ATLAS Offline Software
Classes | Functions
AtlasPID.h File Reference
#include <vector>
#include <cmath>
#include <algorithm>
#include <array>
#include <cstdlib>
Include dependency graph for AtlasPID.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  DecodedPID
 Implementation of classification functions according to PDG2022. More...
 

Functions

template<class T >
bool isQuark (const T &p)
 PDG rule 2: Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to dothis they are first ordered by family and within families by weak isospin. More...
 
template<>
bool isQuark (const int &p)
 
template<>
bool isQuark (const DecodedPID &p)
 
template<class T >
bool isSMQuark (const T &p)
 
template<>
bool isSMQuark (const int &p)
 
template<>
bool isSMQuark (const DecodedPID &p)
 
template<class T >
bool isStrange (const T &p)
 
template<>
bool isStrange (const int &p)
 
template<class T >
bool isCharm (const T &p)
 
template<>
bool isCharm (const int &p)
 
template<class T >
bool isBottom (const T &p)
 
template<>
bool isBottom (const int &p)
 
template<class T >
bool isTop (const T &p)
 
template<>
bool isTop (const int &p)
 
template<class T >
bool isLepton (const T &p)
 APID: the fourth generation leptons are leptons. More...
 
template<>
bool isLepton (const int &p)
 
template<>
bool isLepton (const DecodedPID &p)
 
template<class T >
bool isSMLepton (const T &p)
 
template<>
bool isSMLepton (const int &p)
 
template<>
bool isSMLepton (const DecodedPID &p)
 
template<class T >
bool isChLepton (const T &p)
 APID: the fourth generation leptons are leptons. More...
 
template<>
bool isChLepton (const int &p)
 
template<class T >
bool isElectron (const T &p)
 
template<>
bool isElectron (const int &p)
 
template<class T >
bool isMuon (const T &p)
 
template<>
bool isMuon (const int &p)
 
template<class T >
bool isTau (const T &p)
 
template<>
bool isTau (const int &p)
 
template<class T >
bool isNeutrino (const T &p)
 APID: the fourth generation neutrinos are neutrinos. More...
 
template<>
bool isNeutrino (const int &p)
 
template<class T >
bool isSMNeutrino (const T &p)
 
template<>
bool isSMNeutrino (const int &p)
 
template<class T >
bool isDiquark (const T &p)
 PDG rule 4 Diquarks have 4-digit numbers with nq1 >= nq2 and nq3 = 0 APID: the diquarks with fourth generation are not diquarks. More...
 
template<>
bool isDiquark (const DecodedPID &p)
 
template<>
bool isDiquark (const int &p)
 
template<class T >
bool isMeson (const T &p)
 Table 43.1 PDG rule 5a: The numbers specifying the meson’s quark content conform to the convention nq1= 0 and nq2 >= nq3. More...
 
template<>
bool isMeson (const DecodedPID &p)
 
template<>
bool isMeson (const int &p)
 
template<class T >
bool isBaryon (const T &p)
 Table 43.2. More...
 
template<>
bool isBaryon (const DecodedPID &p)
 
template<>
bool isBaryon (const int &p)
 
template<class T >
bool isTetraquark (const T &p)
 PDG rule 14 The 9-digit tetra-quark codes are±1nrnLnq1nq20nq3nq4nJ. More...
 
template<>
bool isTetraquark (const DecodedPID &p)
 
template<>
bool isTetraquark (const int &p)
 
template<class T >
bool isPentaquark (const T &p)
 PDG rule 15 The 9-digit penta-quark codes are±1nrnLnq1nq2nq3nq4nq5nJ, sorted such thatnq1≥nq2≥nq3≥nq4. More...
 
template<>
bool isPentaquark (const DecodedPID &p)
 
template<>
bool isPentaquark (const int &p)
 
template<class T >
bool isHadron (const T &p)
 
template<>
bool isHadron (const DecodedPID &p)
 
template<>
bool isHadron (const int &p)
 
template<class T >
bool isTrajectory (const T &p)
 PDG rule 8: The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD areassigned codes 990, 9990, and 110 respectively. More...
 
template<>
bool isTrajectory (const int &p)
 
template<class T >
bool isBoson (const T &p)
 PDG rule 9: Two-digit numbers in the range 21–30 are provided for the Standard Model gauge and Higgs bosons. More...
 
template<>
bool isBoson (const int &p)
 
template<>
bool isBoson (const DecodedPID &p)
 
template<class T >
bool isGluon (const T &p)
 
template<>
bool isGluon (const int &p)
 
template<class T >
bool isPhoton (const T &p)
 
template<>
bool isPhoton (const int &p)
 
template<class T >
bool isZ (const T &p)
 
template<>
bool isZ (const int &p)
 
template<class T >
bool isW (const T &p)
 
template<>
bool isW (const int &p)
 
template<class T >
bool isHeavyBoson (const T &p)
 APID: Additional "Heavy"/"prime" versions of W and Z bosons (Used in MCTruthClassifier) More...
 
template<>
bool isHeavyBoson (const int &p)
 
template<class T >
bool isHiggs (const T &p)
 APID: HIGGS boson is only one particle. More...
 
template<>
bool isHiggs (const int &p)
 
template<class T >
bool isMSSMHiggs (const T &p)
 APID: Additional Higgs bosons for MSSM (Used in MCTruthClassifier) More...
 
template<>
bool isMSSMHiggs (const int &p)
 
template<class T >
bool isGraviton (const T &p)
 
template<>
bool isGraviton (const int &p)
 
template<class T >
bool isResonance (const T &p)
 
template<class T >
bool isLeptoQuark (const T &p)
 PDG rule 11c: “One-of-a-kind” exotic particles are assigned numbers in the range 41–80. More...
 
template<>
bool isLeptoQuark (const int &p)
 
template<class T >
bool isPythia8Specific (const T &p)
 
template<>
bool isPythia8Specific (const DecodedPID &p)
 
template<>
bool isPythia8Specific (const int &p)
 
template<class T >
bool isNeutrinoRH (const T &p)
 PDG Rule 12: APID: Helper function for right-handed neutrino states These are generator defined PDG ID values for right handed neutrinos. More...
 
template<>
bool isNeutrinoRH (const int &p)
 
template<class T >
bool isGenSpecific (const T &p)
 Main Table for MC internal use 81–100,901–930,998-999,1901–1930,2901–2930, and 3901–3930. More...
 
template<>
bool isGenSpecific (const int &p)
 
template<class T >
bool isGeantino (const T &p)
 
template<>
bool isGeantino (const int &p)
 
template<class T >
bool isGlueball (const T &p)
 APID: Definition of Glueballs: SM glueballs 99X (X=1,5), 999Y (Y=3,7) More...
 
template<>
bool isGlueball (const DecodedPID &p)
 
template<>
bool isGlueball (const int &p)
 
template<class T >
bool isSUSY (const T &p)
 PDG rule 11d Fundamental supersymmetric particles are identified by adding a nonzero n to the particle number. More...
 
template<>
bool isSUSY (const DecodedPID &p)
 
template<>
bool isSUSY (const int &p)
 
template<class T >
bool isSquark (const T &p)
 
template<>
bool isSquark (const DecodedPID &p)
 
template<>
bool isSquark (const int &p)
 
template<class T >
bool isSquarkLH (const T &p)
 
template<>
bool isSquarkLH (const DecodedPID &p)
 
template<>
bool isSquarkLH (const int &p)
 
template<class T >
bool isSquarkRH (const T &p)
 
template<>
bool isSquarkRH (const DecodedPID &p)
 
template<>
bool isSquarkRH (const int &p)
 
template<class T >
bool hasSquark (const T &p, const int &q)
 
template<>
bool hasSquark (const DecodedPID &p, const int &q)
 
template<>
bool hasSquark (const int &p, const int &q)
 
template<class T >
bool isSlepton (const T &p)
 
template<>
bool isSlepton (const DecodedPID &p)
 
template<>
bool isSlepton (const int &p)
 
template<class T >
bool isSleptonLH (const T &p)
 
template<>
bool isSleptonLH (const DecodedPID &p)
 
template<>
bool isSleptonLH (const int &p)
 
template<class T >
bool isSleptonRH (const T &p)
 
template<>
bool isSleptonRH (const DecodedPID &p)
 
template<>
bool isSleptonRH (const int &p)
 
template<class T >
bool isGaugino (const T &p)
 
template<>
bool isGaugino (const DecodedPID &p)
 
template<>
bool isGaugino (const int &p)
 
template<class T >
bool isTechnicolor (const T &p)
 PDG rule 11e Technicolor states have n = 3, with technifermions treated like ordinary fermions. More...
 
template<>
bool isTechnicolor (const DecodedPID &p)
 
template<>
bool isTechnicolor (const int &p)
 
template<class T >
bool isExcited (const T &p)
 PDG rule 11f Excited (composite) quarks and leptons are identified by setting n= 4 and nr= 0. More...
 
template<>
bool isExcited (const DecodedPID &p)
 
template<>
bool isExcited (const int &p)
 
template<class T >
bool isRGlueball (const T &p)
 PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles sufficiently long-lived for color-singlet hadronic states to form around them. More...
 
template<>
bool isRGlueball (const DecodedPID &p)
 
template<>
bool isRGlueball (const int &p)
 
template<class T >
bool isRMeson (const T &p)
 
template<>
bool isRMeson (const DecodedPID &p)
 
template<>
bool isRMeson (const int &p)
 
template<class T >
bool isRBaryon (const T &p)
 
template<>
bool isRBaryon (const DecodedPID &p)
 
template<>
bool isRBaryon (const int &p)
 
template<class T >
bool isKK (const T &p)
 PDG rule 11h A black hole in models with extra dimensions has code 5000040. More...
 
template<>
bool isKK (const DecodedPID &p)
 
template<>
bool isKK (const int &p)
 
template<class T >
bool isMonopole (const T &p)
 PDG rule 11i Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a variable integer number nq1nq2 nq3 units of electric charge. More...
 
template<>
bool isMonopole (const DecodedPID &p)
 
template<>
bool isMonopole (const int &p)
 
template<class T >
bool isDM (const T &p)
 PDG rule 11j: The nature of Dark Matter (DM) is not known, and therefore a definitive classificationis too early. More...
 
template<>
bool isDM (const int &p)
 
template<class T >
bool isHiddenValley (const T &p)
 PDG rule 11k Hidden Valley particles have n = 4 and n_r = 9, and trailing numbers in agreement with their nearest-analog standard particles, as far as possible. More...
 
template<>
bool isHiddenValley (const DecodedPID &p)
 
template<>
bool isHiddenValley (const int &p)
 
template<class T >
bool isGenericMultichargedParticle (const T &p)
 In addition, there is a need to identify ”Q-ball” and similar very exotic (multi-charged) particles which may have large, non-integer charge. More...
 
template<>
bool isGenericMultichargedParticle (const DecodedPID &p)
 
template<>
bool isGenericMultichargedParticle (const int &p)
 
template<class T >
bool isNucleus (const T &p)
 PDG rule 16 Nuclear codes are given as 10-digit numbers ±10LZZZAAAI. More...
 
template<>
bool isNucleus (const DecodedPID &p)
 
template<>
bool isNucleus (const int &p)
 
template<class T >
bool hasQuark (const T &p, const int &q)
 
template<>
bool hasQuark (const DecodedPID &p, const int &q)
 
template<>
bool hasQuark (const int &p, const int &q)
 
template<class T >
bool hasStrange (const T &p)
 
template<class T >
bool hasCharm (const T &p)
 
template<class T >
bool hasBottom (const T &p)
 
template<class T >
bool hasTop (const T &p)
 
template<class T >
int baryonNumber3 (const T &p)
 
template<>
int baryonNumber3 (const DecodedPID &p)
 
template<>
int baryonNumber3 (const int &p)
 
template<class T >
double baryonNumber (const T &p)
 
template<>
double baryonNumber (const DecodedPID &p)
 
template<>
double baryonNumber (const int &p)
 
template<class T >
int strangeness (const T &p)
 
template<>
int strangeness (const DecodedPID &p)
 
template<>
int strangeness (const int &p)
 
template<class T >
int numberOfLambdas (const T &p)
 
template<>
int numberOfLambdas (const DecodedPID &p)
 
template<>
int numberOfLambdas (const int &p)
 
template<class T >
int numberOfProtons (const T &p)
 
template<>
int numberOfProtons (const DecodedPID &p)
 
template<>
int numberOfProtons (const int &p)
 
template<class T >
bool isBSM (const T &p)
 APID: graviton and all Higgs extensions are BSM. More...
 
template<>
bool isBSM (const DecodedPID &p)
 
template<>
bool isBSM (const int &p)
 
template<class T >
bool isTransportable (const T &p)
 
template<>
bool isTransportable (const DecodedPID &p)
 
template<>
bool isTransportable (const int &p)
 
template<class T >
bool isValid (const T &p)
 Av: we implement here an ATLAS-sepcific convention: all particles which are 99xxxxx are fine. More...
 
