << " energy =" << energy);
744 int rcNb=FebToRodChannel(channel);
745 //int rcNb=(channel);
746 //rcNb ist supposed to equal or bigger than m_EIndex.
747 //In the latter case, we fill up the missing channels with zero
748 if (rcNb<m_EnergyIndex) {
749 //*m_logstr << MSG::ERROR << "LArRODBlockStructure Error: Internal error. Channels not ordered correctly. rcNb=" << rcNb
750 // << " m_EnergyIndex=" << m_EnergyIndex << endmsg;
751 return;
752 }
753
754 //Fill up missing channels with zeros:
755 while (m_EnergyIndex<rcNb)
756 setNextEnergy((int16_t)0,(int16_t)32767,(int16_t)-32767,(uint32_t)0);
757
758 // transform 32 bits data into 16 bits data
759
760 uint16_t theenergy;
761 uint32_t abse,EncodedE;
762 int16_t thetime,thequality;
763 int32_t sign;
764
765 //Time is in 10 ps in ByteStream, hence the factor 10 to convert from ps
766 thetime = (int16_t) time/10;
767 thequality = (int16_t) quality;
768
769 sign=(energy>=0?1:-1); // get sign of energy
770 abse=(uint32_t)abs(energy);
771
772 EncodedE=abse; // range 0
773
774 if ((abse>8192)&&(abse<65536))
775 {
776 EncodedE=((abse>>3)|0x4000); // range 1 : drop last 3 bits and put range bits (bits 14 and 13 = 01)
777 }
778 else if ((abse>65535)&&(abse<524288))
779 {
780 EncodedE=((abse>>6)|0x8000); // range 2 : drop last 6 bits and put range bits (bits 14 and 13 = 10)
781 }
782 else if ((abse>524288))
783 {
784 EncodedE=((abse>>9)|0xc000); // range 3 : drop last 9 bits and put range bits (bits 14 and 13 = 11)
785 }
786
787 // treat sign now :
788
789 if (sign<0) EncodedE |= 0x2000;
790 theenergy = (uint16_t) EncodedE;
791
792
793 // Add data...
794
795 //LARBSDBG("setNextEnergy-------------------->>>>> Energy = "<< energy << " Encoded Energy =" << theenergy);
796
797 if (abse> m_EnergyThreshold1)
798 {
799 setNextEnergy(theenergy,thetime,thequality,gain);
800 }
801 else
802 {
803 setNextEnergy(theenergy,(int16_t)32767,(int16_t)-32767,gain);
804 }
805 return;
806}
807
808//Private function, expects channel number is rod-style ordering
809void LArRodBlockPhysicsV6::setNextEnergy(const uint16_t energy,const int16_t time, const int16_t quality, const uint32_t gain)
810{
811 if (m_EnergyIndex>=m_channelsPerFEB) //Use m_EIndex to count total number of channels
812 {//*m_logstr << MSG::ERROR << "LArRodBlockStructure Error: Attempt to write Energy for channel "
813 // << m_EnergyIndex << " channels into a FEB!" <<endmsg;
814 return;
815 }
816 //LARBSDBG("LArRodBlockStructure: Setting Energy for channel " << m_EnergyIndex << ". E=" << energy);
817
818 //LARBSDBG("In setNextEnergy-------------------->>>>> time = " << time << " quality=" << quality);
819
820 // Energy
821 int endianindex;
822 if (m_EnergyIndex & 0x1) endianindex = m_EnergyIndex-1;
823 else endianindex = m_EnergyIndex+1;
824 m_EnergyBlockEncode[endianindex] = energy;
825
826 // Find correct position
827
828 //LARBSDBG("Writing Raw data to E block. E=" << energy);
829
830 // update summary block
831 // Gain is composed of two bits per cell
832 uint16_t gain_idx=m_EnergyIndex>>4;
833 uint16_t gain_bit=(m_EnergyIndex&0xf)*2;
834 uint32_t gain1 = OfflineToRawGain(gain);
835 m_GainBlock[gain_idx] |= (gain1 << gain_bit);
836
837 // write Time and Chi2 for cells above HighEnergyCellCut threshold
838
839 if (quality!=-32767) // Do write Time and Chi2 information
840 {
841 // count the number of hot cells
843 // count the number of cells offtime
