Loading [MathJax]/extensions/tex2jax.js
ATLAS Offline Software
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
G4ProcessHelper.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3 */
4 
5 #include "G4ProcessHelper.hh"
6 #include "CustomParticle.h"
8 #include "G4ParticleTable.hh"
9 #include "G4DecayTable.hh"
10 #include "CLHEP/Random/RandFlat.h"
11 #include "CLHEP/Units/PhysicalConstants.h"
12 #include <iostream>
13 #include <fstream>
14 #include <stdexcept>
15 
17 
18 G4ProcessHelper::G4ProcessHelper()
19 {
20  G4cout << "G4ProcessHelper constructor: start" << G4endl;
21  m_parameters = PhysicsConfigurationHelper::Instance();
22  particleTable = G4ParticleTable::GetParticleTable();
23  theProton = particleTable->FindParticle("proton");
24  theNeutron = particleTable->FindParticle("neutron");
25 
26 
27  // I opted for string based read-in, as it would make physics debugging easier later on
28 
29  std::ifstream process_stream ("ProcessList.txt");
30  G4String line;
31  while(getline(process_stream,line)){
32  std::vector<G4String> tokens;
33 
34  //Getting a line
35  ReadAndParse(line,tokens,"#");
36 
37  //Important info
38  G4String incident = tokens[0];
39  // G4cout << "Incident particle: " << incident << G4endl;
40  G4ParticleDefinition* incidentDef = particleTable->FindParticle(incident);
41  G4int incidentPDG = incidentDef->GetPDGEncoding();
42  m_knownParticles[incidentDef]=true;
43 
44  G4String target = tokens[1];
45  // G4cout << "Target particle: " << target << G4endl;
46 
47  // Making a ReactionProduct
48  ReactionProduct prod;
49  for (unsigned int i = 2; i != tokens.size();i++){
50  G4String part = tokens[i];
51  if (particleTable->contains(part))
52  {
53  prod.push_back(particleTable->FindParticle(part)->GetPDGEncoding());
54  } else {
55  G4cout<<"Particle: "<<part<<" is unknown."<<G4endl;
56  G4Exception("G4ProcessHelper", "UnkownParticle", FatalException,
57  "Initialization: The reaction product list contained an unknown particle");
58  }
59  }
60  if (target == "proton"){
61  pReactionMap[incidentPDG].push_back(prod);
62  } else if (target == "neutron") {
63  nReactionMap[incidentPDG].push_back(prod);
64  } else {
65  G4Exception("G4ProcessHelper", "IllegalTarget", FatalException,
66  "Initialization: The reaction product list contained an illegal target particle");
67  }
68  }
69 
70  process_stream.close();
71  G4cout << "Found " << pReactionMap.size() << " proton interactions and " << nReactionMap.size() << " neutron interactions in ProcessList.txt." << G4endl;
72 
73  G4ParticleTable::G4PTblDicIterator* theParticleIterator;
74  theParticleIterator = particleTable->GetIterator();
75 
76  theParticleIterator->reset();
77  while( (*theParticleIterator)() ){
78  G4DecayTable* table = theParticleIterator->value()->GetDecayTable();
79  SetCustomParticleLifeTime(theParticleIterator->value(), table);
80  }
81  theParticleIterator->reset();
82  G4cout << "G4ProcessHelper constructor: end" << G4endl;
83  return;
84 }
85 
86 
87 void G4ProcessHelper::SetCustomParticleLifeTime(G4ParticleDefinition* aPart, bool decaysIdentified) const
88 {
89  CustomParticle* particle = dynamic_cast<CustomParticle*>(aPart);
90  std::string name = aPart->GetParticleName();
91  if (particle) {
92  if (m_parameters->DoDecays() == 1){
93  // Make them decay immediately!!