template<>
bool isValid (const DecodedPID &p)
 
template<>
bool isValid (const int &p)
 
template<class T >
int leadingQuark (const T &p)
 
template<>
int leadingQuark (const DecodedPID &p)
 
template<>
int leadingQuark (const int &p)
 
template<class T >
bool isLightHadron (const T &p)
 
template<class T >
bool isHeavyHadron (const T &p)
 
template<class T >
bool isStrangeHadron (const T &p)
 
template<class T >
bool isCharmHadron (const T &p)
 
template<class T >
bool isBottomHadron (const T &p)
 
template<class T >
bool isTopHadron (const T &p)
 
template<class T >
bool isLightMeson (const T &p)
 
template<class T >
bool isHeavyMeson (const T &p)
 
template<class T >
bool isStrangeMeson (const T &p)
 
template<class T >
bool isCharmMeson (const T &p)
 
template<class T >
bool isBottomMeson (const T &p)
 
template<class T >
bool isTopMeson (const T &p)
 
template<class T >
bool isCCbarMeson (const T &p)
 
template<>
bool isCCbarMeson (const DecodedPID &p)
 
template<>
bool isCCbarMeson (const int &p)
 
template<class T >
bool isBBbarMeson (const T &p)
 
template<>
bool isBBbarMeson (const DecodedPID &p)
 
template<>
bool isBBbarMeson (const int &p)
 
template<class T >
bool isLightBaryon (const T &p)
 
template<class T >
bool isHeavyBaryon (const T &p)
 
template<class T >
bool isStrangeBaryon (const T &p)
 
template<class T >
bool isCharmBaryon (const T &p)
 
template<class T >
bool isBottomBaryon (const T &p)
 
template<class T >
bool isTopBaryon (const T &p)
 
template<class T >
bool isWeaklyDecayingBHadron (const T &p)
 
template<>
bool isWeaklyDecayingBHadron (const int &p)
 
template<>
bool isWeaklyDecayingBHadron (const DecodedPID &p)
 
template<class T >
bool isWeaklyDecayingCHadron (const T &p)
 
template<>
bool isWeaklyDecayingCHadron (const int &p)
 
template<>
bool isWeaklyDecayingCHadron (const DecodedPID &p)
 
template<class T >
int charge3 (const T &p)
 
template<class T >
double fractionalCharge (const T &p)
 
template<class T >
double charge (const T &p)
 
template<class T >
double threeCharge (const T &p)
 
template<class T >
bool isCharged (const T &p)
 
template<>
int charge3 (const DecodedPID &p)
 
template<>
int charge3 (const int &p)
 
template<class T >
bool isNeutral (const T &p)
 
template<>
bool isNeutral (const DecodedPID &p)
 
template<>
bool isNeutral (const int &p)
 
template<>
double fractionalCharge (const DecodedPID &p)
 
template<>
double fractionalCharge (const int &p)
 
template<class T >
bool isEMInteracting (const T &p)
 
template<>
bool isEMInteracting (const int &p)
 
template<class T >
bool isParton (const T &p)
 
template<class T >
int spin2 (const T &p)
 
template<>
int spin2 (const DecodedPID &p)
 
template<>
int spin2 (const int &p)
 
template<class T >
double spin (const T &p)
 
template<>
double spin (const DecodedPID &p)
 
template<>
double spin (const int &p)
 
template<class T >
bool isRHadron (const T &p)
 
template<>
bool isRHadron (const DecodedPID &p)
 
template<>
bool isRHadron (const int &p)
 
template<class T >
std::vector< int > containedQuarks (const T &p)
 
template<>
std::vector< int > containedQuarks (const int &p)
 
template<>
std::vector< int > containedQuarks (const DecodedPID &p)
 
template<class T >
bool isStrongInteracting (const T &p)
 
template<>
bool isStrongInteracting (const int &p)
 

Function Documentation

◆ baryonNumber() [1/3]

template<>
double baryonNumber ( const DecodedPID p)
inline

Definition at line 712 of file AtlasPID.h.

712 { return static_cast<double>(baryonNumber3(p))/3.0;}

◆ baryonNumber() [2/3]

template<>
double baryonNumber ( const int &  p)
inline

Definition at line 713 of file AtlasPID.h.

713 { auto value_digits = DecodedPID(p); return static_cast<double>(baryonNumber3(value_digits))/3.0;}

◆ baryonNumber() [3/3]

template<class T >
double baryonNumber ( const T &  p)
inline

Definition at line 711 of file AtlasPID.h.

711 {return baryonNumber(p->pdg_id());}

◆ baryonNumber3() [1/3]

template<>
int baryonNumber3 ( const DecodedPID p)
inline

Definition at line 687 of file AtlasPID.h.

687  {
688  if (isQuark(p.pid())) { return (p.pid() > 0) ? 1 : - 1;}
689  if (isDiquark(p)) { return (p.pid() > 0) ? 2 : -2; }
690  if (isMeson(p) || isTetraquark(p)) { return 0; }
691  if (isBaryon(p) || isPentaquark(p)){ return (p.pid() > 0) ? 3 : -3; }
692  if (isNucleus(p)) {
693  const int result = 3*p(8) + 30*p(7) + 300*p(6);
694  return (p.pid() > 0) ? result : -result;
695  }
696  if (isSUSY(p)) {
697  auto pp = p.shift(1);
698  if (pp.ndigits() < 3 ) { return baryonNumber3(pp); } // super-partners of fundamental particles
699  if (pp(0) == COMPOSITEGLUON) {
700  if (pp(1) == COMPOSITEGLUON) { return 0; } // R-Glueballs
701  if ( pp.ndigits() == 4 ) { return 0; } // states with gluino-quark-antiquark
702  if ( pp.ndigits() == 5) { return (p.pid() > 0) ? 3 : -3; } // states with gluino-quark-quark-quark
703  }
704  if (pp.ndigits() == 3) { return 0; } // squark-antiquark
705  if (pp.ndigits() == 4) { return (p.pid() > 0) ? 3 : -3; } // states with squark-quark-quark
706  }
707  return 0;
708 }

◆ baryonNumber3() [2/3]

template<>
int baryonNumber3 ( const int &  p)
inline

Definition at line 709 of file AtlasPID.h.

709 { auto value_digits = DecodedPID(p); return baryonNumber3(value_digits);}

◆ baryonNumber3() [3/3]

template<class T >
int baryonNumber3 ( const T &  p)
inline

Definition at line 686 of file AtlasPID.h.

686 {return baryonNumber3(p->pdg_id());}

◆ charge()

template<class T >
double charge ( const T &  p)
inline

Definition at line 933 of file AtlasPID.h.

933  {
934  if (isGenericMultichargedParticle(p)) // BSM multi-charged particles might have a fractional charge that's not a multiple of 1/3
935  return fractionalCharge(p);
936  else
937  return 1.0*charge3(p)/3.0;
938 }

◆ charge3() [1/3]

template<>
int charge3 ( const DecodedPID p)
inline

Codes 411nq1nq2 nq3 0 are then used when the magnetic and electrical charge sign agree and 412nq1nq2 nq3 0 when they disagree, with the overall sign of the particle set by the magnetic charge.

Definition at line 943 of file AtlasPID.h.

943  {
944  auto ap = std::abs(p.pid());
945  if (ap < TABLESIZE ) return p.pid() > 0 ? triple_charge.at(ap) : -triple_charge.at(ap);
946  if (ap == K0) return 0;
947  if (ap == GEANTINO0) return 0;
948  if (ap == GEANTINOPLUS) return p.pid() > 0 ? 3 : -3;
949  if (ap == MAVTOP) return p.pid() > 0 ? 2 : -2;
950  size_t nq = 0;
951  int sign = 1;
952  int signmult = 1;
953  int result=0;
954  bool classified = false;
955  if (!classified && isMeson(p)) { classified = true; nq = 2; if ((*(p.second.rbegin()+2)) == 2||(*(p.second.rbegin()+2)) == 4 ) { sign=-1;} signmult =-1; }
956  if (!classified && isDiquark(p)) {return triple_charge.at(p(0))+triple_charge.at(p(1)); }
957  if (!classified && isBaryon(p)) { classified = true; nq = 3; }
958  if (!classified && isTetraquark(p)){ return triple_charge.at(p(3)) + triple_charge.at(p(4)) - triple_charge.at(p(6)) - triple_charge.at(p(7)); }
959  if (!classified && isPentaquark(p)){ return triple_charge.at(p(3)) + triple_charge.at(p(4)) + triple_charge.at(p(5)) + triple_charge.at(p(6)) - triple_charge.at(p(7)); }
960  if (!classified && isNucleus(p)) { return 3*numberOfProtons(p);}
961  if (!classified && isSUSY(p)) {
962  nq = 0;
963  auto pp = p.shift(1);
964  if (pp.ndigits() < 3 ) { return charge3(pp); } // super-partners of fundamental particles
965  if (pp(0) == COMPOSITEGLUON) {
966  if (pp(1) == COMPOSITEGLUON) { return 0; } // R-Glueballs
967  if ( pp.ndigits() == 4 || pp.ndigits() == 5) {
968  pp = pp.shift(1); // Remove gluino
969  }
970  }
971  if (pp.ndigits() == 3) { classified = true; nq = 2; if (p.last()%2==0) {sign = -1;} signmult = -1; } // states with squark-antiquark or quark-anti-quark
972  if (pp.ndigits() == 4) { classified = true; nq = 3; } // states with squark-quark-quark or quark-quark-quark
973  }
974  if (!classified && isMonopole(p)) {
977  result = 3*(p(3)*100 + p(4)*10 + p(5));
978  return ( (p.pid() > 0 && p(2) == 1) || (p.pid() < 0 && p(2) == 2) ) ? result : -result;
979  }
980  if (!classified && isGenericMultichargedParticle(p)) {
981  double abs_charge = 0.0;
982  if (p(0) == 1) abs_charge = p(3)*100. + p(4)*10. + p(5)*1 + p(6)*0.1; // multi-charged particle PDG ID is +/-100XXXY0, where the charge is XXX.Y
983  if (p(0) == 2) abs_charge = (p(3)*10. + p(4))/(p(5)*10.0 + p(6)); // multi-charged particle PDG ID is +/-200XXYY0, where the charge is XX/YY
984  int abs_threecharge = static_cast<int>(std::round(abs_charge * 3.)); // the multi-charged particles might have a fractional charge that's not a multiple of 1/3, in that case round to the closest multiple of 1/3 for charge3 and threecharge
985  return p.pid() > 0 ? abs_threecharge : -1 * abs_threecharge;
986  }
987  for (auto r = p.second.rbegin() + 1; r != p.second.rbegin() + 1 + nq; ++r) {
988  result += triple_charge.at(*r)*sign;
989  sign*=signmult;
990  }
991  return p.pid() > 0 ? result : -result;
992 }

◆ charge3() [2/3]

template<>
int charge3 ( const int &  p)
inline

Definition at line 993 of file AtlasPID.h.

993  {
994  int ap = std::abs(p);
995  if (ap < TABLESIZE) return p > 0 ? triple_charge.at(ap):-triple_charge.at(ap);
996  auto value_digits = DecodedPID(p);
997  return charge3(value_digits);
998 }

◆ charge3() [3/3]

template<class T >
int charge3 ( const T &  p)
inline

Definition at line 931 of file AtlasPID.h.

931 {return charge3(p->pdg_id());}

◆ containedQuarks() [1/3]

template<>
std::vector<int> containedQuarks ( const DecodedPID p)
inline

Definition at line 1079 of file AtlasPID.h.

1079 { return containedQuarks(p.pid()); }

◆ containedQuarks() [2/3]

template<>
std::vector<int> containedQuarks ( const int &  p)
inline

Definition at line 1057 of file AtlasPID.h.

1057  {
1058  auto pp = DecodedPID(p);
1059  std::vector<int> quarks;
1060  if (isQuark(pp.pid())) { quarks.push_back(std::abs(pp.pid())); }
1061  else if (isDiquark(pp)) { quarks.push_back(pp(0)); quarks.push_back(pp(1)); }
1062  else if (isMeson(pp)) { quarks.push_back(*(pp.second.rbegin() + 1)); quarks.push_back(*(pp.second.rbegin()+2)); }
1063  else if (isBaryon(pp)) { for (size_t digit = 1; digit < 4; ++digit) { quarks.push_back(*(pp.second.rbegin() + digit)); } }
1064  else if (isTetraquark(pp)) { for (size_t digit = 1; digit < 5; ++digit) { quarks.push_back(*(pp.second.rbegin() + digit)); } }
1065  else if (isPentaquark(pp)) { for (size_t digit = 1; digit < 6; ++digit) { quarks.push_back(*(pp.second.rbegin() + digit)); } }
1066  else if (isNucleus(pp)) { const int A = std::abs(baryonNumber3(pp)/3); const int Z = std::abs(numberOfProtons(pp)); const int L = std::abs(numberOfLambdas(pp));
1067  const int n_uquarks = A + Z; const int n_dquarks = 2*A - Z - L; const int n_squarks = L;
1068  quarks.reserve(3*A); quarks.insert(quarks.end(), n_dquarks, 1); quarks.insert(quarks.end(), n_uquarks, 2); quarks.insert(quarks.end(), n_squarks, 3); }
1069  else if (isSUSY(pp)) { // APID SUSY case
1070  pp = pp.shift(1);
1071  if ( pp.ndigits() > 1 ) { // skip squarks
1072  if ( pp.ndigits() == 3 ) { pp = DecodedPID(pp(1)); } // Handle ~q qbar pairs
1073  if ( pp.ndigits() > 3 ) { pp = pp.shift(1); } // Drop gluinos and squarks
1074  return containedQuarks(pp.pid());
1075  }
1076  }
1077  return quarks;
1078 }

◆ containedQuarks() [3/3]

template<class T >
std::vector<int> containedQuarks ( const T &  p)
inline

Definition at line 1056 of file AtlasPID.h.

1056 { return containedQuarks(p->pdg_id()); }

◆ fractionalCharge() [1/3]

template<>
double fractionalCharge ( const DecodedPID p)
inline

Definition at line 1006 of file AtlasPID.h.

1006  {
1007  if(!isGenericMultichargedParticle(p)) return 1.0*charge3(p)/3.0; // this method is written for multi-charged particles, still make sure other cases are handled properly
1008  double abs_charge = 0;
1009  if (p(0) == 1) abs_charge = p(3)*100. + p(4)*10. + p(5)*1 + p(6)*0.1; // multi-charged particle PDG ID is +/-100XXXY0, where the charge is XXX.Y
1010  if (p(0) == 2) abs_charge = (p(3)*10. + p(4))/(p(5)*10.0 + p(6)); // multi-charged particle PDG ID is +/-200XXYY0, where the charge is XX/YY
1011  return p.pid() > 0 ? abs_charge : -1 * abs_charge;
1012 }

◆ fractionalCharge() [2/3]

template<>
double fractionalCharge ( const int &  p)
inline

Definition at line 1013 of file AtlasPID.h.

1013 {auto value_digits = DecodedPID(p); return fractionalCharge(value_digits);}

◆ fractionalCharge() [3/3]

template<class T >
double fractionalCharge ( const T &  p)
inline

Definition at line 932 of file AtlasPID.h.

932 {return fractionalCharge(p->pdg_id());}

◆ hasBottom()

template<class T >
bool hasBottom ( const T &  p)
inline

Definition at line 676 of file AtlasPID.h.

676 { return hasQuark(p,BQUARK); }

◆ hasCharm()

template<class T >
bool hasCharm ( const T &  p)
inline

Definition at line 675 of file AtlasPID.h.

675 { return hasQuark(p,CQUARK); }

◆ hasQuark() [1/3]

template<>
bool hasQuark ( const DecodedPID p,
const int &  q 
)
inline

Definition at line 654 of file AtlasPID.h.

