ATLAS Offline Software
Classes | Functions
AtlasPID.h File Reference
#include <vector>
#include <cmath>
#include <algorithm>
#include <array>
#include <cstdlib>
Include dependency graph for AtlasPID.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  DecodedPID
 Implementation of classification functions according to PDG2022. More...
 

Functions

template<class T >
bool isQuark (const T &p)
 PDG rule 2: Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to do this they are first ordered by family and within families by weak isospin. More...
 
template<>
bool isQuark (const int &p)
 
template<>
bool isQuark (const DecodedPID &p)
 
template<class T >
bool isSMQuark (const T &p)
 
template<>
bool isSMQuark (const int &p)
 
template<>
bool isSMQuark (const DecodedPID &p)
 
template<class T >
bool isStrange (const T &p)
 
template<>
bool isStrange (const int &p)
 
template<class T >
bool isCharm (const T &p)
 
template<>
bool isCharm (const int &p)
 
template<class T >
bool isBottom (const T &p)
 
template<>
bool isBottom (const int &p)
 
template<class T >
bool isTop (const T &p)
 
template<>
bool isTop (const int &p)
 
template<class T >
bool isLepton (const T &p)
 APID: the fourth generation leptons are leptons. More...
 
template<>
bool isLepton (const int &p)
 
template<>
bool isLepton (const DecodedPID &p)
 
template<class T >
bool isSMLepton (const T &p)
 APID: the fourth generation leptons are not standard model leptons. More...
 
template<>
bool isSMLepton (const int &p)
 
template<>
bool isSMLepton (const DecodedPID &p)
 
template<class T >
bool isChLepton (const T &p)
 APID: the fourth generation leptons are leptons. More...
 
template<>
bool isChLepton (const int &p)
 
template<class T >
bool isElectron (const T &p)
 
template<>
bool isElectron (const int &p)
 
template<class T >
bool isMuon (const T &p)
 
template<>
bool isMuon (const int &p)
 
template<class T >
bool isTau (const T &p)
 
template<>
bool isTau (const int &p)
 
template<class T >
bool isNeutrino (const T &p)
 APID: the fourth generation neutrinos are neutrinos. More...
 
template<>
bool isNeutrino (const int &p)
 
template<class T >
bool isSMNeutrino (const T &p)
 
template<>
bool isSMNeutrino (const int &p)
 
template<class T >
bool isFourthGeneration (const T &p)
 Is this a 4th generation fermion? APID: 4th generation fermions are not standard model particles. More...
 
template<>
bool isFourthGeneration (const int &p)
 
template<class T >
bool isDiquark (const T &p)
 PDG rule 4 Diquarks have 4-digit numbers with nq1 >= nq2 and nq3 = 0 APID: states with top quarks are diquarks APID: states with fourth generation quarks are not diquarks. More...
 
template<>
bool isDiquark (const DecodedPID &p)
 
template<>
bool isDiquark (const int &p)
 
template<class T >
bool isMeson (const T &p)
 Table 43.1 PDG rule 5a: The numbers specifying the meson’s quark content conform to the convention nq1= 0 and nq2 >= nq3. More...
 
template<>
bool isMeson (const DecodedPID &p)
 
template<>
bool isMeson (const int &p)
 
template<class T >
bool isQuarkonium (const T &p)
 Is this a heavy-flavour quarkonium meson? More...
 
template<>
bool isQuarkonium (const DecodedPID &p)
 
template<>
bool isQuarkonium (const int &p)
 
template<class T >
bool isBaryon (const T &p)
 Table 43.2 APID: states with fourth generation quarks are not baryons. More...
 
template<>
bool isBaryon (const DecodedPID &p)
 
template<>
bool isBaryon (const int &p)
 
template<class T >
bool isTetraquark (const T &p)
 PDG rule 14 The 9-digit tetra-quark codes are ±1nrnLnq1nq20nq3nq4nJ. More...
 
template<>
bool isTetraquark (const DecodedPID &p)
 
template<>
bool isTetraquark (const int &p)
 
template<class T >
bool isPentaquark (const T &p)
 PDG rule 15 The 9-digit penta-quark codes are ±1nrnLnq1nq2nq3nq4nq5nJ, sorted such that nq1≥nq2≥nq3≥nq4. More...
 
template<>
bool isPentaquark (const DecodedPID &p)
 
template<>
bool isPentaquark (const int &p)
 
template<class T >
bool isHadron (const T &p)
 
template<>
bool isHadron (const DecodedPID &p)
 
template<>
bool isHadron (const int &p)
 
template<class T >
bool isTrajectory (const T &p)
 PDG rule 8: The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD areassigned codes 990, 9990, and 110 respectively. More...
 
template<>
bool isTrajectory (const int &p)
 
template<class T >
bool isBoson (const T &p)
 PDG rule 9: Two-digit numbers in the range 21–30 are provided for the Standard Model gauge and Higgs bosons. More...
 
template<>
bool isBoson (const int &p)
 
template<>
bool isBoson (const DecodedPID &p)
 
template<class T >
bool isGluon (const T &p)
 
template<>
bool isGluon (const int &p)
 
template<class T >
bool isPhoton (const T &p)
 
template<>
bool isPhoton (const int &p)
 
template<class T >
bool isZ (const T &p)
 
template<>
bool isZ (const int &p)
 
template<class T >
bool isW (const T &p)
 
template<>
bool isW (const int &p)
 
template<class T >
bool isHeavyBoson (const T &p)
 APID: Additional "Heavy"/"prime" versions of W and Z bosons (Used in MCTruthClassifier) More...
 
template<>
bool isHeavyBoson (const int &p)
 
template<class T >
bool isHiggs (const T &p)
 APID: HIGGS boson is only one particle. More...
 
template<>
bool isHiggs (const int &p)
 
template<class T >
bool isMSSMHiggs (const T &p)
 APID: Additional Higgs bosons for MSSM (Used in MCTruthClassifier) More...
 
template<>
bool isMSSMHiggs (const int &p)
 
template<class T >
bool isGraviton (const T &p)
 
template<>
bool isGraviton (const int &p)
 
template<class T >
bool isResonance (const T &p)
 
template<class T >
bool isLeptoQuark (const T &p)
 PDG rule 11c: “One-of-a-kind” exotic particles are assigned numbers in the range 41–80. More...
 
template<>
bool isLeptoQuark (const int &p)
 
template<class T >
bool isPythia8Specific (const T &p)
 
template<>
bool isPythia8Specific (const DecodedPID &p)
 
template<>
bool isPythia8Specific (const int &p)
 
template<class T >
bool isNeutrinoRH (const T &p)
 PDG Rule 12: APID: Helper function for right-handed neutrino states These are generator defined PDG ID values for right handed neutrinos. More...
 
template<>
bool isNeutrinoRH (const int &p)
 
template<class T >
bool isGenSpecific (const T &p)
 Main Table for MC internal use 81–100,901–930,998-999,1901–1930,2901–2930, and 3901–3930. More...
 
template<>
bool isGenSpecific (const int &p)
 
template<class T >
bool isGeantino (const T &p)
 
template<>
bool isGeantino (const int &p)
 
template<class T >
bool isGlueball (const T &p)
 APID: Definition of Glueballs: SM glueballs 99X (X=1,5), 999Y (Y=3,7) More...
 