94  particle->SetPDGStable(false);
95  particle->SetPDGLifeTime(m_parameters->Lifetime()); // Lifetime of nano-seconds
96  G4cout<<"Forcing a decay for "<<name<<G4endl;
97  G4cout<<"Lifetime of: "<<name<<" set to: "<<particle->GetPDGLifeTime()/CLHEP::ns<<" ns."<<G4endl;
98  G4cout<<"Stable: "<<particle->GetPDGStable()<<G4endl;
99  }
100  else if (decaysIdentified && name.find("cloud")>name.size()) {
101  particle->SetPDGLifeTime(m_parameters->Lifetime()); // Lifetime of seconds
102  particle->SetPDGStable(false);
103  G4cout<<"Lifetime of: "<<name<<" set to: "<<particle->GetPDGLifeTime()/CLHEP::s<<" s."<<G4endl;
104  G4cout<<"Stable: "<<particle->GetPDGStable()<<G4endl;
105  }
106  }
107  G4cout << "Done with particle " << name << G4endl;
108 }
109 
110 
111 const G4ProcessHelper* G4ProcessHelper::Instance()
112 {
113  static const G4ProcessHelper instance;
114  return &instance;
115 }
116 
117 
118 G4bool G4ProcessHelper::ApplicabilityTester(const G4ParticleDefinition& aPart) const {
119  try {
120  return m_knownParticles.at(&aPart);
121  }
122  catch (const std::out_of_range& e) {
123  return false;
124  }
125 }
126 
127 G4double G4ProcessHelper::GetInclusiveCrossSection(const G4DynamicParticle *aParticle,
128  const G4Element *anElement) const {
129  //We really do need a dedicated class to handle the cross sections. They might not always be constant
130 
131  //Disassemble the PDG-code
132  const G4int thePDGCode = aParticle->GetDefinition()->GetPDGEncoding();
133  const double boost = (aParticle->GetKineticEnergy()+aParticle->GetMass())/aParticle->GetMass();
134  G4double theXsec = 0;
135  G4String name = aParticle->GetDefinition()->GetParticleName();
136 
137  if(!m_parameters->ReggeModel()){
138  // Flat cross section
139  if (MC::isRGlueball(thePDGCode)) {
140  theXsec = 24 * CLHEP::millibarn;
141  } else {
142  std::vector<G4int> nq=MC::containedQuarks(thePDGCode);
143  for (const G4int & quark : nq) {
144  // 12 mb taken from asymptotic pion-nucleon scattering cross sections
145  if (quark == MC::DQUARK || quark == MC::UQUARK) theXsec += 12 * CLHEP::millibarn;
146  // 6 mb taken from asymptotic kaon-nucleon scattering cross sections
147  // No data for D or B, so setting to behave like a kaon
148  if (MC::isStrange(quark) || MC::isCharm(quark) || MC::isBottom(quark)) theXsec += 6 * CLHEP::millibarn;
149  }
150  }
151  } else {
152  // From Eur. Phys. J. C (2010) 66: 493-501
153  // DOI 10.1140/epjc/s10052-010-1262-1
154  double R = Regge(boost);
155  double P = Pom(boost);
156  const bool containsSquark(MC::hasSquark(thePDGCode, MC::BQUARK) || MC::hasSquark(thePDGCode, MC::TQUARK));
157  if (containsSquark) {
158  if (MC::isRBaryon(thePDGCode)) { // ~q q q
159  theXsec = (thePDGCode > 0) ? 2*P*CLHEP::millibarn : (2*(P+R)+30/sqrt(boost))*CLHEP::millibarn;
160  }
161  else if (MC::isRMeson(thePDGCode)) { // ~q qbar
162  theXsec = (thePDGCode > 0) ? (P+R)*CLHEP::millibarn : P*CLHEP::millibarn;
163  }
164  }
165  else {
166  if (MC::isRBaryon(thePDGCode)) { theXsec=3*P*CLHEP::millibarn; } // ~g q q q
167  else if (MC::isRMeson(thePDGCode) || MC::isRGlueball(thePDGCode)) { theXsec=(R+2*P)*CLHEP::millibarn; } // ~g q qbar or ~g g or ~g g g