654  {
655  if (isQuark(p.pid())) { return (std::abs(p.pid()) == q );}
656  if (isMeson(p)) { return *(p.second.rbegin() + 1) == q ||*(p.second.rbegin()+2) ==q;}
657  if (isDiquark(p)) { auto i = std::find(p.second.rbegin() + 2,p.second.rbegin()+4,q); return (i!=p.second.rbegin()+4);}
658  if (isBaryon(p)) { auto i = std::find(p.second.rbegin() + 1,p.second.rbegin()+4,q); return (i!=p.second.rbegin()+4);}
659  if (isTetraquark(p)) { auto i = std::find(p.second.rbegin() + 1,p.second.rbegin()+5,q); return (i!=p.second.rbegin()+5);}
660  if (isPentaquark(p)) { auto i = std::find(p.second.rbegin() + 1,p.second.rbegin()+6,q); return (i!=p.second.rbegin()+6);}
661  if (isNucleus(p) && std::abs(p.pid()) != PROTON) { return (q == 1 || q == 2 || (q==3 && p(2) > 0));}
662  if (isSUSY(p)) { // APID SUSY case
663  auto pp = p.shift(1);
664  if ( pp.ndigits() == 1 ) { return false; } // Handle squarks
665  if ( pp.ndigits() == 3 ) { return (pp(1) == q); } // Handle ~q qbar pairs
666  if ( pp.ndigits() == 4 ) { return (pp(1) == q || pp(2) == q); } // Ignore gluinos and squarks
667  if ( pp.ndigits() == 5 ) { return (pp(1) == q || pp(2) == q || pp(3) == q); } // Ignore gluinos and squarks
668  if ( pp.ndigits() > 5 ) { pp = pp.shift(1); } // Drop gluinos and squarks
669  return hasQuark(pp, q); }
670  return false;
671 }

◆ hasQuark() [2/3]

template<>
bool hasQuark ( const int &  p,
const int &  q 
)
inline

Definition at line 672 of file AtlasPID.h.

672 { auto value_digits = DecodedPID(p); return hasQuark(value_digits, q);}

◆ hasQuark() [3/3]

template<class T >
bool hasQuark ( const T &  p,
const int &  q 
)
inline

◆ hasSquark() [1/3]

template<>
bool hasSquark ( const DecodedPID p,
const int &  q 
)
inline

Definition at line 459 of file AtlasPID.h.

459  {
460  auto pp = p.shift(1); return isSUSY(p) && pp.ndigits() != 2 && pp(0) == q; // skip lepton and boson super-partners by vetoing ndigits==2
461 }

◆ hasSquark() [2/3]

template<>
bool hasSquark ( const int &  p,
const int &  q 
)
inline

Definition at line 462 of file AtlasPID.h.

462 { auto value_digits = DecodedPID(p); return hasSquark(value_digits, q);}

◆ hasSquark() [3/3]

template<class T >
bool hasSquark ( const T &  p,
const int &  q 
)
inline

Definition at line 458 of file AtlasPID.h.

458 { return hasSquark(p->pdg_id(), q); }

◆ hasStrange()

template<class T >
bool hasStrange ( const T &  p)
inline

Definition at line 674 of file AtlasPID.h.

674 { return hasQuark(p,SQUARK); }

◆ hasTop()

template<class T >
bool hasTop ( const T &  p)
inline

Definition at line 677 of file AtlasPID.h.

677 { return hasQuark(p,TQUARK); }

◆ isBaryon() [1/3]

template<>
bool isBaryon ( const DecodedPID p)
inline

Definition at line 259 of file AtlasPID.h.

259  {
260  if (p.ndigits() < 4 ) return false;
261  if (p.max_digit(1,4) >= 6 ) return false;
262  if (p.min_digit(1,4) == 0) return false;
263  if (p.ndigits() == 4 && (p.last() == 2 || p.last() == 4|| p.last() == 6|| p.last() == 8) ) return true;
264 
265  if (p.ndigits() == 5 && p(0) == 1 && (p.last() == 2 || p.last() == 4) ) return true;
266  if (p.ndigits() == 5 && p(0) == 3 && (p.last() == 2 || p.last() == 4) ) return true;
267 
268  if (p.ndigits() == 6 ) {
269  if (p(0) == 1 && p(1) == 0 && p.last() == 2 ) return true;
270  if (p(0) == 1 && p(1) == 1 && p.last() == 2 ) return true;
271  if (p(0) == 1 && p(1) == 2 && p.last() == 4 ) return true;
272 
273  if (p(0) == 2 && p(1) == 0 && p.last() == 2 ) return true;
274  if (p(0) == 2 && p(1) == 0 && p.last() == 4 ) return true;
275  if (p(0) == 2 && p(1) == 1 && p.last() == 2 ) return true;
276 
277  if (p(0) == 1 && p(1) == 0 && p.last() == 4 ) return true;
278  if (p(0) == 1 && p(1) == 0 && p.last() == 6 ) return true;
279  if (p(0) == 2 && p(1) == 0 && p.last() == 6 ) return true;
280  if (p(0) == 2 && p(1) == 0 && p.last() == 8 ) return true;
281  }
282 
283  if (p.ndigits() == 5 ) {
284  if (p(0) == 2 && p.last() == 2 ) return true;
285  if (p(0) == 2 && p.last() == 4 ) return true;
286  if (p(0) == 2 && p.last() == 6 ) return true;
287  if (p(0) == 5 && p.last() == 2 ) return true;
288  if (p(0) == 1 && p.last() == 6 ) return true;
289  if (p(0) == 4 && p.last() == 2 ) return true;
290  }
291  return false;
292 }

◆ isBaryon() [2/3]

template<>
bool isBaryon ( const int &  p)
inline

Definition at line 293 of file AtlasPID.h.

293 { auto value_digits = DecodedPID(p); return isBaryon(value_digits);}

◆ isBaryon() [3/3]

template<class T >
bool isBaryon ( const T &  p)
inline

Table 43.2.

Definition at line 258 of file AtlasPID.h.

258 {return isBaryon(p->pdg_id());}

◆ isBBbarMeson() [1/3]

template<>
bool isBBbarMeson ( const DecodedPID p)
inline

Definition at line 863 of file AtlasPID.h.

863 { return leadingQuark(p) == BQUARK && isMeson(p) && (*(p.second.rbegin()+2)) == BQUARK && (*(p.second.rbegin()+1)) == BQUARK; }

◆ isBBbarMeson() [2/3]

template<>
bool isBBbarMeson ( const int &  p)
inline

Definition at line 864 of file AtlasPID.h.

864 { return isBBbarMeson(DecodedPID(p)); }

◆ isBBbarMeson() [3/3]

template<class T >
bool isBBbarMeson ( const T &  p)
inline

Definition at line 862 of file AtlasPID.h.

862 { return isBBbarMeson(p->pdg_id());}

◆ isBoson() [1/3]

template<>
bool isBoson ( const DecodedPID p)
inline

Definition at line 345 of file AtlasPID.h.

345 { return isBoson(p.pid()); }

◆ isBoson() [2/3]

template<>
bool isBoson ( const int &  p)
inline

Definition at line 344 of file AtlasPID.h.

344 { auto sp = std::abs(p); return sp > 20 && sp < 41; }

◆ isBoson() [3/3]

template<class T >
bool isBoson ( const T &  p)
inline

PDG rule 9: Two-digit numbers in the range 21–30 are provided for the Standard Model gauge and Higgs bosons.

PDG rule 11b: The graviton and the boson content of a two-Higgs-doublet scenario and of additional SU(2)×U(1) groups are found in the range 31–40.

Definition at line 343 of file AtlasPID.h.

343 {return isBoson(p->pdg_id());}

◆ isBottom() [1/2]

template<>
bool isBottom ( const int &  p)
inline

Definition at line 174 of file AtlasPID.h.

174 { return std::abs(p) == 5;}

◆ isBottom() [2/2]

template<class T >
bool isBottom ( const T &  p)
inline

Definition at line 173 of file AtlasPID.h.

173 {return isBottom(p->pdg_id());}

◆ isBottomBaryon()

template<class T >
bool isBottomBaryon ( const T &  p)
inline

Definition at line 871 of file AtlasPID.h.

871 { return leadingQuark(p) == BQUARK && isBaryon(p); }

◆ isBottomHadron()

template<class T >
bool isBottomHadron ( const T &  p)
inline

Definition at line 848 of file AtlasPID.h.

848 { return leadingQuark(p) == BQUARK && isHadron(p); }

◆ isBottomMeson()

template<class T >
bool isBottomMeson ( const T &  p)
inline

Definition at line 855 of file AtlasPID.h.

855 { return leadingQuark(p) == BQUARK && isMeson(p); }

◆ isBSM() [1/3]

template<>
bool isBSM ( const DecodedPID p)
inline

Definition at line 785 of file AtlasPID.h.

785  {
786  if (p.pid() == GRAVITON || std::abs(p.pid()) == MAVTOP || p.pid() == DARKPHOTON) return true;
787  if (std::abs(p.pid()) > 16 && std::abs(p.pid()) < 19) return true;
788  if (std::abs(p.pid()) > 31 && std::abs(p.pid()) < 39) return true;
789  if (std::abs(p.pid()) > 39 && std::abs(p.pid()) < 81) return true;
790  if (std::abs(p.pid()) > 6 && std::abs(p.pid()) < 9) return true;
791  if (isSUSY(p)) return true;
792  if (isNeutrinoRH(p.pid())) return true;
793  if (isGenericMultichargedParticle(p)) return true;
794  if (isTechnicolor(p)) return true;
795  if (isExcited(p)) return true;
796  if (isKK(p)) return true;
797  if (isHiddenValley(p)) return true;
798  return false;
799 }

◆ isBSM() [2/3]

template<>
bool isBSM ( const int &  p)
inline

Definition at line 800 of file AtlasPID.h.

800  {
801  if (p == GRAVITON || std::abs(p) == MAVTOP || p == DARKPHOTON) return true;
802  if (std::abs(p) > 16 && std::abs(p) < 19) return true;
803  if (std::abs(p) > 31 && std::abs(p) < 38) return true;
804  if (std::abs(p) > 39 && std::abs(p) < 81) return true;
805  if (std::abs(p) > 6 && std::abs(p) < 9) return true;
806  auto value_digits = DecodedPID(p); return isBSM(value_digits);
807 }

◆ isBSM() [3/3]

template<class T >
bool isBSM ( const T &  p)
inline

APID: graviton and all Higgs extensions are BSM.

Definition at line 784 of file AtlasPID.h.

784 {return isBSM(p->pdg_id());}

◆ isCCbarMeson() [1/3]

template<>
bool isCCbarMeson ( const DecodedPID p)
inline

Definition at line 859 of file AtlasPID.h.

859 { return leadingQuark(p) == CQUARK && isMeson(p) && (*(p.second.rbegin()+2)) == CQUARK && (*(p.second.rbegin()+1)) == CQUARK; }

◆ isCCbarMeson() [2/3]

template<>
bool isCCbarMeson ( const int &  p)
inline

Definition at line 860 of file AtlasPID.h.

860 { return isCCbarMeson(DecodedPID(p)); }

◆ isCCbarMeson() [3/3]

template<class T >
bool isCCbarMeson ( const T &  p)
inline

Definition at line 858 of file AtlasPID.h.

858 { return isCCbarMeson(p->pdg_id());}

◆ isCharged()

template<class T >
bool isCharged ( const T &  p)
inline

Definition at line 940 of file AtlasPID.h.

940 { return charge3(p) != 0;}

◆ isCharm() [1/2]

template<>
bool isCharm ( const int &  p)
inline

Definition at line 171 of file AtlasPID.h.

171 { return std::abs(p) == 4;}

◆ isCharm() [2/2]

template<class T >
bool isCharm ( const T &  p)
inline

Definition at line 170 of file AtlasPID.h.

170 {return isCharm(p->pdg_id());}

◆ isCharmBaryon()

template<class T >
bool isCharmBaryon ( const T &  p)
inline

Definition at line 870 of file AtlasPID.h.

870 { return leadingQuark(p) == CQUARK && isBaryon(p); }

◆ isCharmHadron()

template<class T >
bool isCharmHadron ( const T &  p)
inline

Definition at line 847 of file AtlasPID.h.

847 { return leadingQuark(p) == CQUARK && isHadron(p); }

◆ isCharmMeson()

template<class T >
bool isCharmMeson ( const T &  p)
inline

Definition at line 854 of file AtlasPID.h.

854 { return leadingQuark(p) == CQUARK && isMeson(p); }

◆ isChLepton() [1/2]

template<>
bool isChLepton ( const int &  p)
inline

Definition at line 190 of file AtlasPID.h.

190 { auto sp = std::abs(p); return sp >= 11 && sp <= 18 && sp%2 == 1; }

◆ isChLepton() [2/2]

template<class T >
bool isChLepton ( const T &  p)
inline

APID: the fourth generation leptons are leptons.

Definition at line 189 of file AtlasPID.h.

189 {return isChLepton(p->pdg_id());}

◆ isDiquark() [1/3]

template<>
bool isDiquark ( const DecodedPID p)
inline

Definition at line 212 of file AtlasPID.h.

212  {
213  if ( p.ndigits() == 4 && p(0) >= p(1) && p(2) == 0 && p.last() % 2 == 1
214  && p.max_digit(2,4) <= TQUARK
215  ) return true;
216  return false;
217 }

◆ isDiquark() [2/3]

template<>
bool isDiquark ( const int &  p)
inline

Definition at line 218 of file AtlasPID.h.

218 { auto value_digits = DecodedPID(p); return isDiquark(value_digits);}

◆ isDiquark() [3/3]

template<class T >
bool isDiquark ( const T &  p)
inline

PDG rule 4 Diquarks have 4-digit numbers with nq1 >= nq2 and nq3 = 0 APID: the diquarks with fourth generation are not diquarks.

Definition at line 211 of file AtlasPID.h.

211 {return isDiquark(p->pdg_id());}

◆ isDM() [1/2]

template<>
bool isDM ( const int &  p)
inline

Definition at line 605 of file AtlasPID.h.

605 { auto sp = std::abs(p); return (sp >= 51 && sp <= 60) || sp == DARKPHOTON; }

◆ isDM() [2/2]

template<class T >
bool isDM ( const T &  p)
inline

PDG rule 11j: The nature of Dark Matter (DM) is not known, and therefore a definitive classificationis too early.