template<>
bool isGlueball (const DecodedPID &p)
 
template<>
bool isGlueball (const int &p)
 
template<class T >
bool isSquark (const T &p)
 PDG rule 11d Fundamental supersymmetric particles are identified by adding a nonzero n to the particle number. More...
 
template<>
bool isSquark (const DecodedPID &p)
 
template<>
bool isSquark (const int &p)
 
template<class T >
bool isSquarkLH (const T &p)
 
template<>
bool isSquarkLH (const DecodedPID &p)
 
template<>
bool isSquarkLH (const int &p)
 
template<class T >
bool isSquarkRH (const T &p)
 
template<>
bool isSquarkRH (const DecodedPID &p)
 
template<>
bool isSquarkRH (const int &p)
 
template<class T >
bool isSlepton (const T &p)
 
template<>
bool isSlepton (const DecodedPID &p)
 
template<>
bool isSlepton (const int &p)
 
template<class T >
bool isSleptonLH (const T &p)
 
template<>
bool isSleptonLH (const DecodedPID &p)
 
template<>
bool isSleptonLH (const int &p)
 
template<class T >
bool isSleptonRH (const T &p)
 
template<>
bool isSleptonRH (const DecodedPID &p)
 
template<>
bool isSleptonRH (const int &p)
 
template<class T >
bool isGaugino (const T &p)
 
template<>
bool isGaugino (const DecodedPID &p)
 
template<>
bool isGaugino (const int &p)
 
template<class T >
bool isSuperpartner (const T &p)
 
template<>
bool isSuperpartner (const DecodedPID &p)
 
template<>
bool isSuperpartner (const int &p)
 
template<class T >
bool isTechnicolor (const T &p)
 PDG rule 11e Technicolor states have n = 3, with technifermions treated like ordinary fermions. More...
 
template<>
bool isTechnicolor (const DecodedPID &p)
 
template<>
bool isTechnicolor (const int &p)
 
template<class T >
bool isExcited (const T &p)
 PDG rule 11f Excited (composite) quarks and leptons are identified by setting n= 4 and nr= 0. More...
 
template<>
bool isExcited (const DecodedPID &p)
 
template<>
bool isExcited (const int &p)
 
template<class T >
bool isRGlueball (const T &p)
 PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles sufficiently long-lived for color-singlet hadronic states to form around them. More...
 
template<>
bool isRGlueball (const DecodedPID &p)
 
template<>
bool isRGlueball (const int &p)
 
template<class T >
bool isRMeson (const T &p)
 
template<>
bool isRMeson (const DecodedPID &p)
 
template<>
bool isRMeson (const int &p)
 
template<class T >
bool isRBaryon (const T &p)
 
template<>
bool isRBaryon (const DecodedPID &p)
 
template<>
bool isRBaryon (const int &p)
 
template<class T >
bool isRHadron (const T &p)
 
template<>
bool isRHadron (const DecodedPID &p)
 
template<>
bool isRHadron (const int &p)
 
template<class T >
bool hasSquark (const T &p, const int &q)
 
template<>
bool hasSquark (const DecodedPID &p, const int &q)
 
template<>
bool hasSquark (const int &p, const int &q)
 
template<class T >
bool isSUSY (const T &p)
 
template<>
bool isSUSY (const DecodedPID &p)
 
template<>
bool isSUSY (const int &p)
 
template<class T >
bool isKK (const T &p)
 PDG rule 11h A black hole in models with extra dimensions has code 5000040. More...
 
template<>
bool isKK (const DecodedPID &p)
 
template<>
bool isKK (const int &p)
 
template<class T >
bool isMonopole (const T &p)
 PDG rule 11i Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a variable integer number nq1nq2 nq3 units of electric charge. More...
 
template<>
bool isMonopole (const DecodedPID &p)
 
template<>
bool isMonopole (const int &p)
 
template<class T >
bool isDM (const T &p)
 PDG rule 11j: The nature of Dark Matter (DM) is not known, and therefore a definitive classificationis too early. More...
 
template<>
bool isDM (const int &p)
 
template<class T >
bool isHiddenValley (const T &p)
 PDG rule 11k Hidden Valley particles have n = 4 and n_r = 9, and trailing numbers in agreement with their nearest-analog standard particles, as far as possible. More...
 
template<>
bool isHiddenValley (const DecodedPID &p)
 
template<>
bool isHiddenValley (const int &p)
 
template<class T >
bool isGenericMultichargedParticle (const T &p)
 In addition, there is a need to identify ”Q-ball” and similar very exotic (multi-charged) particles which may have large, non-integer charge. More...
 
template<>
bool isGenericMultichargedParticle (const DecodedPID &p)
 
template<>
bool isGenericMultichargedParticle (const int &p)
 
template<class T >
bool isNucleus (const T &p)
 PDG rule 16 Nuclear codes are given as 10-digit numbers ±10LZZZAAAI. More...
 
template<>
bool isNucleus (const DecodedPID &p)
 
template<>
bool isNucleus (const int &p)
 
template<class T >
bool hasQuark (const T &p, const int &q)
 
template<>
bool hasQuark (const DecodedPID &p, const int &q)
 
template<>
bool hasQuark (const int &p, const int &q)
 
template<class T >
bool hasStrange (const T &p)
 
template<class T >
bool hasCharm (const T &p)
 
template<class T >
bool hasBottom (const T &p)
 
template<class T >
bool hasTop (const T &p)
 
template<class T >
int baryonNumber3 (const T &p)
 
template<>
int baryonNumber3 (const DecodedPID &p)
 
template<>
int baryonNumber3 (const int &p)
 
template<class T >
double baryonNumber (const T &p)
 
template<>
double baryonNumber (const DecodedPID &p)
 
template<>
double baryonNumber (const int &p)
 
template<class T >
int strangeness (const T &p)
 
template<>
int strangeness (const DecodedPID &p)
 
template<>
int strangeness (const int &p)
 
template<class T >
int numberOfLambdas (const T &p)
 
template<>
int numberOfLambdas (const DecodedPID &p)
 
template<>
int numberOfLambdas (const int &p)
 
template<class T >
int numberOfProtons (const T &p)
 
template<>
int numberOfProtons (const DecodedPID &p)
 
template<>
int numberOfProtons (const int &p)
 
template<class T >
bool isBSM (const T &p)
 APID: graviton and all Higgs extensions are BSM. More...
 
template<>
bool isBSM (const DecodedPID &p)
 
template<>
bool isBSM (const int &p)
 
template<class T >
bool isTransportable (const T &p)
 
template<>
bool isTransportable (const DecodedPID &p)
 
template<>
bool isTransportable (const int &p)
 
template<class T >
bool isValid (const T &p)
 Av: we implement here an ATLAS-sepcific convention: all particles which are 99xxxxx are fine. More...
 