168  }
169  }
170 
171 
172 
173  //Adding resonance
174 
175  if(m_parameters->Resonant())
176  {
177  // Described in Section 5.1 of http://r-hadrons.web.cern.ch/r-hadrons/download/mackeprang_thesis.pdf
178  // mentioned but dismissed in Section 3.3 of https://arxiv.org/pdf/hep-ex/0404001.pdf
179  double e_0 = m_parameters->ResonanceEnergy() + aParticle->GetDefinition()->GetPDGMass(); //Now total energy
180 
181  e_0 = sqrt(aParticle->GetDefinition()->GetPDGMass()*aParticle->GetDefinition()->GetPDGMass()
182  + theProton->GetPDGMass()*theProton->GetPDGMass()
183  + 2.*e_0*theProton->GetPDGMass());
184  const double sqrts=sqrt(aParticle->GetDefinition()->GetPDGMass()*aParticle->GetDefinition()->GetPDGMass()
185  + theProton->GetPDGMass()*theProton->GetPDGMass() + 2*aParticle->GetTotalEnergy()*theProton->GetPDGMass());
186  const double gamma = m_parameters->Gamma();
187  const double res_result = m_parameters->Amplitude()*(gamma*gamma/4.)/((sqrts-e_0)*(sqrts-e_0)+(gamma*gamma/4.));//Non-relativistic Breit Wigner
188 
189  theXsec += res_result;
190  }
191 
192 
193  return theXsec * pow(anElement->GetN(),0.7)*1.25 * m_parameters->XsecMultiplier();// * 0.523598775598299;
194 
195 }
196 
197 ReactionProduct G4ProcessHelper::GetFinalState(const G4Track& aTrack, G4ParticleDefinition*& aTarget) const {
198  return GetFinalStateInternal(aTrack,aTarget,false);
199 }
200 
201 // Version where we know if we baryonize already
202 ReactionProduct G4ProcessHelper::GetFinalStateInternal(const G4Track& aTrack,G4ParticleDefinition*& aTarget, const bool baryonize_failed) const {
203 
204  const G4DynamicParticle* aDynamicParticle = aTrack.GetDynamicParticle();
205 
206  //-----------------------------------------------
207  // Choose n / p as target
208  // and get ReactionProductList pointer
209  //-----------------------------------------------
210 
211  G4Material* aMaterial = aTrack.GetMaterial();
212  const G4ElementVector* theElementVector = aMaterial->GetElementVector() ;
213  const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
214 
215  G4double NumberOfProtons=0;
216  G4double NumberOfNucleons=0;
217 
218  for ( size_t elm=0 ; elm < aMaterial->GetNumberOfElements() ; elm++ )
219  {
220  //Summing number of protons per unit volume
221  NumberOfProtons += NbOfAtomsPerVolume[elm]*(*theElementVector)[elm]->GetZ();
222  //Summing nucleons (not neutrons)
223  NumberOfNucleons += NbOfAtomsPerVolume[elm]*(*theElementVector)[elm]->GetN();
224  }
225 
226  const ReactionMap* reactionMap{};
227  if (NumberOfNucleons>0 && CLHEP::RandFlat::shoot()<NumberOfProtons/NumberOfNucleons) {
228  reactionMap = &pReactionMap;
229  aTarget = theProton;
230  } else {
231  reactionMap = &nReactionMap;
232  aTarget = theNeutron;
233  }
234 
235  G4int theIncidentPDG = aDynamicParticle->GetDefinition()->GetPDGEncoding();
236  const bool containsSquark(MC::hasSquark(theIncidentPDG, MC::BQUARK) || MC::hasSquark(theIncidentPDG, MC::TQUARK));
237  if (m_parameters->ReggeModel()
238  && MC::isRMeson(theIncidentPDG) && containsSquark
239  && CLHEP::RandFlat::shoot()*m_parameters->Mixing()>0.5
240  && aDynamicParticle->GetDefinition()->GetPDGCharge()==0.