Candidates within specific scenarios are classified therein, such as 1000022 for the lightest neutralino. Generic fundamental states can be given temporary codes in the range 51 - 60, with 51, 52 and 53 reserved for spin 0, 1/2 and 1 ones (this could also be an axion state). Generic mediators of s-channel DM pair creation of annihilation can be given codes 54 and 55 for spin 0 or 1 ones. Separate antiparticles, with negativecodes, may or may not exist. More elaborate new scenarios should be constructed with n= 5 and nr = 9. APID: Only the 51-60 range is considered DM. The antiparticles are assumed to exist.

Definition at line 604 of file AtlasPID.h.

604 {return isDM(p->pdg_id());}

◆ isElectron() [1/2]

template<>
bool isElectron ( const int &  p)
inline

Definition at line 193 of file AtlasPID.h.

193 { return std::abs(p) == ELECTRON;}

◆ isElectron() [2/2]

template<class T >
bool isElectron ( const T &  p)
inline

Definition at line 192 of file AtlasPID.h.

192 {return isElectron(p->pdg_id());}

◆ isEMInteracting() [1/2]

template<>
bool isEMInteracting ( const int &  p)
inline

Definition at line 1017 of file AtlasPID.h.

1017 {return (isPhoton(p) || isZ(p) || p == ZPRIME || p == ZDBLPRIME || std::abs(charge(p))>std::numeric_limits<double>::epsilon() || isMonopole(p));}

◆ isEMInteracting() [2/2]

template<class T >
bool isEMInteracting ( const T &  p)
inline

Definition at line 1016 of file AtlasPID.h.

1016 {return isEMInteracting(p->pdg_id());}

◆ isExcited() [1/3]

template<>
bool isExcited ( const DecodedPID p)
inline

Definition at line 509 of file AtlasPID.h.

509  {
510  const auto& pp = (p.ndigits() == 7) ? p.shift(2) : DecodedPID(0);
511  return (p.ndigits() == 7 && (p(0) == 4 && p(1) == 0) &&
512  (isLepton(pp) || isQuark(pp)));
513 }

◆ isExcited() [2/3]

template<>
bool isExcited ( const int &  p)
inline

Definition at line 514 of file AtlasPID.h.

514 { auto value_digits = DecodedPID(p); return isExcited(value_digits);}

◆ isExcited() [3/3]

template<class T >
bool isExcited ( const T &  p)
inline

PDG rule 11f Excited (composite) quarks and leptons are identified by setting n= 4 and nr= 0.

Definition at line 507 of file AtlasPID.h.

507 {return isExcited(p->pdg_id());}

◆ isGaugino() [1/3]

template<>
bool isGaugino ( const DecodedPID p)
inline

Definition at line 485 of file AtlasPID.h.

485  {
486  auto pp = p.shift(1); return isSUSY(p) && isBoson(pp.pid());
487 }

◆ isGaugino() [2/3]

template<>
bool isGaugino ( const int &  p)
inline

Definition at line 488 of file AtlasPID.h.

488 { auto value_digits = DecodedPID(p); return isGaugino(value_digits);}

◆ isGaugino() [3/3]

template<class T >
bool isGaugino ( const T &  p)
inline

Definition at line 484 of file AtlasPID.h.

484 { return isGaugino(p->pdg_id()); }

◆ isGeantino() [1/2]

template<>
bool isGeantino ( const int &  p)
inline

Definition at line 411 of file AtlasPID.h.

411 { return (std::abs(p) == GEANTINO0 || std::abs(p) == GEANTINOPLUS);}

◆ isGeantino() [2/2]

template<class T >
bool isGeantino ( const T &  p)
inline

Definition at line 410 of file AtlasPID.h.

410 {return isGeantino(p->pdg_id());}

◆ isGenericMultichargedParticle() [1/3]

template<>
bool isGenericMultichargedParticle ( const DecodedPID p)
inline

Definition at line 628 of file AtlasPID.h.

628 {return (p.ndigits() == 8 && (p(0) == 1 || p(0) == 2) && p(1) == 0 && p(2) == 0 && p(7) == 0);}

◆ isGenericMultichargedParticle() [2/3]

template<>
bool isGenericMultichargedParticle ( const int &  p)
inline

Definition at line 629 of file AtlasPID.h.

629 { auto value_digits = DecodedPID(p); return isGenericMultichargedParticle(value_digits);}

◆ isGenericMultichargedParticle() [3/3]

template<class T >
bool isGenericMultichargedParticle ( const T &  p)
inline

In addition, there is a need to identify ”Q-ball” and similar very exotic (multi-charged) particles which may have large, non-integer charge.

These particles are assigned the ad-hoc numbering +/-100XXXY0, where the charge is XXX.Y. or +/-200XXYY0, where the charge is XX/YY. The case of +/-200XXYY0 is legacy, see https://gitlab.cern.ch/atlas/athena/-/merge_requests/25862 Note that no other quantum numbers besides the charge are considered for these generic multi-charged particles (e.g. isSUSY() is false for them). Such a model was used in previous Run-1 (1301.5272,1504.04188) and Run-2 (1812.03673,2303.13613) ATLAS searches.

Definition at line 627 of file AtlasPID.h.

627 {return isGenericMultichargedParticle(p->pdg_id());}

◆ isGenSpecific() [1/2]

template<>
bool isGenSpecific ( const int &  p)
inline

Definition at line 400 of file AtlasPID.h.

400  {
401  if (p >= 81 && p <= 100) return true;
402  if (p >= 901 && p <= 930) return true;
403  if (p >= 998 && p <= 999) return true;
404  if (p >= 1901 && p <= 1930) return true;
405  if (p >= 2901 && p <= 2930) return true;
406  if (p >= 3901 && p <= 3930) return true;
407  return false;
408 }

◆ isGenSpecific() [2/2]

template<class T >
bool isGenSpecific ( const T &  p)
inline

Main Table for MC internal use 81–100,901–930,998-999,1901–1930,2901–2930, and 3901–3930.

Definition at line 399 of file AtlasPID.h.

399 {return isGenSpecific(p->pdg_id());}

◆ isGlueball() [1/3]

template<>
bool isGlueball ( const DecodedPID p)
inline

Definition at line 415 of file AtlasPID.h.

415  {
416  if (p.ndigits() > 4) return false; // APID avoid classifying R-Glueballs as SM Glueballs
417  return
418  ( ( p.ndigits() == 3 && p(0) == COMPOSITEGLUON && p(1) == COMPOSITEGLUON && (p(2) == 1 || p(2) == 5) ) ||
419  ( p.ndigits() == 4 && p(0) == COMPOSITEGLUON && p(1) == COMPOSITEGLUON && p(2) == COMPOSITEGLUON && (p(3) == 3 || p(3) == 7) ) );
420 }

◆ isGlueball() [2/3]

template<>
bool isGlueball ( const int &  p)
inline

Definition at line 421 of file AtlasPID.h.

421 { auto value_digits = DecodedPID(p); return isGlueball(value_digits); }

◆ isGlueball() [3/3]

template<class T >
bool isGlueball ( const T &  p)
inline

APID: Definition of Glueballs: SM glueballs 99X (X=1,5), 999Y (Y=3,7)

Definition at line 414 of file AtlasPID.h.

414 { return isGlueball(p->pdg_id()); }

◆ isGluon() [1/2]

template<>
bool isGluon ( const int &  p)
inline

Definition at line 348 of file AtlasPID.h.

348 { return p == GLUON; }

◆ isGluon() [2/2]

template<class T >
bool isGluon ( const T &  p)
inline

Definition at line 347 of file AtlasPID.h.

347 {return isGluon(p->pdg_id());}

◆ isGraviton() [1/2]

template<>
bool isGraviton ( const int &  p)
inline

Definition at line 372 of file AtlasPID.h.

372 { return p == GRAVITON; }

◆ isGraviton() [2/2]

template<class T >
bool isGraviton ( const T &  p)
inline

Definition at line 371 of file AtlasPID.h.

371 {return isGraviton(p->pdg_id());}

◆ isHadron() [1/3]

template<>
bool isHadron ( const DecodedPID p)
inline

Definition at line 326 of file AtlasPID.h.

326 { return isMeson(p) || isBaryon(p) || isTetraquark(p) || isPentaquark(p); }

◆ isHadron() [2/3]

template<>
bool isHadron ( const int &  p)
inline

Definition at line 327 of file AtlasPID.h.

327 { auto value_digits = DecodedPID(p); return isHadron(value_digits);}

◆ isHadron() [3/3]

template<class T >
bool isHadron ( const T &  p)
inline

Definition at line 325 of file AtlasPID.h.

325 {return isHadron(p->pdg_id());}

◆ isHeavyBaryon()

template<class T >
bool isHeavyBaryon ( const T &  p)
inline

Definition at line 868 of file AtlasPID.h.

868 { auto lq = leadingQuark(p); return (lq == CQUARK || lq == BQUARK || lq == TQUARK) && isBaryon(p); }

◆ isHeavyBoson() [1/2]

template<>
bool isHeavyBoson ( const int &  p)
inline

Definition at line 361 of file AtlasPID.h.

361 { return p == ZPRIME || p == ZDBLPRIME || std::abs(p) == WPLUSPRIME; }

◆ isHeavyBoson() [2/2]

template<class T >
bool isHeavyBoson ( const T &  p)
inline

APID: Additional "Heavy"/"prime" versions of W and Z bosons (Used in MCTruthClassifier)

Definition at line 360 of file AtlasPID.h.

360 {return isHeavyBoson(p->pdg_id());}

◆ isHeavyHadron()

template<class T >
bool isHeavyHadron ( const T &  p)
inline

Definition at line 845 of file AtlasPID.h.

845 { auto lq = leadingQuark(p); return (lq == CQUARK || lq == BQUARK || lq == TQUARK ) && isHadron(p); }

◆ isHeavyMeson()

template<class T >
bool isHeavyMeson ( const T &  p)
inline

Definition at line 852 of file AtlasPID.h.

852 { auto lq = leadingQuark(p); return (lq == CQUARK || lq == BQUARK || lq == TQUARK) && isMeson(p); }

◆ isHiddenValley() [1/3]

template<>
bool isHiddenValley ( const DecodedPID p)
inline

Definition at line 613 of file AtlasPID.h.

613  {
614  const auto& pp = (p.ndigits() == 7) ? p.shift(2) : DecodedPID(0);
615  return (p.ndigits() == 7 && p(0) == 4 && p(1) == 9 &&
616  (isQuark(pp) || isLepton(pp) || isBoson(pp) || isGlueball(pp) ||
617  isDiquark(pp) || isHadron(pp)));
618 }

◆ isHiddenValley() [2/3]

template<>
bool isHiddenValley ( const int &  p)
inline

Definition at line 619 of file AtlasPID.h.

619 { auto value_digits = DecodedPID(p); return isHiddenValley(value_digits);}

◆ isHiddenValley() [3/3]

template<class T >
bool isHiddenValley ( const T &  p)
inline

PDG rule 11k Hidden Valley particles have n = 4 and n_r = 9, and trailing numbers in agreement with their nearest-analog standard particles, as far as possible.

Thus 4900021 is the gauge boson g_v of a confining gauge field, 490000n_{q_v} and 490001n_{l_v} fundamental constituents charged or not under this, 4900022 is the γ_v of a non-confining field, and 4900n_{q_{v1}}n_{q_{v2}}n_J a Hidden Valley meson.

Definition at line 611 of file AtlasPID.h.

611 {return isHiddenValley(p->pdg_id());}

◆ isHiggs() [1/2]

template<>
bool isHiggs ( const int &  p)
inline

Definition at line 365 of file AtlasPID.h.

365 { return p == HIGGSBOSON; }

◆ isHiggs() [2/2]

template<class T >
bool isHiggs ( const T &  p)
inline

APID: HIGGS boson is only one particle.

Definition at line 364 of file AtlasPID.h.

364 {return isHiggs(p->pdg_id());}

◆ isKK() [1/3]

template<>
bool isKK ( const DecodedPID p)
inline

Definition at line 581 of file AtlasPID.h.

581 {return (p.ndigits() == 7 && (p(0) == 5 || p(0) == 6 ) );}

◆ isKK() [2/3]

template<>
bool isKK ( const int &  p)
inline

Definition at line 582 of file AtlasPID.h.

582 { auto value_digits = DecodedPID(p); return isKK(value_digits);}

◆ isKK() [3/3]

template<class T >
bool isKK ( const T &  p)
inline

PDG rule 11h A black hole in models with extra dimensions has code 5000040.

Kaluza-Klein excitations in models with extra dimensions have n = 5 or n = 6, to distinguish excitations of left-or right-handed fermions or, in case of mixing, the lighter or heavier state (cf. 11d). The non zero nr digit gives the radial excitation number, in scenarios where the level spacing allows these to be distinguished. Should the model also contain supersymmetry, excited SUSY states would be denoted by a nn_r > 0, with n = 1 or 2 as usual. Should some colored states be long-lived enough that hadrons would form around them, the coding strategy of 11g applies, with the initial two nnr digits preserved in the combined code.

Definition at line 580 of file AtlasPID.h.

580 {return isKK(p->pdg_id());}

◆ isLepton() [1/3]

template<>
bool isLepton ( const DecodedPID p)
inline

Definition at line 182 of file AtlasPID.h.

182 { return isLepton(p.pid()); }

◆ isLepton() [2/3]

template<>
bool isLepton ( const int &  p)
inline

Definition at line 181 of file AtlasPID.h.

181 { auto sp = std::abs(p); return sp >= 11 && sp <= 18; }

◆ isLepton() [3/3]

template<class T >
bool isLepton ( const T &  p)
inline

APID: the fourth generation leptons are leptons.

Definition at line 180 of file AtlasPID.h.

180 {return isLepton(p->pdg_id());}

◆ isLeptoQuark() [1/2]

template<>
bool isLeptoQuark ( const int &  p)
inline

Definition at line 383 of file AtlasPID.h.

383 { return std::abs(p) == LEPTOQUARK; }

◆ isLeptoQuark() [2/2]

template<class T >
bool isLeptoQuark ( const T &  p)
inline

PDG rule 11c: “One-of-a-kind” exotic particles are assigned numbers in the range 41–80.

The subrange 61-80 can be used for new heavier fermions in generic models, where partners to the SM fermions would have codes offset by 60. If required, however, other assignments could be made.