template<>
bool isValid (const DecodedPID &p)
 
template<>
bool isValid (const int &p)
 
template<class T >
int leadingQuark (const T &p)
 
template<>
int leadingQuark (const DecodedPID &p)
 
template<>
int leadingQuark (const int &p)
 
template<class T >
bool isLightHadron (const T &p)
 
template<class T >
bool isHeavyHadron (const T &p)
 
template<class T >
bool isStrangeHadron (const T &p)
 
template<class T >
bool isCharmHadron (const T &p)
 
template<class T >
bool isBottomHadron (const T &p)
 
template<class T >
bool isTopHadron (const T &p)
 
template<class T >
bool isLightMeson (const T &p)
 
template<class T >
bool isHeavyMeson (const T &p)
 
template<class T >
bool isStrangeMeson (const T &p)
 
template<class T >
bool isCharmMeson (const T &p)
 
template<class T >
bool isBottomMeson (const T &p)
 
template<class T >
bool isTopMeson (const T &p)
 
template<class T >
bool isCCbarMeson (const T &p)
 
template<>
bool isCCbarMeson (const DecodedPID &p)
 
template<>
bool isCCbarMeson (const int &p)
 
template<class T >
bool isBBbarMeson (const T &p)
 
template<>
bool isBBbarMeson (const DecodedPID &p)
 
template<>
bool isBBbarMeson (const int &p)
 
template<class T >
bool isLightBaryon (const T &p)
 
template<class T >
bool isHeavyBaryon (const T &p)
 
template<class T >
bool isStrangeBaryon (const T &p)
 
template<class T >
bool isCharmBaryon (const T &p)
 
template<class T >
bool isBottomBaryon (const T &p)
 
template<class T >
bool isTopBaryon (const T &p)
 
template<class T >
bool isWeaklyDecayingBHadron (const T &p)
 
template<>
bool isWeaklyDecayingBHadron (const int &p)
 
template<>
bool isWeaklyDecayingBHadron (const DecodedPID &p)
 
template<class T >
bool isWeaklyDecayingCHadron (const T &p)
 
template<>
bool isWeaklyDecayingCHadron (const int &p)
 
template<>
bool isWeaklyDecayingCHadron (const DecodedPID &p)
 
template<class T >
int charge3 (const T &p)
 
template<class T >
double fractionalCharge (const T &p)
 
template<class T >
double charge (const T &p)
 
template<class T >
double threeCharge (const T &p)
 
template<class T >
bool isCharged (const T &p)
 
template<>
int charge3 (const DecodedPID &p)
 
template<>
int charge3 (const int &p)
 
template<class T >
bool isNeutral (const T &p)
 
template<>
bool isNeutral (const DecodedPID &p)
 
template<>
bool isNeutral (const int &p)
 
template<>
double fractionalCharge (const DecodedPID &p)
 
template<>
double fractionalCharge (const int &p)
 
template<class T >
bool isEMInteracting (const T &p)
 
template<>
bool isEMInteracting (const int &p)
 
template<class T >
bool isParton (const T &p)
 
template<class T >
int spin2 (const T &p)
 
template<>
int spin2 (const DecodedPID &p)
 
template<>
int spin2 (const int &p)
 
template<class T >
double spin (const T &p)
 
template<>
double spin (const DecodedPID &p)
 
template<>
double spin (const int &p)
 
template<class T >
std::vector< int > containedQuarks (const T &p)
 
template<>
std::vector< int > containedQuarks (const int &p)
 
template<>
std::vector< int > containedQuarks (const DecodedPID &p)
 
template<class T >
bool isStrongInteracting (const T &p)
 
template<>
bool isStrongInteracting (const int &p)
 

Function Documentation

◆ baryonNumber() [1/3]

template<>
double baryonNumber ( const DecodedPID p)
inline

Definition at line 774 of file AtlasPID.h.

774 { return static_cast<double>(baryonNumber3(p))/3.0;}

◆ baryonNumber() [2/3]

template<>
double baryonNumber ( const int &  p)
inline

Definition at line 775 of file AtlasPID.h.

775 { auto value_digits = DecodedPID(p); return static_cast<double>(baryonNumber3(value_digits))/3.0;}

◆ baryonNumber() [3/3]

template<class T >
double baryonNumber ( const T &  p)
inline

Definition at line 773 of file AtlasPID.h.

773 {return baryonNumber(p->pdg_id());}

◆ baryonNumber3() [1/3]

template<>
int baryonNumber3 ( const DecodedPID p)
inline

Definition at line 749 of file AtlasPID.h.

749  {
750  if (isQuark(p.pid())) { return (p.pid() > 0) ? 1 : - 1;}
751  if (isDiquark(p)) { return (p.pid() > 0) ? 2 : -2; }
752  if (isMeson(p) || isTetraquark(p)) { return 0; }
753  if (isBaryon(p) || isPentaquark(p)){ return (p.pid() > 0) ? 3 : -3; }
754  if (isNucleus(p)) {
755  const int result = 3*p(8) + 30*p(7) + 300*p(6);
756  return (p.pid() > 0) ? result : -result;
757  }
758  if (isSUSY(p)) {
759  auto pp = p.shift(1);
760  if (pp.ndigits() < 3 ) { return baryonNumber3(pp); } // super-partners of fundamental particles
761  if (pp(0) == COMPOSITEGLUON) {
762  if (pp(1) == COMPOSITEGLUON) { return 0; } // R-Glueballs
763  if ( pp.ndigits() == 4 ) { return 0; } // states with gluino-quark-antiquark
764  if ( pp.ndigits() == 5) { return (p.pid() > 0) ? 3 : -3; } // states with gluino-quark-quark-quark
765  }
766  if (pp.ndigits() == 3) { return 0; } // squark-antiquark
767  if (pp.ndigits() == 4) { return (p.pid() > 0) ? 3 : -3; } // states with squark-quark-quark
768  }
769  return 0;
770 }

◆ baryonNumber3() [2/3]

template<>
int baryonNumber3 ( const int &  p)
inline

Definition at line 771 of file AtlasPID.h.

771 { auto value_digits = DecodedPID(p); return baryonNumber3(value_digits);}

◆ baryonNumber3() [3/3]

template<class T >
int baryonNumber3 ( const T &  p)
inline

Definition at line 748 of file AtlasPID.h.

748 {return baryonNumber3(p->pdg_id());}

◆ charge()

template<class T >
double charge ( const T &  p)
inline

Definition at line 997 of file AtlasPID.h.

997  {
998  if (isGenericMultichargedParticle(p)) // BSM multi-charged particles might have a fractional charge that's not a multiple of 1/3
999  return fractionalCharge(p);
1000  else
1001  return 1.0*charge3(p)/3.0;
1002 }

◆ charge3() [1/3]

template<>
int charge3 ( const DecodedPID p)
inline

Codes 411nq1nq2 nq3 0 are then used when the magnetic and electrical charge sign agree and 412nq1nq2 nq3 0 when they disagree, with the overall sign of the particle set by the magnetic charge.

Definition at line 1007 of file AtlasPID.h.