844 if (abs(time)>m_OffTimeCut) m_numberHotCellOffTime++;
845 uint16_t mask_idx=m_EnergyIndex>>5;
846 uint16_t mask_bit=(m_EnergyIndex&0x1f);
847 m_SumBlkBlockE1[mask_idx] |= (0x1 << mask_bit);
848
849 m_TimeQualityBlock.push_back(*((uint16_t*)&time));
850 m_TimeQualityBlock.push_back(*((uint16_t*)&quality));
851 }
852 m_EnergyIndex++; //Use m_EIndex to count the channels put in the Energy block
853
854}
855
856void LArRodBlockPhysicsV6::setRawData(const int chIdx, const std::vector<short>& samples , const uint32_t /* gain_not_used */ ){
857
858 // First of all, set the bits
859 int cchIdx = FebToRodChannel(chIdx);
860 uint16_t mask_idx=cchIdx>>5;
861 uint16_t mask_bit=(cchIdx&0x1f);
862 m_SumBlkBlockE2[mask_idx] |= (0x1 << mask_bit);
863 for(std::vector<short>::const_iterator i=samples.begin();i!=samples.end();++i){
864 m_DigitsEncode.push_back((*i)<<2);
865 }
866
867}
868
870{
871//Complete non-complete Energy block
873 setNextEnergy((uint16_t)0,(int16_t)32767,(int32_t)-32767,(uint32_t)0);//E=0,t=32767,q=-32767,G=0
874
875uint16_t n;
876//uint16_t BlockOffset;
877uint16_t nsamples=5;
878// checkSum value
879uint32_t sum=0;
880
881// Will Hardcode here for the moment FIXME. Minimal 1 sample
883setHeader16(NSamples,nsamples);
884// These will never be used form MC. Nice to put in here thought
885setHeader16(FEB_SN,0xfefe);
886setHeader16(FEB_SN_h,0xdede);
889
890// Gain block...
891n = m_GainBlock.size();
892//BlockOffset=0;
893//LARBSDBG("Checking Gain Block n=" << n << "BlockOffset=" << BlockOffset);
894//Check if Gain-Block exists and is not yet part of the fragment
895if (n)
896 {
897 //LARBSDBG(MSG::DEBUG << "In finalyseFEB-------------------->>>>> " << "Checking for Gain Block : length= " << n << " BlockOffset=" << BlockOffset);
898 for(unsigned int i=0;i<n;i++){
899 m_vFragment->push_back(m_GainBlock[i]);
900 sum+=m_GainBlock[i];
901 }
902 }
903
904 // Cells above energy threshold E1
905 n = m_SumBlkBlockE1.size();
906 //Check if Summary Block exists and is not yet part of the fragment
907 if (n)
908 {
909 //LARBSDBG("In finalizeFEB-------------------->>>>> " << "Checking for Summary Block : length= " << n << " BlockOffset=" << BlockOffset);
910 for (unsigned i=0;i<n;i++){
911 m_vFragment->push_back(m_SumBlkBlockE1[i]);
912 sum+=m_SumBlkBlockE1[i];
913 }
914 }
915
916 // Cells above energy threshold E2 (not included so far)
917 n = m_SumBlkBlockE2.size();
918 //Check if Summary Block exists and is not yet part of the fragment
919 //LARBSDBG("Checking for Summary Block n=" << n << "BlockOffset=" << BlockOffset);
920 if (n)
921 {
922 //LARBSDBG("In finalizeFEB-------------------->>>>> " << "Checking for Summary Block : length= " << n << " BlockOffset=" << BlockOffset);
923 for (unsigned i=0;i<n;i++){
924 m_vFragment->push_back(m_SumBlkBlockE2[i]);
925 sum+=m_SumBlkBlockE2[i];
926 }
927 }
928
929 // fill info from counters
930 // for moment just include 1 fake words (32 bits) to put radd
931 uint32_t radd_nANC=0x0;
932 // Second threshold missing (FIXME)
933 radd_nANC = ((m_numberHotCell<<8))+(m_DigitsEncode.size()/nsamples);
934 radd_nANC = (radd_nANC<<16);
935 m_vFragment->push_back(radd_nANC);
936 sum+=radd_nANC;
937 // Need to include radd nsamples-1
938 // No need to include in sum's for now
939 for( int i=0; i < (nsamples-1)/2; i++)
940 m_vFragment->push_back(0x0);
941
942
943 // Energy block...