241  )
242  {
243  // G4cout<<"Oscillating..."<<G4endl;
244  theIncidentPDG *= -1;
245  }
246 
247 
248  bool baryonise=false;
249 
250  if (!baryonize_failed
251  && m_parameters->ReggeModel()
252  && CLHEP::RandFlat::shoot()>0.9
253  && MC::isRMeson(theIncidentPDG) &&
254  ( (theIncidentPDG > 0) || !containsSquark )
255  )
256  {
257  baryonise=true;
258  }
259 
260  // Reference directly to the ReactionProductList we are looking at. Makes life easier :-)
261  const ReactionProductList& aReactionProductList = reactionMap->at(theIncidentPDG);
262 
263  //-----------------------------------------------
264  // Count processes
265  // kinematic check
266  // compute number of 2 -> 2 and 2 -> 3 processes
267  //-----------------------------------------------
268 
269  G4int N22 = 0; //Number of 2 -> 2 processes
270  G4int N23 = 0; //Number of 2 -> 3 processes. Couldn't think of more informative names
271 
272  //This is the list to be populated
273  ReactionProductList theReactionProductList;
274  std::vector<bool> theChargeChangeList;
275 
276  for (const ReactionProduct& prod : aReactionProductList) {
277  const G4int secondaries = prod.size();
278  // If the reaction is not possible we will not consider it
279  /* if(ReactionIsPossible(*prod_it,aDynamicParticle)
280  &&(
281  !baryonise||(baryonise&&ReactionGivesBaryon(*prod_it))
282  ))*/
283  if (ReactionIsPossible(prod,*aTarget,aDynamicParticle) &&
284  (
285  (baryonise && ReactionGivesBaryon(prod)) ||
286  (!baryonise && !ReactionGivesBaryon(prod)) ||
287  MC::isRBaryon(theIncidentPDG) ||
288  !m_parameters->ReggeModel()
289  )
290  )
291  {
292  // The reaction is possible. Let's store and count it
293  theReactionProductList.push_back(prod);
294  if (secondaries == 2) {
295  N22++;
296  } else if (secondaries ==3) {
297  N23++;
298  } else {
299  G4cerr << "ReactionProduct has unsupported number of secondaries: "<<secondaries<<G4endl;
300  }
301  }
302  }
303 
304  if (theReactionProductList.size()==0 && baryonize_failed) {
305  G4Exception("G4ProcessHelper", "NoProcessPossible", FatalException,
306  "GetFinalState: No process could be selected from the given list.");
307  } else if (theReactionProductList.size()==0 && !baryonize_failed) {
308  // Baryonization had not yet failed -- try again
309  G4cout << "G4ProcessHelper::GetFinalStateInternal WARNING Could not select an appropriate process in first pass" << G4endl;
310  return GetFinalStateInternal(aTrack,aTarget,true);
311  }
312 
313  // For the Regge model no phase space considerations. We pick a process at random
314  if (m_parameters->ReggeModel()) {
315  const int n_rps = theReactionProductList.size();
316  const int select = static_cast<int>(CLHEP::RandFlat::shoot()*n_rps);
317  // G4cout<<"Possible: "<<n_rps<<", chosen: "<<select<<G4endl;
318  return theReactionProductList[select];
319  }
320 
321  // Fill a probability map. Remember total probability
322  // 2->2 is 0.15*1/n_22 2->3 uses phase space
323  G4double p22 = 0.15;
324  G4double p23 = 1-p22; // :-)
325 
326  std::vector<G4double> Probabilities;
327  std::vector<G4bool> TwotoThreeFlag;
328 
329  G4double CumulatedProbability = 0;
330 
331  // To each ReactionProduct we assign a cumulated probability and a flag
332  // discerning between 2 -> 2 and 2 -> 3
333  for (unsigned int i = 0; i != theReactionProductList.size(); i++){
334  if (theReactionProductList[i].size() == 2) {
335  if(0==N22) { throw std::runtime_error("G4ProcessHelper::GetFinalState: N22 is zero!"); }
336  CumulatedProbability += p22/N22;
337  TwotoThreeFlag.push_back(false);
338  } else {