1007  {
1008  auto ap = std::abs(p.pid());
1009  if (ap < TABLESIZE ) return p.pid() > 0 ? triple_charge.at(ap) : -triple_charge.at(ap);
1010  if (ap == K0) return 0;
1011  if (ap == GEANTINO0) return 0;
1012  if (ap == GEANTINOPLUS) return p.pid() > 0 ? 3 : -3;
1013  if (ap == MAVTOP) return p.pid() > 0 ? 2 : -2;
1014  size_t nq = 0;
1015  int sign = 1;
1016  int signmult = 1;
1017  int result=0;
1018  bool classified = false;
1019  if (!classified && isMeson(p)) { classified = true; nq = 2; if ((*(p.second.rbegin()+2)) == 2||(*(p.second.rbegin()+2)) == 4 ) { sign=-1;} signmult =-1; }
1020  if (!classified && isDiquark(p)) {return triple_charge.at(p(0))+triple_charge.at(p(1)); }
1021  if (!classified && isBaryon(p)) { classified = true; nq = 3; }
1022  if (!classified && isTetraquark(p)){ return triple_charge.at(p(3)) + triple_charge.at(p(4)) - triple_charge.at(p(6)) - triple_charge.at(p(7)); }
1023  if (!classified && isPentaquark(p)){ return triple_charge.at(p(3)) + triple_charge.at(p(4)) + triple_charge.at(p(5)) + triple_charge.at(p(6)) - triple_charge.at(p(7)); }
1024  if (!classified && isNucleus(p)) { return 3*numberOfProtons(p);}
1025  if (!classified && isSUSY(p)) {
1026  nq = 0;
1027  auto pp = p.shift(1);
1028  if (pp.ndigits() < 3 ) { return charge3(pp); } // super-partners of fundamental particles
1029  if (pp(0) == COMPOSITEGLUON) {
1030  if (pp(1) == COMPOSITEGLUON) { return 0; } // R-Glueballs
1031  if ( pp.ndigits() == 4 || pp.ndigits() == 5) {
1032  pp = pp.shift(1); // Remove gluino
1033  }
1034  }
1035  if (pp.ndigits() == 3) { classified = true; nq = 2; if (p.last()%2==0) {sign = -1;} signmult = -1; } // states with squark-antiquark or quark-anti-quark
1036  if (pp.ndigits() == 4) { classified = true; nq = 3; } // states with squark-quark-quark or quark-quark-quark
1037  }
1038  if (!classified && isHiddenValley(p)) { // Hidden Valley particles
1039  auto pp = p.shift(2);
1040  if (!classified && isMeson(pp)) { classified = true; nq = 2; if ((*(pp.second.rbegin()+2)) == 2||(*(pp.second.rbegin()+2)) == 4 ) { sign=-1;} signmult =-1; }
1041  if (!classified && isDiquark(pp)) {return triple_charge.at(pp(0))+triple_charge.at(pp(1)); }
1042  if (!classified && isBaryon(pp)) { classified = true; nq = 3; }
1043 
1044  }
1045  if (!classified && isKK(p)) { // Kaluza-Klein particles
1046  auto pp = p.shift(2);
1047  auto ap = std::abs(pp.pid());
1048  if (ap < TABLESIZE ) return pp.pid() > 0 ? triple_charge.at(ap) : -triple_charge.at(ap);
1049 
1050  }
1051  if (!classified && isDM(p.pid())) { //Dark Matter Particles
1052  if (p.ndigits() == 7){ // Determining the charges for the more elaborate, 7-digit DM codes
1053  auto pp = p.shift(3); // The first two digits indicate the particle is DM, the third indicates left/right-handedness (see 11(j))
1054  auto ap = std::abs(pp.pid());
1055  if (ap < TABLESIZE ) return pp.pid() > 0 ? triple_charge.at(ap) : -triple_charge.at(ap);
1056  }else if (std::abs(p.pid()) < TABLESIZE) return p.pid() > 0 ? triple_charge.at(ap) : -triple_charge.at(ap); // Just to make sure the correct charge is returned for DM 51-60
1057  }
1058  if (!classified && isMonopole(p)) {
1061  result = 3*(p(3)*100 + p(4)*10 + p(5));
1062  return ( (p.pid() > 0 && p(2) == 1) || (p.pid() < 0 && p(2) == 2) ) ? result : -result;
1063  }
1064  if (!classified && isGenericMultichargedParticle(p)) {
1065  double abs_charge = 0.0;
1066  if (p(0) == 1) abs_charge = p(3)*100. + p(4)*10. + p(5)*1 + p(6)*0.1; // multi-charged particle PDG ID is +/-100XXXY0, where the charge is XXX.Y
1067  if (p(0) == 2) abs_charge = (p(3)*10. + p(4))/(p(5)*10.0 + p(6)); // multi-charged particle PDG ID is +/-200XXYY0, where the charge is XX/YY
1068  int abs_threecharge = static_cast<int>(std::round(abs_charge * 3.)); // the multi-charged particles might have a fractional charge that's not a multiple of 1/3, in that case round to the closest multiple of 1/3 for charge3 and threecharge
1069  return p.pid() > 0 ? abs_threecharge : -1 * abs_threecharge;
1070  }
1071  for (auto r = p.second.rbegin() + 1; r != p.second.rbegin() + 1 + nq; ++r) {
1072  result += triple_charge.at(*r)*sign;
1073  sign*=signmult;
1074  }
1075  return p.pid() > 0 ? result : -result;
1076 }

◆ charge3() [2/3]

template<>
int charge3 ( const int &  p)
inline

Definition at line 1077 of file AtlasPID.h.

1077  {
1078  int ap = std::abs(p);
1079  if (ap < TABLESIZE) return p > 0 ? triple_charge.at(ap):-triple_charge.at(ap);
1080  auto value_digits = DecodedPID(p);
1081  return charge3(value_digits);
1082 }

◆ charge3() [3/3]

template<class T >
int charge3 ( const T &  p)
inline

Definition at line 995 of file AtlasPID.h.

995 {return charge3(p->pdg_id());}

◆ containedQuarks() [1/3]

template<>
std::vector<int> containedQuarks ( const DecodedPID p)
inline

Definition at line 1176 of file AtlasPID.h.

1176 { return containedQuarks(p.pid()); }

◆ containedQuarks() [2/3]

template<>
std::vector<int> containedQuarks ( const int &  p)
inline

Definition at line 1154 of file AtlasPID.h.