Definition at line 382 of file AtlasPID.h.

382 {return isLeptoQuark(p->pdg_id());}

◆ isLightBaryon()

template<class T >
bool isLightBaryon ( const T &  p)
inline

Definition at line 867 of file AtlasPID.h.

867 { auto lq = leadingQuark(p); return (lq == DQUARK || lq == UQUARK||lq == SQUARK) && isBaryon(p); }

◆ isLightHadron()

template<class T >
bool isLightHadron ( const T &  p)
inline

Definition at line 844 of file AtlasPID.h.

844 { auto lq = leadingQuark(p); return (lq == DQUARK || lq == UQUARK||lq == SQUARK) && isHadron(p); }

◆ isLightMeson()

template<class T >
bool isLightMeson ( const T &  p)
inline

Definition at line 851 of file AtlasPID.h.

851 { auto lq = leadingQuark(p); return (lq == DQUARK || lq == UQUARK||lq == SQUARK) && isMeson(p); }

◆ isMeson() [1/3]

template<>
bool isMeson ( const DecodedPID p)
inline

Definition at line 228 of file AtlasPID.h.

228  {
229  if (p.ndigits() < 3 ) return false;
230  if (p.ndigits() == 7 && (p(0) == 1 || p(0) == 2)) return false; // APID don't match SUSY particles
231  if (std::abs(p.pid()) == K0S) return true;
232  if (std::abs(p.pid()) == K0L) return true;
233  if (std::abs(p.pid()) == K0) return true;
234  if (p.last() % 2 != 1 ) return false;
235  if (p.max_digit(1,3) >= 6 ) return false;
236  if (p.max_digit(1,3) == 0 ) return false;
237  if (p.ndigits() > 3 && *(p.second.rbegin() + 3) != 0 ) return false;
238 
239  if (p.ndigits() == 3 && p(0) == p(1) && p.pid() < 0 ) return false;
240  if (p.ndigits() == 5 && p(2) == p(3) && p.pid() < 0 ) return false;
241  if (p.ndigits() == 7 && p(4) == p(5) && p.pid() < 0 ) return false;
242 
243 
244  if (p.ndigits() == 3 && p(0) >= p(1) && p(1) != 0 ) return true;
245  if (p.ndigits() == 5 && p(2) >= p(3) && p(3) != 0 && p(0) == 1 && p(1) == 0) return true;
246  if (p.ndigits() == 5 && p(2) >= p(3) && p(3) != 0 && p(0) == 2 && p(1) == 0 && p.last() > 1 ) return true;
247  if (p.ndigits() == 5 && p(2) >= p(3) && p(3) != 0 && p(0) == 3 && p(1) == 0 && p.last() > 1 ) return true;
248 
249  if (p.ndigits() == 6 && p(3) >= p(4) && p(4) != 0 && p.last() % 2 == 1 ) return true;
250 
251  if (p.ndigits() == 7 && p(0) == 9 && p(1) == 0 && p(4) >= p(5) && p(5) != 0) return true;
252 
253  return false;
254 }

◆ isMeson() [2/3]

template<>
bool isMeson ( const int &  p)
inline

Definition at line 255 of file AtlasPID.h.

255 { auto value_digits = DecodedPID(p); return isMeson(value_digits);}

◆ isMeson() [3/3]

template<class T >
bool isMeson ( const T &  p)
inline

Table 43.1 PDG rule 5a: The numbers specifying the meson’s quark content conform to the convention nq1= 0 and nq2 >= nq3.

The special case K0L is the sole exception to this rule. PDG rule 5C: The special numbers 310 and 130 are given to the K0S and K0L respectively. APID: The special code K0 is used when a generator uses K0S/K0L

Definition at line 227 of file AtlasPID.h.

227 {return isMeson(p->pdg_id());}

◆ isMonopole() [1/3]

template<>
bool isMonopole ( const DecodedPID p)
inline

Definition at line 591 of file AtlasPID.h.

591 {return (p.ndigits() == 7 && p(0) == 4 && p(1) == 1 && (p(2) == 1 || p(2) == 2 ) && p(6) == 0);}

◆ isMonopole() [2/3]

template<>
bool isMonopole ( const int &  p)
inline

Definition at line 592 of file AtlasPID.h.

592 { auto value_digits = DecodedPID(p); return isMonopole(value_digits);}

◆ isMonopole() [3/3]

template<class T >
bool isMonopole ( const T &  p)
inline

PDG rule 11i Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a variable integer number nq1nq2 nq3 units of electric charge.

Codes 411nq1nq2 nq3 0 are then used when the magnetic and electrical charge sign agree and 412nq1nq2 nq3 0 when they disagree, with the overall sign of the particle set by the magnetic charge. For now no spin information is provided.

Definition at line 590 of file AtlasPID.h.

590 {return isMonopole(p->pdg_id());}

◆ isMSSMHiggs() [1/2]

template<>
bool isMSSMHiggs ( const int &  p)
inline

Definition at line 369 of file AtlasPID.h.

369 { return p == HIGGS2 || p == HIGGS3 || std::abs(p) == HIGGSPLUS; }

◆ isMSSMHiggs() [2/2]

template<class T >
bool isMSSMHiggs ( const T &  p)
inline

APID: Additional Higgs bosons for MSSM (Used in MCTruthClassifier)

Definition at line 368 of file AtlasPID.h.

368 {return isMSSMHiggs(p->pdg_id());}

◆ isMuon() [1/2]

template<>
bool isMuon ( const int &  p)
inline

Definition at line 196 of file AtlasPID.h.

196 { return std::abs(p) == MUON;}

◆ isMuon() [2/2]

template<class T >
bool isMuon ( const T &  p)
inline

Definition at line 195 of file AtlasPID.h.

195 {return isMuon(p->pdg_id());}

◆ isNeutral() [1/3]

template<>
bool isNeutral ( const DecodedPID p)
inline

Definition at line 1002 of file AtlasPID.h.

1002 { return p.pid() != 0 && charge3(p) == 0;}

◆ isNeutral() [2/3]

template<>
bool isNeutral ( const int &  p)
inline

Definition at line 1003 of file AtlasPID.h.

1003 { auto value_digits = DecodedPID(p); return isNeutral(value_digits);}

◆ isNeutral() [3/3]

template<class T >
bool isNeutral ( const T &  p)
inline

Definition at line 1001 of file AtlasPID.h.

1001 { return p->pdg_id() != 0 && charge3(p) == 0;}

◆ isNeutrino() [1/2]

template<>
bool isNeutrino ( const int &  p)
inline

Definition at line 203 of file AtlasPID.h.

203 { auto sp = std::abs(p); return sp == NU_E || sp == NU_MU || sp == NU_TAU || sp == 18; }

◆ isNeutrino() [2/2]

template<class T >
bool isNeutrino ( const T &  p)
inline

APID: the fourth generation neutrinos are neutrinos.

Definition at line 202 of file AtlasPID.h.

202 {return isNeutrino(p->pdg_id());}

◆ isNeutrinoRH() [1/2]

template<>
bool isNeutrinoRH ( const int &  p)
inline

Definition at line 395 of file AtlasPID.h.

395 { return (std::abs(p) == RH_NU_E || std::abs(p) == RH_NU_MU|| std::abs(p) == RH_NU_TAU);}

◆ isNeutrinoRH() [2/2]

template<class T >
bool isNeutrinoRH ( const T &  p)
inline

PDG Rule 12: APID: Helper function for right-handed neutrino states These are generator defined PDG ID values for right handed neutrinos.

(Defined for some MadGraph+Pythia8 samples and referenced in MCTruthClassifierGen.cxx)

Definition at line 394 of file AtlasPID.h.

394 {return isNeutrinoRH(p->pdg_id());}

◆ isNucleus() [1/3]

template<>
bool isNucleus ( const DecodedPID p)
inline

Definition at line 646 of file AtlasPID.h.

646  {
647  if (std::abs(p.pid()) == PROTON) return true;
648  return (p.ndigits() == 10 && p(0) == 1 && p(1) == 0 );
649 }

◆ isNucleus() [2/3]

template<>
bool isNucleus ( const int &  p)
inline

Definition at line 650 of file AtlasPID.h.

650 { auto value_digits = DecodedPID(p); return isNucleus(value_digits);}

◆ isNucleus() [3/3]

template<class T >
bool isNucleus ( const T &  p)
inline

PDG rule 16 Nuclear codes are given as 10-digit numbers ±10LZZZAAAI.

For a (hyper)nucleus consisting of n_p protons, n_n neutrons and n_Λ Λ’s: A = n_p + n_n + n_Λ gives the total baryon number, Z = n_p gives the total charge, L = n_Λ gives the total number of strange quarks. I gives the isomer level, with I= 0 corresponding to the ground state and I > 0 to excitations, see [http://www.nndc.bnl.gov/amdc/web/nubase en.html], where states denoted m, n, p ,q translate to I= 1–4. As examples, the deuteron is 1000010020 and 235U is 1000922350. To avoid ambiguities, nuclear codes should not be applied to a single hadron, like p, n or Λ^0, where quark-contents-based codes already exist.

Definition at line 645 of file AtlasPID.h.

645 {return isNucleus(p->pdg_id());}

◆ isParton()

template<class T >
bool isParton ( const T &  p)
inline

Definition at line 1019 of file AtlasPID.h.

1019 { return isQuark(p)||isGluon(p);}

◆ isPentaquark() [1/3]

template<>
bool isPentaquark ( const DecodedPID p)
inline

Definition at line 317 of file AtlasPID.h.

317  {
318  return (p.ndigits() == 9 && p(0) == 1 &&
319  p.max_digit(1,6) <= 6 && p.min_digit(1,6) > 0 &&
320  ( p(3) >= p(4) && p(4) >= p(5) && p(5) >= p(6)) );
321 }

◆ isPentaquark() [2/3]

template<>
bool isPentaquark ( const int &  p)
inline

Definition at line 322 of file AtlasPID.h.

322 { auto value_digits = DecodedPID(p); return isPentaquark(value_digits);}

◆ isPentaquark() [3/3]

template<class T >
bool isPentaquark ( const T &  p)
inline

PDG rule 15 The 9-digit penta-quark codes are±1nrnLnq1nq2nq3nq4nq5nJ, sorted such thatnq1≥nq2≥nq3≥nq4.

In the particle the first four are quarks and the fifth an antiquark while t heopposite holds in the antiparticle, which is given with a negative sign. Thenr,nL, andnJnumbers have the same meaning as for ordinary hadrons.

Definition at line 316 of file AtlasPID.h.

316 {return isPentaquark(p->pdg_id());}

◆ isPhoton() [1/2]

template<>
bool isPhoton ( const int &  p)
inline

Definition at line 351 of file AtlasPID.h.

351 { return p == PHOTON; }

◆ isPhoton() [2/2]

template<class T >
bool isPhoton ( const T &  p)
inline

Definition at line 350 of file AtlasPID.h.

350 {return isPhoton(p->pdg_id());}

◆ isPythia8Specific() [1/3]

template<>
bool isPythia8Specific ( const DecodedPID p)
inline

Definition at line 386 of file AtlasPID.h.

386 { return (p.ndigits() == 7 && p(0) == 9 && p(1) == 9);}

◆ isPythia8Specific() [2/3]

template<>
bool isPythia8Specific ( const int &  p)
inline

Definition at line 387 of file AtlasPID.h.

387 { auto value_digits = DecodedPID(p); return isPythia8Specific(value_digits);}

◆ isPythia8Specific() [3/3]

template<class T >
bool isPythia8Specific ( const T &  p)
inline

Definition at line 385 of file AtlasPID.h.

385 {return isPythia8Specific(p->pdg_id());}

◆ isQuark() [1/3]

template<>
bool isQuark ( const DecodedPID p)
inline

Definition at line 161 of file AtlasPID.h.

161 { return isQuark(p.pid()); }

◆ isQuark() [2/3]

template<>
bool isQuark ( const int &  p)
inline

Definition at line 160 of file AtlasPID.h.

160 { return p != 0 && (std::abs(p) <= 8 || std::abs(p) == MAVTOP);}

◆ isQuark() [3/3]

template<class T >
bool isQuark ( const T &  p)
inline

PDG rule 2: Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to dothis they are first ordered by family and within families by weak isospin.

APID: the fourth generation quarks are quarks.

Definition at line 159 of file AtlasPID.h.

159 {return isQuark(p->pdg_id());}

◆ isRBaryon() [1/3]

template<>
bool isRBaryon ( const DecodedPID p)
inline

Definition at line 561 of file AtlasPID.h.

561  {
562  if (!(p.ndigits() == 7 && (p(0) == 1 || p(0) == 2))) return false;
563  auto pp = p.shift(1);
564  return (
565  // Handle ~gluino-quark-quark-quark states
566  (pp.ndigits() == 5 && pp(0) == COMPOSITEGLUON && pp.max_digit(1,4) < COMPOSITEGLUON && pp(2) <= pp(1) && pp(3) <= pp(2) && isSMQuark(pp(1)) && isSMQuark(pp(2)) && isSMQuark(pp(3)) && (pp.last() == 2 || pp.last() == 4)) ||
567  // Handle squark-quark-quark states (previously called Sbaryons)
568  (pp.ndigits() == 4 && pp.max_digit(1,4) < COMPOSITEGLUON && pp(1) <= pp(0) && pp(2) <= pp(1) && isSMQuark(pp(0)) && isSMQuark(pp(1)) && isSMQuark(pp(2)) && (pp.last() == 1 || pp.last() == 3))
569  );
570 }

◆ isRBaryon() [2/3]

template<>
bool isRBaryon ( const int &  p)
inline

Definition at line 571 of file AtlasPID.h.

571 { auto value_digits = DecodedPID(p); return isRBaryon(value_digits); }

◆ isRBaryon() [3/3]

template<class T >
bool isRBaryon ( const T &  p)
inline

Definition at line 560 of file AtlasPID.h.

560 { return isRBaryon(p->pdg_id()); }

◆ isResonance()

template<class T >
bool isResonance ( const T &  p)
inline

Definition at line 374 of file AtlasPID.h.

374 { return isZ(p) || isW(p) || isHiggs(p) || isTop(p); } // APID: not including t' (pdg_id=8), Z', Z'' and W'+ or BSM Higgs bosons

◆ isRGlueball() [1/3]

template<>
bool isRGlueball ( const DecodedPID p)
inline

Definition at line 534 of file AtlasPID.h.