944 n = 128 ; // Fixed size m_EnergyBlock.size();
945 // BlockOffset=getVectorHeader16(ResultsOff1); xxx
946 // Block also include time, whenever necessary
947 int size_of_block=80+(nsamples+1)/2+(m_TimeQualityBlock.size())/2;
948 //LARBSDBG("Checking Energy Block n=" << n << "BlockOffset=" << BlockOffset);
949 //Check if Energy-Block exists and is not yet part of the fragment
950 if (n)
951 {
953 setHeader16(ResultsDim1,size_of_block);
954 //LARBSDBG("In finalyseFEB-------------------->>>>> " << "Checking for Energy Block : length= " << n << " BlockOffset=" << BlockOffset);
955 for(unsigned int i=0;i<n/2;i++) {
956 // WARNING witch one should be >>16 2*i or 2*i+1? To be tested
957 uint32_t Encode = m_EnergyBlockEncode[2*i]+(m_EnergyBlockEncode[2*i+1]<<16);
958 m_vFragment->push_back(Encode);
959 sum+=Encode;
960 }
961 }
962
963 // Magic numbers (4 or 8) for Ex, Ey and Ez
964 n = m_TimeQualityBlock.size();
965 //LARBSDBG("Checking Time and Quality Block n=" << n << "BlockOffset=" << BlockOffset);
966 //Check if Time and Quality Block exists and is not yet part of the fragment
967 if (n)
968 {
969 unsigned int imax = n/2;
970 for(unsigned int i=0;i<imax;i++){
971 ShortLong to_push{};
972 to_push.s[0] = m_TimeQualityBlock[i*2];
973 to_push.s[1] = m_TimeQualityBlock[i*2+1];
974 m_vFragment->push_back(to_push.l);
975 sum+=to_push.l;
976 }
977 }
978 // Now include digits
979 n = m_DigitsEncode.size();
980 if ( n ) {
981 // First make sure it is not and odd number to store
982 if ( m_DigitsEncode.size() & 0x1 ) m_DigitsEncode.push_back(0x0);
983 unsigned int imax=m_DigitsEncode.size()/2;
984 for(unsigned int i=0;i<imax;i++){
985 // Better by-swap
986 ShortLong to_push{};
987 to_push.s[1]=m_DigitsEncode[i*2];
988 to_push.s[0]=m_DigitsEncode[i*2+1];
989 m_vFragment->push_back(to_push.l);
990 sum+=to_push.l;
991 }
993 setHeader16(ResultsOff2,18+size_of_block);
994 } // End of check for format
995
996 // Need to add header to check sum
997 for(size_t ii=0;ii<endtag/2;ii++){
998 sum+=((*m_vFragment)[ii]);
999 }
1000 // Three final magic words
1001 m_vFragment->push_back(0x0); // For the moment
1002 m_vFragment->push_back(0x12345678); // For the moment
1003 //sum+=0x12345678;
1004 sum+=m_vFragment->size()+1;
1005 m_vFragment->push_back(sum& 0x7fffffff);
1006
1007 setHeader32(NWTot,m_vFragment->size());
1008 return;
1009
1010}
1011
1012
1014{
1015 FEBMAPTYPE::const_iterator feb_it_b=m_mFebBlocks.begin();
1016 FEBMAPTYPE::const_iterator feb_it_e=m_mFebBlocks.end();
1017 FEBMAPTYPE::const_iterator feb_it;
1018 for (feb_it=feb_it_b;feb_it!=feb_it_e;++feb_it) {
1019 if (feb_it!=feb_it_b) //Not first Feb
1020 m_pRODblock->resize( m_pRODblock->size()+m_MiddleHeaderSize);
1021
1022 //Add feb data to rod data block
1023 m_pRODblock->insert (m_pRODblock->end(),
1024 feb_it->second.begin(), feb_it->second.end());
1025 } //end for feb_it
1026
1027 m_mFebBlocks.clear();
1028 return;
1029}
1030
1031//Sort functions & ordering relation:
1032template<class RAWDATA>
1033bool LArRodBlockPhysicsV6::operator ()
1034 (const RAWDATA* ch1, const RAWDATA* ch2) const