1154  {
1155  auto pp = DecodedPID(p);
1156  std::vector<int> quarks;
1157  if (isQuark(pp.pid())) { quarks.push_back(std::abs(pp.pid())); }
1158  else if (isDiquark(pp)) { quarks.push_back(pp(0)); quarks.push_back(pp(1)); }
1159  else if (isMeson(pp)) { quarks.push_back(*(pp.second.rbegin() + 1)); quarks.push_back(*(pp.second.rbegin()+2)); }
1160  else if (isBaryon(pp)) { for (size_t digit = 1; digit < 4; ++digit) { quarks.push_back(*(pp.second.rbegin() + digit)); } }
1161  else if (isTetraquark(pp)) { for (size_t digit = 1; digit < 5; ++digit) { quarks.push_back(*(pp.second.rbegin() + digit)); } }
1162  else if (isPentaquark(pp)) { for (size_t digit = 1; digit < 6; ++digit) { quarks.push_back(*(pp.second.rbegin() + digit)); } }
1163  else if (isNucleus(pp)) { const int A = std::abs(baryonNumber3(pp)/3); const int Z = std::abs(numberOfProtons(pp)); const int L = std::abs(numberOfLambdas(pp));
1164  const int n_uquarks = A + Z; const int n_dquarks = 2*A - Z - L; const int n_squarks = L;
1165  quarks.reserve(3*A); quarks.insert(quarks.end(), n_dquarks, 1); quarks.insert(quarks.end(), n_uquarks, 2); quarks.insert(quarks.end(), n_squarks, 3); }
1166  else if (isSUSY(pp)) { // APID SUSY case
1167  pp = pp.shift(1);
1168  if ( pp.ndigits() > 1 ) { // skip squarks
1169  if ( pp.ndigits() == 3 ) { pp = DecodedPID(pp(1)); } // Handle ~q qbar pairs
1170  if ( pp.ndigits() > 3 ) { pp = pp.shift(1); } // Drop gluinos and squarks
1171  return containedQuarks(pp.pid());
1172  }
1173  }
1174  return quarks;
1175 }

◆ containedQuarks() [3/3]

template<class T >
std::vector<int> containedQuarks ( const T &  p)
inline

Definition at line 1153 of file AtlasPID.h.

1153 { return containedQuarks(p->pdg_id()); }

◆ fractionalCharge() [1/3]

template<>
double fractionalCharge ( const DecodedPID p)
inline

Definition at line 1090 of file AtlasPID.h.

1090  {
1091  if(!isGenericMultichargedParticle(p)) return 1.0*charge3(p)/3.0; // this method is written for multi-charged particles, still make sure other cases are handled properly
1092  double abs_charge = 0;
1093  if (p(0) == 1) abs_charge = p(3)*100. + p(4)*10. + p(5)*1 + p(6)*0.1; // multi-charged particle PDG ID is +/-100XXXY0, where the charge is XXX.Y
1094  if (p(0) == 2) abs_charge = (p(3)*10. + p(4))/(p(5)*10.0 + p(6)); // multi-charged particle PDG ID is +/-200XXYY0, where the charge is XX/YY
1095  return p.pid() > 0 ? abs_charge : -1 * abs_charge;
1096 }

◆ fractionalCharge() [2/3]

template<>
double fractionalCharge ( const int &  p)
inline

Definition at line 1097 of file AtlasPID.h.

1097 {auto value_digits = DecodedPID(p); return fractionalCharge(value_digits);}

◆ fractionalCharge() [3/3]

template<class T >
double fractionalCharge ( const T &  p)
inline

Definition at line 996 of file AtlasPID.h.

996 {return fractionalCharge(p->pdg_id());}

◆ hasBottom()

template<class T >
bool hasBottom ( const T &  p)
inline

Definition at line 738 of file AtlasPID.h.

738 { return hasQuark(p,BQUARK); }

◆ hasCharm()

template<class T >
bool hasCharm ( const T &  p)
inline

Definition at line 737 of file AtlasPID.h.

737 { return hasQuark(p,CQUARK); }

◆ hasQuark() [1/3]

template<>
bool hasQuark ( const DecodedPID p,
const int &  q 
)
inline

Definition at line 716 of file AtlasPID.h.

716  {
717  if (isQuark(p.pid())) { return (std::abs(p.pid()) == q );}
718  if (isMeson(p)) { return *(p.second.rbegin() + 1) == q ||*(p.second.rbegin()+2) ==q;}
719  if (isDiquark(p)) { auto i = std::find(p.second.rbegin() + 2,p.second.rbegin()+4,q); return (i!=p.second.rbegin()+4);}
720  if (isBaryon(p)) { auto i = std::find(p.second.rbegin() + 1,p.second.rbegin()+4,q); return (i!=p.second.rbegin()+4);}
721  if (isTetraquark(p)) { auto i = std::find(p.second.rbegin() + 1,p.second.rbegin()+5,q); return (i!=p.second.rbegin()+5);}
722  if (isPentaquark(p)) { auto i = std::find(p.second.rbegin() + 1,p.second.rbegin()+6,q); return (i!=p.second.rbegin()+6);}
723  if (isNucleus(p) && std::abs(p.pid()) != PROTON) { return (q == 1 || q == 2 || (q==3 && p(2) > 0));}
724  if (isSUSY(p)) { // APID SUSY case
725  auto pp = p.shift(1);
726  if ( pp.ndigits() == 1 ) { return false; } // Handle squarks
727  if ( pp.ndigits() == 3 ) { return (pp(1) == q); } // Handle ~q qbar pairs
728  if ( pp.ndigits() == 4 ) { return (pp(1) == q || pp(2) == q); } // Ignore gluinos and squarks
729  if ( pp.ndigits() == 5 ) { return (pp(1) == q || pp(2) == q || pp(3) == q); } // Ignore gluinos and squarks
730  if ( pp.ndigits() > 5 ) { pp = pp.shift(1); } // Drop gluinos and squarks
731  return hasQuark(pp, q); }
732  return false;
733 }

◆ hasQuark() [2/3]

template<>
bool hasQuark ( const int &  p,
const int &  q 
)
inline

Definition at line 734 of file AtlasPID.h.

734 { auto value_digits = DecodedPID(p); return hasQuark(value_digits, q);}

◆ hasQuark() [3/3]

template<class T >
bool hasQuark ( const T &  p,
const int &  q 
)
inline

◆ hasSquark() [1/3]

template<>
bool hasSquark ( const DecodedPID p,
const int &  q 
)
inline

Definition at line 611 of file AtlasPID.h.

611  {
612  auto pp = p.shift(1); return (
613  (isSquark(p) || isRHadron(p))
614  && pp.ndigits() != 2 // skip lepton and boson super-partners by vetoing ndigits==2
615  && pp(0) == q // After shifting, the first digit will always represent the squark in R-Hadron (and squark) PIDs
616  );
617 }

◆ hasSquark() [2/3]

template<>
bool hasSquark ( const int &  p,
const int &  q 
)
inline

Definition at line 618 of file AtlasPID.h.

618 { auto value_digits = DecodedPID(p); return hasSquark(value_digits, q);}

◆ hasSquark() [3/3]

template<class T >
bool hasSquark ( const T &  p,
const int &  q 
)
inline

Definition at line 610 of file AtlasPID.h.

610 { return hasSquark(p->pdg_id(), q); }

◆ hasStrange()

template<class T >
bool hasStrange ( const T &  p)
inline

Definition at line 736 of file AtlasPID.h.

736 { return hasQuark(p,SQUARK); }

◆ hasTop()

template<class T >
bool hasTop ( const T &  p)
inline

Definition at line 739 of file AtlasPID.h.

739 { return hasQuark(p,TQUARK); }

◆ isBaryon() [1/3]

template<>
bool isBaryon ( const DecodedPID p)
inline

Definition at line 283 of file AtlasPID.h.