534  {
535  if (p.ndigits() != 7 || p(0) != 1) return false;
536  auto pp = p.shift(1);
537  return
538  ( ( pp.ndigits() == 3 && pp(0) == COMPOSITEGLUON && pp(1) == COMPOSITEGLUON && (pp(2) == 1 || pp(2) == 3) ) ||
539  ( pp.ndigits() == 4 && pp(0) == COMPOSITEGLUON && pp(1) == COMPOSITEGLUON && pp(2) == COMPOSITEGLUON && (pp(3) == 1 || pp(3) == 5) ) );
540 }

◆ isRGlueball() [2/3]

template<>
bool isRGlueball ( const int &  p)
inline

Definition at line 541 of file AtlasPID.h.

541 { auto value_digits = DecodedPID(p); return isRGlueball(value_digits); }

◆ isRGlueball() [3/3]

template<class T >
bool isRGlueball ( const T &  p)
inline

PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles sufficiently long-lived for color-singlet hadronic states to form around them.

In the context of supersymmetric scenarios, these states are called R-hadrons, since they carry odd R- parity. R-hadron codes, defined here, should be viewed as templates for corresponding codes also in other scenarios, for any long-lived particle that is either an unflavored color octet or a flavored color triplet. The R-hadron code is obtained by combining the SUSY particle code with a code for the light degrees of freedom, with as many intermediate zeros removed from the former as required to make place for the latter at the end. (To exemplify, a sparticle n00000n˜q combined with quarks q1 and q2 obtains code n00n˜qnq1 nq2 nJ .) Specifically, the new-particle spin decouples in the limit of large masses, so that the final nJ digit is defined by the spin state of the light-quark system alone. An appropriate number of nq digits is used to define the ordinary-quark content. As usual, 9 rather than 21 is used to denote a gluon/gluino in composite states. The sign of the hadron agrees with that of the constituent new particle (a color triplet) where there is a distinct new antiparticle, and else is defined as for normal hadrons. Particle names are R with the flavor content as lower index. APID: Definition of R-Glueballs: 100099X (X=1,3), 100999Y (Y=1,5) APID: NB In the current numbering scheme, some states with 2 gluinos + gluon or 2 gluons + gluino could have degenerate PDG_IDs.

Definition at line 533 of file AtlasPID.h.

533 { return isRGlueball(p->pdg_id()); }

◆ isRHadron() [1/3]

template<>
bool isRHadron ( const DecodedPID p)
inline

Definition at line 1050 of file AtlasPID.h.

1050  {
1051  return (isRBaryon(p) || isRMeson(p) || isRGlueball(p));
1052 }

◆ isRHadron() [2/3]

template<>
bool isRHadron ( const int &  p)
inline

Definition at line 1053 of file AtlasPID.h.

1053 { auto value_digits = DecodedPID(p); return isRHadron(value_digits); }

◆ isRHadron() [3/3]

template<class T >
bool isRHadron ( const T &  p)
inline

Definition at line 1049 of file AtlasPID.h.

1049 { return isRHadron(p->pdg_id()); }

◆ isRMeson() [1/3]

template<>
bool isRMeson ( const DecodedPID p)
inline

Definition at line 546 of file AtlasPID.h.

546  {
547  if (!(p.ndigits() == 7 && (p(0) == 1 || p(0) == 2))) return false;
548  auto pp = p.shift(1);
549  return (
550  // Handle ~gluino-quark-antiquark states
551  (pp.ndigits() == 4 && pp(0) == COMPOSITEGLUON && pp.max_digit(1,3) < COMPOSITEGLUON && pp(2) <= pp(1) && isSMQuark(pp(1)) && isSMQuark(pp(2)) && (pp.last() == 1 || pp.last() == 3)) ||
552  // Handle squark-antiquark states (previously called Smeson/mesoninos)
553  (pp.ndigits() == 3 && pp.max_digit(1,3) < COMPOSITEGLUON && pp(1) <= pp(0) && isSMQuark(pp(0)) && isSMQuark(pp(1)) && pp.last() == 2)
554  );
555 }

◆ isRMeson() [2/3]

template<>
bool isRMeson ( const int &  p)
inline

Definition at line 556 of file AtlasPID.h.

556 { auto value_digits = DecodedPID(p); return isRMeson(value_digits); }

◆ isRMeson() [3/3]

template<class T >
bool isRMeson ( const T &  p)
inline

Definition at line 545 of file AtlasPID.h.

545 { return isRMeson(p->pdg_id()); }

◆ isSlepton() [1/3]

template<>
bool isSlepton ( const DecodedPID p)
inline

Definition at line 467 of file AtlasPID.h.

467 { auto pp = p.shift(1); return isSUSY(p) && isSMLepton(pp);}

◆ isSlepton() [2/3]

template<>
bool isSlepton ( const int &  p)
inline

Definition at line 468 of file AtlasPID.h.

468 { auto value_digits = DecodedPID(p); return isSlepton(value_digits);}

◆ isSlepton() [3/3]

template<class T >
bool isSlepton ( const T &  p)
inline

Definition at line 466 of file AtlasPID.h.

466 { return isSlepton(p->pdg_id()); }

◆ isSleptonLH() [1/3]

template<>
bool isSleptonLH ( const DecodedPID p)
inline

Definition at line 473 of file AtlasPID.h.

473 { return isSlepton(p) && (p(0) == 1); }

◆ isSleptonLH() [2/3]

template<>
bool isSleptonLH ( const int &  p)
inline

Definition at line 474 of file AtlasPID.h.

474 { auto value_digits = DecodedPID(p); return isSleptonLH(value_digits);}

◆ isSleptonLH() [3/3]

template<class T >
bool isSleptonLH ( const T &  p)
inline

Definition at line 472 of file AtlasPID.h.

472 { return isSleptonLH(p->pdg_id()); }

◆ isSleptonRH() [1/3]

template<>
bool isSleptonRH ( const DecodedPID p)
inline

Definition at line 479 of file AtlasPID.h.

479 { return isSlepton(p) && (p(0) == 2); }

◆ isSleptonRH() [2/3]

template<>
bool isSleptonRH ( const int &  p)
inline

Definition at line 480 of file AtlasPID.h.

480 { auto value_digits = DecodedPID(p); return isSleptonRH(value_digits);}

◆ isSleptonRH() [3/3]

template<class T >
bool isSleptonRH ( const T &  p)
inline

Definition at line 478 of file AtlasPID.h.

478 { return isSleptonRH(p->pdg_id()); }

◆ isSMLepton() [1/3]

template<>
bool isSMLepton ( const DecodedPID p)
inline

Definition at line 186 of file AtlasPID.h.

186 { return isSMLepton(p.pid()); }

◆ isSMLepton() [2/3]

template<>
bool isSMLepton ( const int &  p)
inline

Definition at line 185 of file AtlasPID.h.

185 { auto sp = std::abs(p); return sp >= 11 && sp <= 16; }

◆ isSMLepton() [3/3]

template<class T >
bool isSMLepton ( const T &  p)
inline

Definition at line 184 of file AtlasPID.h.

184 {return isSMLepton(p->pdg_id());}

◆ isSMNeutrino() [1/2]

template<>
bool isSMNeutrino ( const int &  p)
inline

Definition at line 206 of file AtlasPID.h.

206 { auto sp = std::abs(p); return sp == NU_E || sp == NU_MU || sp == NU_TAU; }

◆ isSMNeutrino() [2/2]

template<class T >
bool isSMNeutrino ( const T &  p)
inline

Definition at line 205 of file AtlasPID.h.

205 {return isSMNeutrino(p->pdg_id());}

◆ isSMQuark() [1/3]

template<>
bool isSMQuark ( const DecodedPID p)
inline

Definition at line 165 of file AtlasPID.h.

165 { return isSMQuark(p.pid()); }

◆ isSMQuark() [2/3]

template<>
bool isSMQuark ( const int &  p)
inline

Definition at line 164 of file AtlasPID.h.

164 { return p != 0 && std::abs(p) <= TQUARK;}

◆ isSMQuark() [3/3]

template<class T >
bool isSMQuark ( const T &  p)
inline

Definition at line 163 of file AtlasPID.h.

163 {return isSMQuark(p->pdg_id());}

◆ isSquark() [1/3]

template<>
bool isSquark ( const DecodedPID p)
inline

Definition at line 436 of file AtlasPID.h.

436  {
437  auto pp = p.shift(1); return isSUSY(p) && isSMQuark(pp);
438 }

◆ isSquark() [2/3]

template<>
bool isSquark ( const int &  p)
inline

Definition at line 439 of file AtlasPID.h.

439 { auto value_digits = DecodedPID(p); return isSquark(value_digits);}

◆ isSquark() [3/3]

template<class T >
bool isSquark ( const T &  p)
inline

Definition at line 435 of file AtlasPID.h.

435 { return isSquark(p->pdg_id()); }

◆ isSquarkLH() [1/3]

template<>
bool isSquarkLH ( const DecodedPID p)
inline

Definition at line 444 of file AtlasPID.h.

444  {
445  return isSquark(p) && (p(0) == 1);
446 }

◆ isSquarkLH() [2/3]

template<>
bool isSquarkLH ( const int &  p)
inline

Definition at line 447 of file AtlasPID.h.

447 { auto value_digits = DecodedPID(p); return isSquarkLH(value_digits);}

◆ isSquarkLH() [3/3]

template<class T >
bool isSquarkLH ( const T &  p)
inline

Definition at line 443 of file AtlasPID.h.

443 { return isSquarkLH(p->pdg_id()); }

◆ isSquarkRH() [1/3]

template<>
bool isSquarkRH ( const DecodedPID p)
inline

Definition at line 452 of file AtlasPID.h.

452  {
453  return isSquark(p) && (p(0) == 2);
454 }

◆ isSquarkRH() [2/3]

template<>
bool isSquarkRH ( const int &  p)
inline

Definition at line 455 of file AtlasPID.h.

455 { auto value_digits = DecodedPID(p); return isSquarkRH(value_digits);}

◆ isSquarkRH() [3/3]

template<class T >
bool isSquarkRH ( const T &  p)
inline

Definition at line 451 of file AtlasPID.h.

451 { return isSquarkRH(p->pdg_id()); }

◆ isStrange() [1/2]

template<>
bool isStrange ( const int &  p)
inline

Definition at line 168 of file AtlasPID.h.

168 { return std::abs(p) == 3;}

◆ isStrange() [2/2]

template<class T >
bool isStrange ( const T &  p)
inline

Definition at line 167 of file AtlasPID.h.

167 {return isStrange(p->pdg_id());}

◆ isStrangeBaryon()

template<class T >
bool isStrangeBaryon ( const T &  p)
inline

Definition at line 869 of file AtlasPID.h.

869 { return leadingQuark(p) == SQUARK && isBaryon(p); }

◆ isStrangeHadron()

template<class T >
bool isStrangeHadron ( const T &  p)
inline

Definition at line 846 of file AtlasPID.h.

846 { return leadingQuark(p) == SQUARK && isHadron(p); }

◆ isStrangeMeson()

template<class T >
bool isStrangeMeson ( const T &  p)
inline

Definition at line 853 of file AtlasPID.h.

853 { return leadingQuark(p) == SQUARK && isMeson(p); }

◆ isStrongInteracting() [1/2]

template<>
bool isStrongInteracting ( const int &  p)
inline

Definition at line 1082 of file AtlasPID.h.

1082 { return (isGluon(p) || isQuark(p) || isDiquark(p) || isGlueball(p) || isLeptoQuark(p) || isHadron(p) || isRHadron(p));} // APID: Glueballs and R-Hadrons are also strong-interacting

◆ isStrongInteracting() [2/2]

template<class T >
bool isStrongInteracting ( const T &  p)
inline

Definition at line 1081 of file AtlasPID.h.

1081 {return isStrongInteracting(p->pdg_id());}

◆ isSUSY() [1/3]

template<>
bool isSUSY ( const DecodedPID p)
inline

Definition at line 430 of file AtlasPID.h.

430 {return (p.ndigits() == 7 && (p(0) == 1 || p(0) == 2) && !isGenSpecific(p.shift(2).pid()));}

◆ isSUSY() [2/3]

template<>
bool isSUSY ( const int &  p)
inline

Definition at line 431 of file AtlasPID.h.

431 { auto value_digits = DecodedPID(p); return isSUSY(value_digits);}

◆ isSUSY() [3/3]

template<class T >
bool isSUSY ( const T &  p)
inline

PDG rule 11d Fundamental supersymmetric particles are identified by adding a nonzero n to the particle number.

The superpartner of a boson or a left-handed fermion has n = 1 while the superpartner of a right-handed fermion has n = 2. When mixing occurs, such as between the winos and charged Higgsinos to give charginos, or between left and right sfermions, the lighter physical state is given the smaller basis state number.

Definition at line 429 of file AtlasPID.h.

429 {return isSUSY(p->pdg_id());}

◆ isTau() [1/2]

template<>
bool isTau ( const int &  p)
inline

Definition at line 199 of file AtlasPID.h.

199 { return std::abs(p) == TAU;}

◆ isTau() [2/2]

template<class T >
bool isTau ( const T &  p)
inline

Definition at line 198 of file AtlasPID.h.

198 {return isTau(p->pdg_id());}

◆ isTechnicolor() [1/3]

template<>
bool isTechnicolor ( const DecodedPID p)
inline

Definition at line 497 of file AtlasPID.h.

497  {
498  const auto& pp = (p.ndigits() == 7) ? p.shift(2) : DecodedPID(0);
499  return (p.ndigits() == 7 && p(0) == 3 && (p(1) == 0 || p(0) == 1) &&
500  (isQuark(pp) || isLepton(pp) || isBoson(pp) || isGlueball(pp) ||
501  isDiquark(pp) || isHadron(pp)));
502 }

◆ isTechnicolor() [2/3]

template<>
bool isTechnicolor ( const int &  p)
inline

Definition at line 503 of file AtlasPID.h.

503 { auto value_digits = DecodedPID(p); return isTechnicolor(value_digits);}

◆ isTechnicolor() [3/3]

template<class T >
bool isTechnicolor ( const T &  p)
inline

PDG rule 11e Technicolor states have n = 3, with technifermions treated like ordinary fermions.