339  if(0==N23) { throw std::runtime_error("G4ProcessHelper::GetFinalState: N23 is zero!"); }
340  CumulatedProbability += p23/N23;
341  TwotoThreeFlag.push_back(true);
342  }
343  Probabilities.push_back(CumulatedProbability);
344  }
345 
346  //Renormalising probabilities
347  for (std::vector<G4double>::iterator it = Probabilities.begin();
348  it != Probabilities.end();
349  ++it)
350  {
351  *it /= CumulatedProbability;
352  }
353 
354  // Choosing ReactionProduct
355 
356  G4bool selected = false;
357  G4int tries = 0;
358  // ReactionProductList::iterator prod_it;
359 
360  //Keep looping over the list until we have a choice, or until we have tried 100 times
361  unsigned int i=0;
362  while(!selected && tries < 100){
363  i=0;
364  G4double dice = CLHEP::RandFlat::shoot();
365  while( i<theReactionProductList.size() && dice>Probabilities[i] ){
366  i++;
367  }
368 
369  if(!TwotoThreeFlag[i]) {
370  // 2 -> 2 processes are chosen immediately
371  selected = true;
372  } else {
373  // 2 -> 3 processes require a phase space lookup
374  if (PhaseSpace(theReactionProductList[i],*aTarget,aDynamicParticle)>CLHEP::RandFlat::shoot()) selected = true;
375  }
376  // double suppressionfactor=0.5;
377  auto table ATLAS_THREAD_SAFE = particleTable; // safe because table has been loaded by now
378  if(selected && table->FindParticle(theReactionProductList[i][0])->GetPDGCharge()!=aDynamicParticle->GetDefinition()->GetPDGCharge())
379  {
380  /*
381  G4cout<<"Incoming particle "<<aDynamicParticle->GetDefinition()->GetParticleName()
382  <<" has charge "<<aDynamicParticle->GetDefinition()->GetPDGCharge()<<G4endl;
383  G4cout<<"Suggested particle "<<particleTable->FindParticle(theReactionProductList[i][0])->GetParticleName()
384  <<" has charge "<<particleTable->FindParticle(theReactionProductList[i][0])->GetPDGCharge()<<G4endl;
385  */
386  if(CLHEP::RandFlat::shoot()<m_parameters->SuppressionFactor()) selected = false;
387  }
388  tries++;
389  // G4cout<<"Tries: "<<tries<<G4endl;
390  }
391  if(tries>=100) G4cerr<<"Could not select process!!!!"<<G4endl;
392 
393  //Return the chosen ReactionProduct
394  return theReactionProductList[i];
395 }
396 
397 G4double G4ProcessHelper::ReactionProductMass(const ReactionProduct& aReaction,const G4ParticleDefinition& aTarget,const G4DynamicParticle* aDynamicParticle) const{
398  // Incident energy:
399  const G4double E_incident = aDynamicParticle->GetTotalEnergy();
400  //G4cout<<"Total energy: "<<E_incident<<" Kinetic: "<<aDynamicParticle->GetKineticEnergy()<<G4endl;
401  // sqrt(s)= sqrt(m_1^2 + m_2^2 + 2 E_1 m_2)
402  const G4double m_1 = aDynamicParticle->GetDefinition()->GetPDGMass();
403  const G4double m_2 = aTarget.GetPDGMass();
404  //G4cout<<"M_R: "<<m_1/CLHEP::GeV<<" GeV, M_np: "<<m_2/CLHEP::GeV<<" GeV"<<G4endl;
405  const G4double sqrts = sqrt(m_1*m_1 + m_2*(m_2 + 2 * E_incident));
406  //G4cout<<"sqrt(s) = "<<sqrts/CLHEP::GeV<<" GeV"<<G4endl;
407  // Sum of rest masses after reaction:
408  G4double M_after = 0;
409  for (const auto& product_pdg_id : aReaction) {
410  //G4cout<<"Mass contrib: "<<(particleTable->FindParticle(production_pdg_id)->GetPDGMass())/CLHEP::MeV<<" MeV"<<G4endl;
411  auto table ATLAS_THREAD_SAFE = particleTable; // safe because table has been loaded by now
412  M_after += table->FindParticle(product_pdg_id)->GetPDGMass();
413  }
414  //G4cout<<"Intending to return this ReactionProductMass: " << sqrts << " - " << M_after << " MeV"<<G4endl;
415  return sqrts - M_after;
416 }
417 
418 G4bool G4ProcessHelper::ReactionIsPossible(const ReactionProduct& aReaction,const G4ParticleDefinition& aTarget,const G4DynamicParticle* aDynamicParticle) const{