283  {
284  if (p.ndigits() < 4 ) return false;
285  if (p.max_digit(1,4) >= QUARK_LIMIT ) return false; // Ignore pdg_ids which would describe states including fourth generation quarks
286  if (p.min_digit(1,4) == 0) return false; // Ignore pdg_ids with zero for nq1, nq2, nq3
287  if (p.ndigits() == 4 && (p.last() == 2 || p.last() == 4|| p.last() == 6|| p.last() == 8) ) return true;
288 
289  if (p.ndigits() == 5 && p(0) == 1 && (p.last() == 2 || p.last() == 4) ) return true;
290  if (p.ndigits() == 5 && p(0) == 3 && (p.last() == 2 || p.last() == 4) ) return true;
291 
292  if (p.ndigits() == 6 ) {
293  if (p(0) == 1 && p(1) == 0 && p.last() == 2 ) return true;
294  if (p(0) == 1 && p(1) == 0 && p.last() == 4 ) return true;
295  if (p(0) == 1 && p(1) == 0 && p.last() == 6 ) return true;
296  if (p(0) == 1 && p(1) == 1 && p.last() == 2 ) return true;
297  if (p(0) == 1 && p(1) == 2 && p.last() == 4 ) return true;
298 
299  if (p(0) == 2 && p(1) == 0 && p.last() == 2 ) return true;
300  if (p(0) == 2 && p(1) == 0 && p.last() == 4 ) return true;
301  if (p(0) == 2 && p(1) == 0 && p.last() == 6 ) return true;
302  if (p(0) == 2 && p(1) == 0 && p.last() == 8 ) return true;
303  if (p(0) == 2 && p(1) == 1 && p.last() == 2 ) return true;
304  }
305 
306  if (p.ndigits() == 5 ) {
307  if (p(0) == 2 && p.last() == 2 ) return true;
308  if (p(0) == 2 && p.last() == 4 ) return true;
309  if (p(0) == 2 && p.last() == 6 ) return true;
310  if (p(0) == 5 && p.last() == 2 ) return true;
311  if (p(0) == 1 && p.last() == 6 ) return true;
312  if (p(0) == 4 && p.last() == 2 ) return true;
313  }
314  return false;
315 }

◆ isBaryon() [2/3]

template<>
bool isBaryon ( const int &  p)
inline

Definition at line 316 of file AtlasPID.h.

316 { auto value_digits = DecodedPID(p); return isBaryon(value_digits);}

◆ isBaryon() [3/3]

template<class T >
bool isBaryon ( const T &  p)
inline

Table 43.2 APID: states with fourth generation quarks are not baryons.

Definition at line 282 of file AtlasPID.h.

282 {return isBaryon(p->pdg_id());}

◆ isBBbarMeson() [1/3]

template<>
bool isBBbarMeson ( const DecodedPID p)
inline

Definition at line 927 of file AtlasPID.h.

927 { return leadingQuark(p) == BQUARK && isMeson(p) && (*(p.second.rbegin()+2)) == BQUARK && (*(p.second.rbegin()+1)) == BQUARK; }

◆ isBBbarMeson() [2/3]

template<>
bool isBBbarMeson ( const int &  p)
inline

Definition at line 928 of file AtlasPID.h.

928 { return isBBbarMeson(DecodedPID(p)); }

◆ isBBbarMeson() [3/3]

template<class T >
bool isBBbarMeson ( const T &  p)
inline

Definition at line 926 of file AtlasPID.h.

926 { return isBBbarMeson(p->pdg_id());}

◆ isBoson() [1/3]

template<>
bool isBoson ( const DecodedPID p)
inline

Definition at line 371 of file AtlasPID.h.

371 { return isBoson(p.pid()); }

◆ isBoson() [2/3]

template<>
bool isBoson ( const int &  p)
inline

Definition at line 370 of file AtlasPID.h.

370 { auto sp = std::abs(p); return sp > 20 && sp < 41; }

◆ isBoson() [3/3]

template<class T >
bool isBoson ( const T &  p)
inline

PDG rule 9: Two-digit numbers in the range 21–30 are provided for the Standard Model gauge and Higgs bosons.

PDG rule 11b: The graviton and the boson content of a two-Higgs-doublet scenario and of additional SU(2)×U(1) groups are found in the range 31–40.

Definition at line 369 of file AtlasPID.h.

369 {return isBoson(p->pdg_id());}

◆ isBottom() [1/2]

template<>
bool isBottom ( const int &  p)
inline

Definition at line 183 of file AtlasPID.h.

183 { return std::abs(p) == BQUARK;}

◆ isBottom() [2/2]

template<class T >
bool isBottom ( const T &  p)
inline

Definition at line 182 of file AtlasPID.h.

182 {return isBottom(p->pdg_id());}

◆ isBottomBaryon()

template<class T >
bool isBottomBaryon ( const T &  p)
inline

Definition at line 935 of file AtlasPID.h.

935 { return leadingQuark(p) == BQUARK && isBaryon(p); }

◆ isBottomHadron()

template<class T >
bool isBottomHadron ( const T &  p)
inline

Definition at line 912 of file AtlasPID.h.

912 { return leadingQuark(p) == BQUARK && isHadron(p); }

◆ isBottomMeson()

template<class T >
bool isBottomMeson ( const T &  p)
inline

Definition at line 919 of file AtlasPID.h.

919 { return leadingQuark(p) == BQUARK && isMeson(p); }

◆ isBSM() [1/3]

template<>
bool isBSM ( const DecodedPID p)
inline

Definition at line 847 of file AtlasPID.h.

847  {
848  if (p.pid() == GRAVITON || std::abs(p.pid()) == MAVTOP || p.pid() == DARKPHOTON) return true;
849  if (std::abs(p.pid()) > 16 && std::abs(p.pid()) < 19) return true;
850  if (std::abs(p.pid()) > 31 && std::abs(p.pid()) < 39) return true;
851  if (std::abs(p.pid()) > 39 && std::abs(p.pid()) < 81) return true;
852  if (std::abs(p.pid()) > 6 && std::abs(p.pid()) < 9) return true;
853  if (isSUSY(p)) return true;
854  if (isNeutrinoRH(p.pid())) return true;
855  if (isGenericMultichargedParticle(p)) return true;
856  if (isTechnicolor(p)) return true;
857  if (isExcited(p)) return true;
858  if (isKK(p)) return true;
859  if (isHiddenValley(p)) return true;
860  if (isMonopole(p)) return true;
861  if (isDM(p.pid())) return true;
862  return false;
863 }

◆ isBSM() [2/3]

template<>
bool isBSM ( const int &  p)
inline

Definition at line 864 of file AtlasPID.h.

864  {
865  if (p == GRAVITON || std::abs(p) == MAVTOP || p == DARKPHOTON) return true;
866  if (std::abs(p) > 16 && std::abs(p) < 19) return true;
867  if (std::abs(p) > 31 && std::abs(p) < 38) return true;
868  if (std::abs(p) > 39 && std::abs(p) < 81) return true;
869  if (std::abs(p) > 6 && std::abs(p) < 9) return true;
870  auto value_digits = DecodedPID(p); return isBSM(value_digits);
871 }

◆ isBSM() [3/3]

template<class T >
bool isBSM ( const T &  p)
inline

APID: graviton and all Higgs extensions are BSM.

Definition at line 846 of file AtlasPID.h.