States which are ordinary color singlets have n_r = 0. Color octets have n_r = 1. If a state has non-trivial quantum numbers under the topcolor groups SU(3)1×SU(3)2, the quantum numbers are specified by tech, ij, where i and j are 1 or 2. nLis then 2i+j. The coloron V8, is a heavy gluon color octet and thus is 3100021

Definition at line 495 of file AtlasPID.h.

495 {return isTechnicolor(p->pdg_id());}

◆ isTetraquark() [1/3]

template<>
bool isTetraquark ( const DecodedPID p)
inline

Definition at line 302 of file AtlasPID.h.

302  {
303  return (p.ndigits() == 9 && p(0) == 1 && p(5) == 0 &&
304  p.max_digit(1,3) <= 6 && p.min_digit(1,3) > 0 &&
305  p.max_digit(1+3,3+3) <= 6 && p.min_digit(1+3,3+3) > 0 &&
306  ( p(3) >= p(4) && p(6) >= p(7) ) && ( ( p(3) > p(6) ) || ( p(3) == p(6) && (p(4) >= p(7))))
307  );
308 }

◆ isTetraquark() [2/3]

template<>
bool isTetraquark ( const int &  p)
inline

Definition at line 309 of file AtlasPID.h.

309 { auto value_digits = DecodedPID(p); return isTetraquark(value_digits);}

◆ isTetraquark() [3/3]

template<class T >
bool isTetraquark ( const T &  p)
inline

PDG rule 14 The 9-digit tetra-quark codes are±1nrnLnq1nq20nq3nq4nJ.

For the particleq1q2is a diquarkand ̄q3 ̄q4an antidiquark, sorted such thatnq1≥nq2,nq3≥nq4,nq1≥nq3, andnq2≥nq4ifnq1=nq3. For the antiparticle, given with a negative sign, ̄q1 ̄q2is an antidiquark andq3q4a diquark, with the same sorting except that eithernq1> nq3ornq2> nq4(so thatflavour-diagonal states are particles). Thenr,nL, andnJnumbers have the same meaningas for ordinary hadrons.

Definition at line 301 of file AtlasPID.h.

301 {return isTetraquark(p->pdg_id());}

◆ isTop() [1/2]

template<>
bool isTop ( const int &  p)
inline

Definition at line 177 of file AtlasPID.h.

177 { return std::abs(p) == 6;}

◆ isTop() [2/2]

template<class T >
bool isTop ( const T &  p)
inline

Definition at line 176 of file AtlasPID.h.

176 {return isTop(p->pdg_id());}

◆ isTopBaryon()

template<class T >
bool isTopBaryon ( const T &  p)
inline

Definition at line 872 of file AtlasPID.h.

872 { return leadingQuark(p) == TQUARK && isBaryon(p); }

◆ isTopHadron()

template<class T >
bool isTopHadron ( const T &  p)
inline

Definition at line 849 of file AtlasPID.h.

849 { return leadingQuark(p) == TQUARK && isHadron(p); }

◆ isTopMeson()

template<class T >
bool isTopMeson ( const T &  p)
inline

Definition at line 856 of file AtlasPID.h.

856 { return leadingQuark(p) == TQUARK && isMeson(p); }

◆ isTrajectory() [1/2]

template<>
bool isTrajectory ( const int &  p)
inline

Definition at line 334 of file AtlasPID.h.

334 { return std::abs(p) == POMERON || std::abs(p) == ODDERON || std::abs(p) == REGGEON; }

◆ isTrajectory() [2/2]

template<class T >
bool isTrajectory ( const T &  p)
inline

PDG rule 8: The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD areassigned codes 990, 9990, and 110 respectively.

Definition at line 333 of file AtlasPID.h.

333 {return isTrajectory(p->pdg_id());}

◆ isTransportable() [1/3]

template<>
bool isTransportable ( const DecodedPID p)
inline

Definition at line 810 of file AtlasPID.h.

810 { return isPhoton(p.pid()) || isGeantino(p.pid()) || isHadron(p) || isLepton(p.pid()) || p.pid() == DARKPHOTON;}

◆ isTransportable() [2/3]

template<>
bool isTransportable ( const int &  p)
inline

Definition at line 811 of file AtlasPID.h.

811 { auto value_digits = DecodedPID(p); return isTransportable(value_digits);}

◆ isTransportable() [3/3]

template<class T >
bool isTransportable ( const T &  p)
inline

Definition at line 809 of file AtlasPID.h.

809 {return isTransportable(p->pdg_id());}

◆ isValid() [1/3]

template<>
bool isValid ( const DecodedPID p)
inline

Definition at line 815 of file AtlasPID.h.

815  {
816  return p.pid() !=0 && ( isQuark(p) || isLepton(p) || isBoson(p) || isGlueball(p) ||
817  isTrajectory(p.pid()) || isGenSpecific(p.pid()) || isDiquark(p) ||
818  isBSM(p) || isHadron(p) || isNucleus(p) || isGeantino(p.pid()) ||
819  isPythia8Specific(p) ); }

◆ isValid() [2/3]

template<>
bool isValid ( const int &  p)
inline

Definition at line 820 of file AtlasPID.h.

820  { if (!p) return false; if (std::abs(p) < 42) return true;
821  if (isGenSpecific(p)) return true;
822  auto value_digits = DecodedPID(p); return isValid(value_digits);
823 }

◆ isValid() [3/3]

template<class T >
bool isValid ( const T &  p)
inline

Av: we implement here an ATLAS-sepcific convention: all particles which are 99xxxxx are fine.

Definition at line 814 of file AtlasPID.h.

814 {return isValid(p->pdg_id());}

◆ isW() [1/2]

template<>
bool isW ( const int &  p)
inline

Definition at line 357 of file AtlasPID.h.

357 { return std::abs(p) == WPLUSBOSON; }

◆ isW() [2/2]

template<class T >
bool isW ( const T &  p)
inline

Definition at line 356 of file AtlasPID.h.

356 {return isW(p->pdg_id());}

◆ isWeaklyDecayingBHadron() [1/3]

template<>
bool isWeaklyDecayingBHadron ( const DecodedPID p)
inline

Definition at line 904 of file AtlasPID.h.

904 { return isWeaklyDecayingBHadron(p.pid()); }

◆ isWeaklyDecayingBHadron() [2/3]

template<>
bool isWeaklyDecayingBHadron ( const int &  p)
inline

Definition at line 879 of file AtlasPID.h.

879  {
880  const int pid = std::abs(p);
881  return ( pid == 511 || // B0
882  pid == 521 || // B+
883  pid == 531 || // B_s0
884  pid == 541 || // B_c+
885  pid == 5122 || // Lambda_b0
886  pid == 5132 || // Xi_b-
887  pid == 5232 || // Xi_b0
888  pid == 5112 || // Sigma_b-
889  pid == 5212 || // Sigma_b0
890  pid == 5222 || // Sigma_b+
891  pid == 5332 || // Omega_b-
892  pid == 5142 || // Xi_bc0
893  pid == 5242 || // Xi_bc+
894  pid == 5412 || // Xi'_bc0
895  pid == 5422 || // Xi'_bc+
896  pid == 5342 || // Omega_bc0
897  pid == 5432 || // Omega'_bc0
898  pid == 5442 || // Omega_bcc+
899  pid == 5512 || // Xi_bb-
900  pid == 5522 || // Xi_bb0
901  pid == 5532 || // Omega_bb-
902  pid == 5542 ); // Omega_bbc0
903 }

◆ isWeaklyDecayingBHadron() [3/3]

template<class T >
bool isWeaklyDecayingBHadron ( const T &  p)
inline

Definition at line 878 of file AtlasPID.h.

878 {return isWeaklyDecayingBHadron(p->pdg_id());}

◆ isWeaklyDecayingCHadron() [1/3]

template<>
bool isWeaklyDecayingCHadron ( const DecodedPID p)
inline

Definition at line 928 of file AtlasPID.h.

928 { return isWeaklyDecayingCHadron(p.pid()); }

◆ isWeaklyDecayingCHadron() [2/3]

template<>
bool isWeaklyDecayingCHadron ( const int &  p)
inline

Definition at line 914 of file AtlasPID.h.

914  {
915  const int pid = std::abs(p);
916  return ( pid == 411 || // D+
917  pid == 421 || // D0
918  pid == 431 || // Ds+
919  pid == 4122 || // Lambda_c+
920  pid == 4132 || // Xi_c0
921  pid == 4232 || // Xi_c+
922  pid == 4212 || // Xi_c0
923  pid == 4332 || // Omega_c0
924  pid == 4412 || // Xi_cc+
925  pid == 4422 || // Xi_cc++
926  pid == 4432 ); // Omega_cc+
927 }

◆ isWeaklyDecayingCHadron() [3/3]

template<class T >
bool isWeaklyDecayingCHadron ( const T &  p)
inline

Definition at line 913 of file AtlasPID.h.

913 {return isWeaklyDecayingCHadron(p->pdg_id());}

◆ isZ() [1/2]

template<>
bool isZ ( const int &  p)
inline

Definition at line 354 of file AtlasPID.h.

354 { return p == Z0BOSON; }

◆ isZ() [2/2]

template<class T >
bool isZ ( const T &  p)
inline

Definition at line 353 of file AtlasPID.h.

353 {return isZ(p->pdg_id());}

◆ leadingQuark() [1/3]

template<>
int leadingQuark ( const DecodedPID p)
inline

Definition at line 826 of file AtlasPID.h.

826  {
827  if (isQuark(p.pid())) { return std::abs(p.pid());}
828  if (isMeson(p)) { return p.max_digit(1,3);}
829  if (isDiquark(p)) { return p.max_digit(2,4);}
830  if (isBaryon(p)) { return p.max_digit(1,4);}
831  if (isTetraquark(p)) { return p.max_digit(1,5);}
832  if (isPentaquark(p)) { return p.max_digit(1,6);}
833  if (isSUSY(p)) { // APID SUSY case
834  auto pp = p.shift(1);
835  if ( pp.ndigits() == 1 ) { return 0; } // Handle squarks
836  if ( pp.ndigits() == 3 ) { pp = DecodedPID(pp(1)); } // Handle ~q qbar pairs
837  if ( pp.ndigits() > 3 ) { pp = pp.shift(1); } // Drop gluinos and squarks
838  return leadingQuark(pp); }
839  return 0;
840 }

◆ leadingQuark() [2/3]

template<>
int leadingQuark ( const int &  p)
inline

Definition at line 842 of file AtlasPID.h.

842 { auto value_digits = DecodedPID(p); return leadingQuark(value_digits);}

◆ leadingQuark() [3/3]

template<class T >
int leadingQuark ( const T &  p)
inline

Definition at line 825 of file AtlasPID.h.

825 {return leadingQuark(p->pdg_id());}

◆ numberOfLambdas() [1/3]

template<>
int numberOfLambdas ( const DecodedPID p)
inline

Definition at line 763 of file AtlasPID.h.

763  {
764  if (std::abs(p.pid()) == LAMBDA0) { return (p.pid() > 0) ? 1 : -1; }
765  if (isNucleus(p) && p.ndigits() == 10) { return (p.pid() > 0) ? p(2) : -p(2); }
766  return 0;
767 }

◆ numberOfLambdas() [2/3]

template<>
int numberOfLambdas ( const int &  p)
inline

Definition at line 768 of file AtlasPID.h.

768 { auto value_digits = DecodedPID(p); return numberOfLambdas(value_digits);}

◆ numberOfLambdas() [3/3]

template<class T >
int numberOfLambdas ( const T &  p)
inline

Definition at line 762 of file AtlasPID.h.

762 {return numberOfLambdas(p->pdg_id());}

◆ numberOfProtons() [1/3]

template<>
int numberOfProtons ( const DecodedPID p)
inline

Definition at line 772 of file AtlasPID.h.

772  {
773  if (std::abs(p.pid()) == PROTON) { return (p.pid() > 0) ? 1 : -1; }
774  if (isNucleus(p)) {
775  const int result = p(5) + 10*p(4) + 100*p(3);
776  return (p.pid() > 0) ? result : -result;
777  }
778  return 0;
779 }

◆ numberOfProtons() [2/3]

template<>
int numberOfProtons ( const int &  p)
inline

Definition at line 780 of file AtlasPID.h.

780 { auto value_digits = DecodedPID(p); return numberOfProtons(value_digits);}

◆ numberOfProtons() [3/3]

template<class T >
int numberOfProtons ( const T &  p)
inline

Definition at line 771 of file AtlasPID.h.

771 {return numberOfProtons(p->pdg_id());}

◆ spin() [1/3]

template<>
double spin ( const DecodedPID p)
inline

Definition at line 1046 of file AtlasPID.h.

1046 { return 1.0*spin2(p)/2.0; }

◆ spin() [2/3]

template<>
double spin ( const int &  p)
inline

Definition at line 1047 of file AtlasPID.h.

1047 { auto value_digits = DecodedPID(p); return spin(value_digits);}

◆ spin() [3/3]

template<class T >
double spin ( const T &  p)
inline

Definition at line 1045 of file AtlasPID.h.

1045 { return spin(p->pdg_id()); }

◆ spin2() [1/3]

template<>
int spin2 ( const DecodedPID p)
inline

Definition at line 1024 of file AtlasPID.h.

1024  {
1025  if (isSUSY(p)) {
1026  auto pp = p.shift(1);
1027  auto ap = std::abs(pp.pid());
1028  if (ap < TABLESIZE ) { return std::abs(double_spin.at(ap)-1); } // sparticles (0->1, 1 -> 0, 2->1, 4->3)
1029  return p.last()-1; // R-Hadrons (p.last() == 2J +1)
1030  }
1031  auto ap = std::abs(p.pid());
1032  if (ap == K0S) { return 0; }
1033  if (ap == K0L) { return 0; }
1034  if (ap == MAVTOP) { return 1; } // TODO check this
1035  if (ap == DARKPHOTON) { return 2; } // TODO check this
1036  if (ap < TABLESIZE ) { return double_spin.at(ap); } // fundamental particles
1037  if (isHadron(p)) { return p.last()-1; } // Hadrons (p.last == 2J+1 - special cases handled above)
1038  if (isMonopole(p)) { return 0; } // PDG 11i - For now no spin information is provided. Also matches the definition in the G4Extensions/Monopole package.
1039  if (isGenericMultichargedParticle(p)) { return 0; } // APID Matches the definition in the G4Extensions/Monopole package.
1040  if (isNucleus(p)) { return 1; } // TODO need to explicitly deal with nuclei
1041  return p.last() > 0 ? 1 : 0; // Anything else - best guess
1042 }

◆ spin2() [2/3]

template<>
int spin2 ( const int &  p)
inline

Definition at line 1043 of file AtlasPID.h.