419  if (ReactionProductMass(aReaction,aTarget,aDynamicParticle)>0) return true;
420  return false;
421 }
422 
423 G4bool G4ProcessHelper::ReactionGivesBaryon(const ReactionProduct& aReaction) const{
424  for (const auto& product_pdg_id : aReaction) {
425  if (MC::isRBaryon(product_pdg_id)) return true;
426  }
427  return false;
428 }
429 
430 G4double G4ProcessHelper::PhaseSpace(const ReactionProduct& aReaction,const G4ParticleDefinition& aTarget,const G4DynamicParticle* aDynamicParticle) const {
431  const G4double qValue = ReactionProductMass(aReaction,aTarget,aDynamicParticle);
432  // Eq 4 of https://arxiv.org/pdf/hep-ex/0404001.pdf
433  const G4double phi = sqrt(1+qValue/(2*0.139*CLHEP::GeV))*pow(qValue/(1.1*CLHEP::GeV),3./2.);
434  return (phi/(1+phi));
435 }
436 
437 void G4ProcessHelper::ReadAndParse(const G4String& str,
438  std::vector<G4String>& tokens,
439  const G4String& delimiters) const
440 {
441  // Skip delimiters at beginning.
442  G4String::size_type lastPos = str.find_first_not_of(delimiters, 0);
443  if (lastPos==G4String::npos) return;
444 
445  // Find first "non-delimiter".
446  G4String::size_type pos = str.find_first_of(delimiters, lastPos);
447 
448  while (G4String::npos != pos || G4String::npos != lastPos)
449  {
450  //Skipping leading / trailing whitespaces
451  G4String temp = str.substr(lastPos, pos - lastPos);
452  while(temp.c_str()[0] == ' ') temp.erase(0,1);
453  while(temp[temp.size()-1] == ' ') temp.erase(temp.size()-1,1);
454 
455  // Found a token, add it to the vector.
456  tokens.push_back(temp);
457 
458  // Skip delimiters. Note the "not_of"
459  lastPos = str.find_first_not_of(delimiters, pos);
460  if (lastPos==G4String::npos) continue;
461 
462  // Find next "non-delimiter"
463  pos = str.find_first_of(delimiters, lastPos);
464  }
465 }
466 
467 double G4ProcessHelper::Regge(const double boost) const
468 {
469  // https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-010-1262-1.pdf Eq 1
470  // Originally from https://arxiv.org/pdf/0710.3930.pdf
471  const double a=2.165635078566177;
472  const double b=0.1467453738547229;
473  const double c=-0.9607903711871166;
474  return 1.5*exp(a+b/boost+c*log(boost));
475 }
476 
477 
478 double G4ProcessHelper::Pom(const double boost) const
479 {
480  // https://link.springer.com/content/pdf/10.1140%2Fepjc%2Fs10052-010-1262-1.pdf Eq 2
481  // Originally from https://arxiv.org/pdf/0710.3930.pdf
482  const double a=4.138224000651535;
483  const double b=1.50377557581421;
484  const double c=-0.05449742257808247;
485  const double d=0.0008221235048211401;
486  return a + b*sqrt(boost) + c*boost + d*pow(boost,1.5);
487 }
LArG4FSStartPointFilter.part
part
Definition: LArG4FSStartPointFilter.py:21
xAOD::iterator
JetConstituentVector::iterator iterator
Definition: JetConstituentVector.cxx:68
isStrange
bool isStrange(const T &p)
Definition: AtlasPID.h:148
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
GeV
#define GeV
Definition: PhysicsAnalysis/TauID/TauAnalysisTools/Root/HelperFunctions.cxx:17
checkFileSG.line
line
Definition: checkFileSG.py:75
Trk::ParticleSwitcher::particle
constexpr ParticleHypothesis particle[PARTICLEHYPOTHESES]
the array of masses
Definition: ParticleHypothesis.h:76
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
isRMeson
bool isRMeson(const T &p)
Definition: AtlasPID.h:510
phi
Scalar phi() const
phi method
Definition: AmgMatrixBasePlugin.h:67
hist_file_dump.d
d
Definition: hist_file_dump.py:143
DMTest::P
P_v1 P
Definition: P.h:23
isRGlueball
bool isRGlueball(const T &p)
PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles suffici...