846 {return isBSM(p->pdg_id());}

◆ isCCbarMeson() [1/3]

template<>
bool isCCbarMeson ( const DecodedPID p)
inline

Definition at line 923 of file AtlasPID.h.

923 { return leadingQuark(p) == CQUARK && isMeson(p) && (*(p.second.rbegin()+2)) == CQUARK && (*(p.second.rbegin()+1)) == CQUARK; }

◆ isCCbarMeson() [2/3]

template<>
bool isCCbarMeson ( const int &  p)
inline

Definition at line 924 of file AtlasPID.h.

924 { return isCCbarMeson(DecodedPID(p)); }

◆ isCCbarMeson() [3/3]

template<class T >
bool isCCbarMeson ( const T &  p)
inline

Definition at line 922 of file AtlasPID.h.

922 { return isCCbarMeson(p->pdg_id());}

◆ isCharged()

template<class T >
bool isCharged ( const T &  p)
inline

Definition at line 1004 of file AtlasPID.h.

1004 { return charge3(p) != 0;}

◆ isCharm() [1/2]

template<>
bool isCharm ( const int &  p)
inline

Definition at line 180 of file AtlasPID.h.

180 { return std::abs(p) == CQUARK;}

◆ isCharm() [2/2]

template<class T >
bool isCharm ( const T &  p)
inline

Definition at line 179 of file AtlasPID.h.

179 {return isCharm(p->pdg_id());}

◆ isCharmBaryon()

template<class T >
bool isCharmBaryon ( const T &  p)
inline

Definition at line 934 of file AtlasPID.h.

934 { return leadingQuark(p) == CQUARK && isBaryon(p); }

◆ isCharmHadron()

template<class T >
bool isCharmHadron ( const T &  p)
inline

Definition at line 911 of file AtlasPID.h.

911 { return leadingQuark(p) == CQUARK && isHadron(p); }

◆ isCharmMeson()

template<class T >
bool isCharmMeson ( const T &  p)
inline

Definition at line 918 of file AtlasPID.h.

918 { return leadingQuark(p) == CQUARK && isMeson(p); }

◆ isChLepton() [1/2]

template<>
bool isChLepton ( const int &  p)
inline

Definition at line 200 of file AtlasPID.h.

200 { auto sp = std::abs(p); return sp >= ELECTRON && sp <= LPRIME && sp%2 == 1; }

◆ isChLepton() [2/2]

template<class T >
bool isChLepton ( const T &  p)
inline

APID: the fourth generation leptons are leptons.

Definition at line 199 of file AtlasPID.h.

199 {return isChLepton(p->pdg_id());}

◆ isDiquark() [1/3]

template<>
bool isDiquark ( const DecodedPID p)
inline

Definition at line 228 of file AtlasPID.h.

228  {
229  if ( p.ndigits() == 4 && p(0) >= p(1) && p(1) !=0 && p(2) == 0 && (p.last() == 1 || p.last() == 3)
230  && p.max_digit(2,4) < QUARK_LIMIT
231  ) return true;
232  return false;
233 }

◆ isDiquark() [2/3]

template<>
bool isDiquark ( const int &  p)
inline

Definition at line 234 of file AtlasPID.h.

234 { auto value_digits = DecodedPID(p); return isDiquark(value_digits);}

◆ isDiquark() [3/3]

template<class T >
bool isDiquark ( const T &  p)
inline

PDG rule 4 Diquarks have 4-digit numbers with nq1 >= nq2 and nq3 = 0 APID: states with top quarks are diquarks APID: states with fourth generation quarks are not diquarks.

Definition at line 227 of file AtlasPID.h.

227 {return isDiquark(p->pdg_id());}

◆ isDM() [1/2]

template<>
bool isDM ( const int &  p)
inline

Definition at line 659 of file AtlasPID.h.

659  {
660  auto sp = std::abs(p);
661  auto value_digits = DecodedPID(p);
662  return (sp >= 51 && sp <= 60) || (value_digits.ndigits() == 7 && value_digits(0) == 5 && value_digits(1) == 9) || sp == DARKPHOTON; }

◆ isDM() [2/2]

template<class T >
bool isDM ( const T &  p)
inline

PDG rule 11j: The nature of Dark Matter (DM) is not known, and therefore a definitive classificationis too early.

Candidates within specific scenarios are classified therein, such as 1000022 for the lightest neutralino. Generic fundamental states can be given temporary codes in the range 51 - 60, with 51, 52 and 53 reserved for spin 0, 1/2 and 1 ones (this could also be an axion state). Generic mediators of s-channel DM pair creation of annihilation can be given codes 54 and 55 for spin 0 or 1 ones. Separate antiparticles, with negativecodes, may or may not exist. More elaborate new scenarios should be constructed with n= 5 and nr = 9.

Definition at line 658 of file AtlasPID.h.

658 {return isDM(p->pdg_id());}

◆ isElectron() [1/2]

template<>
bool isElectron ( const int &  p)
inline

Definition at line 203 of file AtlasPID.h.

203 { return std::abs(p) == ELECTRON;}

◆ isElectron() [2/2]

template<class T >
bool isElectron ( const T &  p)
inline

Definition at line 202 of file AtlasPID.h.

202 {return isElectron(p->pdg_id());}

◆ isEMInteracting() [1/2]

template<>
bool isEMInteracting ( const int &  p)
inline

Definition at line 1101 of file AtlasPID.h.

1101 {return (isPhoton(p) || isZ(p) || p == ZPRIME || p == ZDBLPRIME || std::abs(charge(p))>std::numeric_limits<double>::epsilon() || isMonopole(p));}

◆ isEMInteracting() [2/2]

template<class T >
bool isEMInteracting ( const T &  p)
inline

Definition at line 1100 of file AtlasPID.h.

1100 {return isEMInteracting(p->pdg_id());}

◆ isExcited() [1/3]

template<>
bool isExcited ( const DecodedPID p)
inline

Definition at line 538 of file AtlasPID.h.

538  {
539  const auto& pp = (p.ndigits() == 7) ? p.shift(2) : DecodedPID(0);
540  return (p.ndigits() == 7 && (p(0) == 4 && p(1) == 0) &&
541  (isLepton(pp) || isQuark(pp)));
542 }

◆ isExcited() [2/3]

template<>
bool isExcited ( const int &  p)
inline

Definition at line 543 of file AtlasPID.h.

543 { auto value_digits = DecodedPID(p); return isExcited(value_digits);}

◆ isExcited() [3/3]

template<class T >
bool isExcited ( const T &  p)
inline

PDG rule 11f Excited (composite) quarks and leptons are identified by setting n= 4 and nr= 0.

Definition at line 536 of file AtlasPID.h.

536 {return isExcited(p->pdg_id());}

◆ isFourthGeneration() [1/2]

template<>
bool isFourthGeneration ( const int &  p)
inline

Definition at line 221 of file AtlasPID.h.

221 {return std::abs(p) == BPRIME || std::abs(p) == TPRIME || std::abs(p) == LPRIME || std::abs(p) == NUPRIME;}

◆ isFourthGeneration() [2/2]

template<class T >
bool isFourthGeneration ( const T &  p)
inline

Is this a 4th generation fermion? APID: 4th generation fermions are not standard model particles.