1043 { auto value_digits = DecodedPID(p); return spin2(value_digits);}

◆ spin2() [3/3]

template<class T >
int spin2 ( const T &  p)
inline

Definition at line 1023 of file AtlasPID.h.

1023 { return spin2(p->pdg_id()); }

◆ strangeness() [1/3]

template<>
int strangeness ( const DecodedPID p)
inline

Definition at line 725 of file AtlasPID.h.

725  {
726  if (isNucleus(p) && p.ndigits() == 10) { return (p.pid() > 0) ? -p(2) : p(2); }
727  if (isStrange(p.pid())) { return (p.pid() > 0) ? -1 : 1; }
728  if (!hasStrange(p) && !hasSquark(p,SQUARK)) { return 0; }
729  if (std::abs(p.pid()) == K0) { return (p.pid() > 0) ? 1 : -1; }
730  size_t nq = 0;
731  int sign = 1;
732  int signmult = 1;
733  int result=0;
734  bool classified = false;
735  if (!classified && isMeson(p)) { classified = true; nq = 2; if ((*(p.second.rbegin()+2)) == 2||(*(p.second.rbegin()+2)) == 4 ) { sign=-1;} signmult =-1; }
736  if (!classified && isDiquark(p)) {return is_strange.at(p(0))+is_strange.at(p(1)); }
737  if (!classified && isBaryon(p)) { classified = true; nq = 3; }
738  if (!classified && isTetraquark(p)){ return is_strange.at(p(3)) + is_strange.at(p(4)) - is_strange.at(p(6)) - is_strange.at(p(7)); }
739  if (!classified && isPentaquark(p)){ return is_strange.at(p(3)) + is_strange.at(p(4)) + is_strange.at(p(5)) + is_strange.at(p(6)) - is_strange.at(p(7)); }
740  if (!classified && isSUSY(p)) {
741  nq = 0;
742  auto pp = p.shift(1);
743  if (pp.ndigits() < 3 ) { return strangeness(pp); } // super-partners of fundamental particles
744  if (pp(0) == COMPOSITEGLUON) {
745  if (pp(1) == COMPOSITEGLUON) { return 0; } // R-Glueballs
746  if ( pp.ndigits() == 4 || pp.ndigits() == 5) {
747  pp = pp.shift(1); // Remove gluino
748  }
749  }
750  if (pp.ndigits() == 3) { classified = true; nq = 2; if (p.last()%2==0) {sign = -1;} signmult = -1; } // states with quark-antiquark or squark-antiquark
751  if (pp.ndigits() == 4) { classified = true; nq = 3; } // states with quark-quark-quark or squark-quark-quark
752  }
753  for (auto r = p.second.rbegin() + 1; r != p.second.rbegin() + 1 + nq; ++r) {
754  result += is_strange.at(*r)*sign;
755  sign*=signmult;
756  }
757  return p.pid() > 0 ? result : -result;
758 }

◆ strangeness() [2/3]

template<>
int strangeness ( const int &  p)
inline

Definition at line 759 of file AtlasPID.h.

759 { auto value_digits = DecodedPID(p); return strangeness(value_digits);}

◆ strangeness() [3/3]

template<class T >
int strangeness ( const T &  p)
inline

Definition at line 724 of file AtlasPID.h.

724 {return strangeness(p->pdg_id());}

◆ threeCharge()

template<class T >
double threeCharge ( const T &  p)
inline

Definition at line 939 of file AtlasPID.h.

939 { return charge3(p);}
isStrange
bool isStrange(const T &p)
Definition: AtlasPID.h:167
beamspotman.r
def r
Definition: beamspotman.py:676
isGaugino
bool isGaugino(const T &p)
Definition: AtlasPID.h:484
isStrongInteracting
bool isStrongInteracting(const T &p)
Definition: AtlasPID.h:1081
isNucleus
bool isNucleus(const T &p)
PDG rule 16 Nuclear codes are given as 10-digit numbers ±10LZZZAAAI.
Definition: AtlasPID.h:645
get_generator_info.result
result
Definition: get_generator_info.py:21
isHeavyBoson
bool isHeavyBoson(const T &p)
APID: Additional "Heavy"/"prime" versions of W and Z bosons (Used in MCTruthClassifier)
Definition: AtlasPID.h:360
isTetraquark
bool isTetraquark(const T &p)
PDG rule 14 The 9-digit tetra-quark codes are±1nrnLnq1nq20nq3nq4nJ.
Definition: AtlasPID.h:301
isRMeson
bool isRMeson(const T &p)
Definition: AtlasPID.h:545
find
std::string find(const std::string &s)
return a remapped string
Definition: hcg.cxx:135
isSleptonRH
bool isSleptonRH(const T &p)
Definition: AtlasPID.h:478
isBSM
bool isBSM(const T &p)
APID: graviton and all Higgs extensions are BSM.
Definition: AtlasPID.h:784
baryonNumber
double baryonNumber(const T &p)
Definition: AtlasPID.h:711
isHiddenValley
bool isHiddenValley(const T &p)
PDG rule 11k Hidden Valley particles have n = 4 and n_r = 9, and trailing numbers in agreement with t...
Definition: AtlasPID.h:611
isBoson
bool isBoson(const T &p)
PDG rule 9: Two-digit numbers in the range 21–30 are provided for the Standard Model gauge and Higgs ...
Definition: AtlasPID.h:343
isGenSpecific
bool isGenSpecific(const T &p)
Main Table for MC internal use 81–100,901–930,998-999,1901–1930,2901–2930, and 3901–3930.
Definition: AtlasPID.h:399
Monitored::Z
@ Z
Definition: HistogramFillerUtils.h:24
isMeson
bool isMeson(const T &p)
Table 43.1 PDG rule 5a: The numbers specifying the meson’s quark content conform to the convention nq...
Definition: AtlasPID.h:227
hasQuark
bool hasQuark(const T &p, const int &q)
isKK
bool isKK(const T &p)
PDG rule 11h A black hole in models with extra dimensions has code 5000040.
Definition: AtlasPID.h:580
isSquarkRH
bool isSquarkRH(const T &p)
Definition: AtlasPID.h:451
MuonGM::round
float round(const float toRound, const unsigned int decimals)
Definition: Mdt.cxx:27
isRGlueball
bool isRGlueball(const T &p)
PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles suffici...
Definition: AtlasPID.h:533
numberOfLambdas
int numberOfLambdas(const T &p)
Definition: AtlasPID.h:762
isNeutrino
bool isNeutrino(const T &p)
APID: the fourth generation neutrinos are neutrinos.
Definition: AtlasPID.h:202
isSquark
bool isSquark(const T &p)
Definition: AtlasPID.h:435
isSleptonLH
bool isSleptonLH(const T &p)
Definition: AtlasPID.h:472
isValid
bool isValid(const T &p)
Av: we implement here an ATLAS-sepcific convention: all particles which are 99xxxxx are fine.
Definition: AtlasPID.h:814
checkRpcDigits.digit
digit
Definition: checkRpcDigits.py:186
python.AtlRunQueryParser.ap
ap
Definition: AtlRunQueryParser.py:826
xAOD::Muon_v1
Class describing a Muon.
Definition: Muon_v1.h:38
isGenericMultichargedParticle
bool isGenericMultichargedParticle(const T &p)
In addition, there is a need to identify ”Q-ball” and similar very exotic (multi-charged) particles w...
Definition: AtlasPID.h:627
isSMLepton
bool isSMLepton(const T &p)
Definition: AtlasPID.h:184
isSMQuark
bool isSMQuark(const T &p)
Definition: AtlasPID.h:163
isGluon
bool isGluon(const T &p)
Definition: AtlasPID.h:347
isHiggs
bool isHiggs(const T &p)
APID: HIGGS boson is only one particle.
Definition: AtlasPID.h:364
fractionalCharge
double fractionalCharge(const T &p)
Definition: AtlasPID.h:932
isQuark
bool isQuark(const T &p)
PDG rule 2: Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to dot...
Definition: AtlasPID.h:159
A
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
isCCbarMeson
bool isCCbarMeson(const T &p)
Definition: AtlasPID.h:858
strangeness
int strangeness(const T &p)
Definition: AtlasPID.h:724
isBottom
bool isBottom(const T &p)
Definition: AtlasPID.h:173
lumiFormat.i
int i
Definition: lumiFormat.py:85
leadingQuark
int leadingQuark(const T &p)
Definition: AtlasPID.h:825
isPythia8Specific
bool isPythia8Specific(const T &p)
Definition: AtlasPID.h:385
isMonopole
bool isMonopole(const T &p)
PDG rule 11i Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a...
Definition: AtlasPID.h:590
isWeaklyDecayingCHadron
bool isWeaklyDecayingCHadron(const T &p)
Definition: AtlasPID.h:913
isZ
bool isZ(const T &p)
Definition: AtlasPID.h:353
isPentaquark
bool isPentaquark(const T &p)
PDG rule 15 The 9-digit penta-quark codes are±1nrnLnq1nq2nq3nq4nq5nJ, sorted such thatnq1≥nq2≥nq3≥nq4...
Definition: AtlasPID.h:316
isGlueball
bool isGlueball(const T &p)
APID: Definition of Glueballs: SM glueballs 99X (X=1,5), 999Y (Y=3,7)
Definition: AtlasPID.h:414
ParticleGun_EoverP_Config.pid
pid
Definition: ParticleGun_EoverP_Config.py:62
sign
int sign(int a)
Definition: TRT_StrawNeighbourSvc.h:107
isBBbarMeson
bool isBBbarMeson(const T &p)
Definition: AtlasPID.h:862
isNeutral
bool isNeutral(const T &p)
Definition: AtlasPID.h:1001
hasStrange
bool hasStrange(const T &p)
Definition: AtlasPID.h:674
isChLepton
bool isChLepton(const T &p)
APID: the fourth generation leptons are leptons.
Definition: AtlasPID.h:189
isSUSY
bool isSUSY(const T &p)
PDG rule 11d Fundamental supersymmetric particles are identified by adding a nonzero n to the particl...
Definition: AtlasPID.h:429
isTau
bool isTau(const T &p)
Definition: AtlasPID.h:198
isGraviton
bool isGraviton(const T &p)
Definition: AtlasPID.h:371
isDM
bool isDM(const T &p)
PDG rule 11j: The nature of Dark Matter (DM) is not known, and therefore a definitive classificationi...
Definition: AtlasPID.h:604
DecodedPID
Implementation of classification functions according to PDG2022.
Definition: AtlasPID.h:16
isExcited
bool isExcited(const T &p)
PDG rule 11f Excited (composite) quarks and leptons are identified by setting n= 4 and nr= 0.
Definition: AtlasPID.h:507
isHadron
bool isHadron(const T &p)
Definition: AtlasPID.h:325
isNeutrinoRH
bool isNeutrinoRH(const T &p)
PDG Rule 12: APID: Helper function for right-handed neutrino states These are generator defined PDG I...
Definition: AtlasPID.h:394
charge
double charge(const T &p)
Definition: AtlasPID.h:933
isBaryon
bool isBaryon(const T &p)
Table 43.2.
Definition: AtlasPID.h:258
isGeantino
bool isGeantino(const T &p)
Definition: AtlasPID.h:410
isSlepton
bool isSlepton(const T &p)
Definition: AtlasPID.h:466
isWeaklyDecayingBHadron
bool isWeaklyDecayingBHadron(const T &p)
Definition: AtlasPID.h:878
spin2
int spin2(const T &p)
Definition: AtlasPID.h:1023
isW
bool isW(const T &p)
Definition: AtlasPID.h:356
isRBaryon
bool isRBaryon(const T &p)
Definition: AtlasPID.h:560
isTop
bool isTop(const T &p)
Definition: AtlasPID.h:176
isTransportable
bool isTransportable(const T &p)
Definition: AtlasPID.h:809
numberOfProtons
int numberOfProtons(const T &p)
Definition: AtlasPID.h:771
isLepton
bool isLepton(const T &p)
APID: the fourth generation leptons are leptons.
Definition: AtlasPID.h:180
isCharm
bool isCharm(const T &p)
Definition: AtlasPID.h:170
isPhoton
bool isPhoton(const T &p)
Definition: AtlasPID.h:350
charge3
int charge3(const T &p)
Definition: AtlasPID.h:931
hasSquark
bool hasSquark(const T &p, const int &q)
Definition: AtlasPID.h:458
isSquarkLH
bool isSquarkLH(const T &p)
Definition: AtlasPID.h:443
isSMNeutrino
bool isSMNeutrino(const T &p)
Definition: AtlasPID.h:205
isRHadron
bool isRHadron(const T &p)
Definition: AtlasPID.h:1049
extractSporadic.q
list q
Definition: extractSporadic.py:98
isTechnicolor
bool isTechnicolor(const T &p)
PDG rule 11e Technicolor states have n = 3, with technifermions treated like ordinary fermions.
Definition: AtlasPID.h:495
isTrajectory
bool isTrajectory(const T &p)
PDG rule 8: The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD ar...
Definition: AtlasPID.h:333
isElectron
bool isElectron(const T &p)
Definition: AtlasPID.h:192
isDiquark
bool isDiquark(const T &p)
PDG rule 4 Diquarks have 4-digit numbers with nq1 >= nq2 and nq3 = 0 APID: the diquarks with fourth g...
Definition: AtlasPID.h:211
baryonNumber3
int baryonNumber3(const T &p)
Definition: AtlasPID.h:686
isEMInteracting
bool isEMInteracting(const T &p)
Definition: AtlasPID.h:1016
containedQuarks
std::vector< int > containedQuarks(const T &p)
Definition: AtlasPID.h:1056
spin
double spin(const T &p)
Definition: AtlasPID.h:1045
isMSSMHiggs
bool isMSSMHiggs(const T &p)
APID: Additional Higgs bosons for MSSM (Used in MCTruthClassifier)
Definition: AtlasPID.h:368
python.SystemOfUnits.L
float L
Definition: SystemOfUnits.py:92
isMuon
bool isMuon(const T &p)
Definition: AtlasPID.h:195
isLeptoQuark
bool isLeptoQuark(const T &p)
PDG rule 11c: “One-of-a-kind” exotic particles are assigned numbers in the range 41–80.
Definition: AtlasPID.h:382