Definition: AtlasPID.h:498
skel.it
it
Definition: skel.GENtoEVGEN.py:401
python.SystemOfUnits.millibarn
int millibarn
Definition: SystemOfUnits.py:77
boost
Definition: DVLIterator.h:29
beamspotman.tokens
tokens
Definition: beamspotman.py:1284
drawFromPickle.exp
exp
Definition: drawFromPickle.py:36
instance
std::map< std::string, double > instance
Definition: Run_To_Get_Tags.h:8
python.setupRTTAlg.size
int size
Definition: setupRTTAlg.py:39
isBottom
bool isBottom(const T &p)
Definition: AtlasPID.h:154
TrigVtx::gamma
@ gamma
Definition: TrigParticleTable.h:26
lumiFormat.i
int i
Definition: lumiFormat.py:85
AnalysisUtils::Delta::R
double R(const INavigable4Momentum *p1, const double v_eta, const double v_phi)
Definition: AnalysisMisc.h:49
CustomParticle
Definition: CustomParticle.h:18
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
plotBeamSpotMon.b
b
Definition: plotBeamSpotMon.py:77
python.ext.table_printer.table
list table
Definition: table_printer.py:81
python.LumiBlobConversion.pos
pos
Definition: LumiBlobConversion.py:18
isRBaryon
bool isRBaryon(const T &p)
Definition: AtlasPID.h:525
a
TList * a
Definition: liststreamerinfos.cxx:10
CustomParticle.h
copySelective.target
string target
Definition: copySelective.py:37
python.CaloCondTools.log
log
Definition: CaloCondTools.py:20
isCharm
bool isCharm(const T &p)
Definition: AtlasPID.h:151
hasSquark
bool hasSquark(const T &p, const int &q)
Definition: AtlasPID.h:423
python.SystemOfUnits.ns
int ns
Definition: SystemOfUnits.py:130
str
Definition: BTagTrackIpAccessor.cxx:11
ATLAS_THREAD_SAFE
#define ATLAS_THREAD_SAFE
Definition: checker_macros.h:211
checker_macros.h
Define macros for attributes used to control the static checker.
pow
constexpr int pow(int base, int exp) noexcept
Definition: ap_fixedTest.cxx:15
DerivationFramework::ClustersInCone::select
void select(const xAOD::IParticle *particle, const float coneSize, const xAOD::CaloClusterContainer *clusters, std::vector< bool > &mask)
Definition: ClustersInCone.cxx:14
python.compressB64.c
def c
Definition: compressB64.py:93
containedQuarks
std::vector< int > containedQuarks(const T &p)
Definition: AtlasPID.h:1019
PhysicsConfigurationHelper::Instance
static const PhysicsConfigurationHelper * Instance()
Definition: PhysicsConfigurationHelper.cxx:54
HepMCHelpers.h