1035{
1036 HWIdentifier id1 = ch1->channelID();
1037 HWIdentifier id2 = ch2->channelID();
1038
1039 HWIdentifier febId1= m_onlineHelper->feb_Id(id1);
1041
1042 if(febId1 == febId2 ){
1043 int cId1 = m_onlineHelper->channel(id1);
1044 int cId2 = m_onlineHelper->channel(id2);
1045 return FebToRodChannel(cId1) < FebToRodChannel(cId2);
1046 }
1047
1048 return febId1 < febId2 ;
1049}
1050
1051
1052#ifdef LARBSDBGOUTPUT
1053#undef LARBSDBGOUTPUT
1054#endif
1055#undef LARBSDBG
#define endmsg
static Double_t sc
HWIdentifier febId1
HWIdentifier febId2
HWIdentifier id2
#define MYLEVEL
int sign(int a)
int imax(int i, int j)
#define x
virtual int getNextRawData(int &channelNumber, std::vector< short > &samples, uint32_t &gain)
uint16_t getFirstSampleIndex() const
virtual uint32_t getNumberOfGains() const
uint16_t getNbSweetCells2FromMask() const
void initializeFEB(const uint32_t id)
virtual uint32_t getStatus() const
const uint16_t * m_DigitsPointer
virtual uint16_t getCtrl1(uint32_t adc) const
virtual uint16_t getRawDataSize() const
virtual uint16_t getCtrl2(uint32_t adc) const
const LArOnlineID * m_onlineHelper
std::vector< uint16_t > m_TimeQualityBlock
void setRawData(const int, const std::vector< short > &, const uint32_t)
virtual int FebToRodChannel(int ch) const
std::vector< uint32_t > m_SumBlkBlockE2
const uint32_t * m_MaskDigitsPointer
virtual uint32_t getRadd(uint32_t adc, uint32_t sample) const
void setNextEnergy(const int channel, const int32_t energy, const int32_t time, const int32_t quality, const uint32_t gain)
const uint16_t * m_EnergyPointer
uint16_t getNbSweetCells1FromMask() const
int getNextDigits(int &channelNumber, std::vector< short > &samples, uint32_t &gain)
virtual uint16_t getCtrl3(uint32_t adc) const
virtual uint16_t getNbSweetCells1() const
const uint16_t * m_RawDataPointer
const uint16_t * m_TimeQualityPointer
std::vector< uint32_t > m_GainBlock
const uint32_t * m_GainPointer
unsigned short m_requiredNSamples
virtual int getNextEnergy(int &channelNumber, int32_t &energy, int32_t &time, int32_t &quality, uint32_t &gain)
std::vector< uint32_t > m_SumBlkBlockE1
virtual uint16_t getResults2Size() const
virtual uint16_t getNbSweetCells2() const
const uint32_t * m_MaskTimeQualityPointer
virtual uint32_t getNumberOfSamples() const
const uint16_t * m_RaddPointer
std::vector< uint16_t > m_DigitsEncode
void initializeFragment(std::vector< uint32_t > &fragment)
virtual uint16_t getResults1Size() const
std::vector< uint16_t > m_EnergyBlockEncode
uint16_t getHeader16(const unsigned n) const
void setHeader32(const unsigned n, const uint32_t w)
uint32_t getHeader32(const unsigned n) const
void setHeader16(const unsigned n, const uint16_t w)
std::vector< uint32_t > * m_pRODblock
uint32_t OfflineToRawGain(const uint32_t gain) const
std::vector< uint32_t > * m_vFragment
uint32_t RawToOfflineGain(const uint32_t gain) const
uint32_t getNumberOfWords() const
singleton-like access to IMessageSvc via open function and helper
IMessageSvc * getMessageSvc(bool quiet=false)
@ LARNGAIN
Definition CaloGain.h:19
Definition index.py:1