Definition at line 220 of file AtlasPID.h.

220 {return isFourthGeneration(p->pdg_id());}

◆ isGaugino() [1/3]

template<>
bool isGaugino ( const DecodedPID p)
inline

Definition at line 505 of file AtlasPID.h.

505  {
506  auto pp = p.shift(1); return (p.ndigits() == 7 && p(0) == 1 && isBoson(pp.pid()));
507 }

◆ isGaugino() [2/3]

template<>
bool isGaugino ( const int &  p)
inline

Definition at line 508 of file AtlasPID.h.

508 { auto value_digits = DecodedPID(p); return isGaugino(value_digits);}

◆ isGaugino() [3/3]

template<class T >
bool isGaugino ( const T &  p)
inline

Definition at line 504 of file AtlasPID.h.

504 { return isGaugino(p->pdg_id()); }

◆ isGeantino() [1/2]

template<>
bool isGeantino ( const int &  p)
inline

Definition at line 438 of file AtlasPID.h.

438 { return (std::abs(p) == GEANTINO0 || std::abs(p) == GEANTINOPLUS);}

◆ isGeantino() [2/2]

template<class T >
bool isGeantino ( const T &  p)
inline

Definition at line 437 of file AtlasPID.h.

437 {return isGeantino(p->pdg_id());}

◆ isGenericMultichargedParticle() [1/3]

template<>
bool isGenericMultichargedParticle ( const DecodedPID p)
inline

Definition at line 685 of file AtlasPID.h.

685 {return (p.ndigits() == 8 && (p(0) == 1 || p(0) == 2) && p(1) == 0 && p(2) == 0 && p(7) == 0);}

◆ isGenericMultichargedParticle() [2/3]

template<>
bool isGenericMultichargedParticle ( const int &  p)
inline

Definition at line 686 of file AtlasPID.h.

686 { auto value_digits = DecodedPID(p); return isGenericMultichargedParticle(value_digits);}

◆ isGenericMultichargedParticle() [3/3]

template<class T >
bool isGenericMultichargedParticle ( const T &  p)
inline

In addition, there is a need to identify ”Q-ball” and similar very exotic (multi-charged) particles which may have large, non-integer charge.

These particles are assigned the ad-hoc numbering +/-100XXXY0, where the charge is XXX.Y. or +/-200XXYY0, where the charge is XX/YY. The case of +/-200XXYY0 is legacy, see https://gitlab.cern.ch/atlas/athena/-/merge_requests/25862 Note that no other quantum numbers besides the charge are considered for these generic multi-charged particles (e.g. isSUSY() is false for them). Such a model was used in previous Run-1 (1301.5272,1504.04188) and Run-2 (1812.03673,2303.13613) ATLAS searches.

Definition at line 684 of file AtlasPID.h.

684 {return isGenericMultichargedParticle(p->pdg_id());}

◆ isGenSpecific() [1/2]

template<>
bool isGenSpecific ( const int &  p)
inline

Definition at line 426 of file AtlasPID.h.

426  {
427  int ap = std::abs(p);
428  if (ap >= 81 && ap <= 100) return true;
429  if (ap >= 901 && ap <= 930) return true;
430  if (ap >= 998 && ap <= 999) return true;
431  if (ap >= 1901 && ap <= 1930) return true;
432  if (ap >= 2901 && ap <= 2930) return true;
433  if (ap >= 3901 && ap <= 3930) return true;
434  return false;
435 }

◆ isGenSpecific() [2/2]

template<class T >
bool isGenSpecific ( const T &  p)
inline

Main Table for MC internal use 81–100,901–930,998-999,1901–1930,2901–2930, and 3901–3930.

Definition at line 425 of file AtlasPID.h.

425 {return isGenSpecific(p->pdg_id());}

◆ isGlueball() [1/3]

template<>
bool isGlueball ( const DecodedPID p)
inline

Definition at line 442 of file AtlasPID.h.

442  {
443  if (p.ndigits() > 4) return false; // APID avoid classifying R-Glueballs as SM Glueballs
444  return
445  ( ( p.ndigits() == 3 && p(0) == COMPOSITEGLUON && p(1) == COMPOSITEGLUON && (p.last() == 1 || p.last() == 5) ) ||
446  ( p.ndigits() == 4 && p(0) == COMPOSITEGLUON && p(1) == COMPOSITEGLUON && p(2) == COMPOSITEGLUON && (p.last() == 3 || p.last() == 7) ) );
447 }

◆ isGlueball() [2/3]

template<>
bool isGlueball ( const int &  p)
inline

Definition at line 448 of file AtlasPID.h.

448 { auto value_digits = DecodedPID(p); return isGlueball(value_digits); }

◆ isGlueball() [3/3]

template<class T >
bool isGlueball ( const T &  p)
inline

APID: Definition of Glueballs: SM glueballs 99X (X=1,5), 999Y (Y=3,7)

Definition at line 441 of file AtlasPID.h.

441 { return isGlueball(p->pdg_id()); }

◆ isGluon() [1/2]

template<>
bool isGluon ( const int &  p)
inline

Definition at line 374 of file AtlasPID.h.

374 { return p == GLUON; }

◆ isGluon() [2/2]

template<class T >
bool isGluon ( const T &  p)
inline

Definition at line 373 of file AtlasPID.h.

373 {return isGluon(p->pdg_id());}

◆ isGraviton() [1/2]

template<>
bool isGraviton ( const int &  p)
inline

Definition at line 398 of file AtlasPID.h.

398 { return p == GRAVITON; }

◆ isGraviton() [2/2]

template<class T >
bool isGraviton ( const T &  p)
inline

Definition at line 397 of file AtlasPID.h.

397 {return isGraviton(p->pdg_id());}

◆ isHadron() [1/3]

template<>
bool isHadron ( const DecodedPID p)
inline

Definition at line 352 of file AtlasPID.h.

352 { return isMeson(p) || isBaryon(p) || isTetraquark(p) || isPentaquark(p); }

◆ isHadron() [2/3]

template<>
bool isHadron ( const int &  p)
inline

Definition at line 353 of file AtlasPID.h.

353 { auto value_digits = DecodedPID(p); return isHadron(value_digits);}

◆ isHadron() [3/3]

template<class T >
bool isHadron ( const T &  p)
inline

Definition at line 351 of file AtlasPID.h.

351 {return isHadron(p->pdg_id());}

◆ isHeavyBaryon()

template<class T >
bool isHeavyBaryon ( const T &  p)
inline

Definition at line 932 of file AtlasPID.h.

932 { auto lq = leadingQuark(p); return (lq == CQUARK || lq == BQUARK || lq == TQUARK) && isBaryon(p); }

◆ isHeavyBoson() [1/2]

template<>
bool isHeavyBoson ( const int &  p)
inline

Definition at line 387 of file AtlasPID.h.

387 { return p == ZPRIME || p == ZDBLPRIME || std::abs(p) == WPLUSPRIME; }

◆ isHeavyBoson() [2/2]

template<class T >
bool isHeavyBoson ( const T &  p)
inline

APID: Additional "Heavy"/"prime" versions of W and Z bosons (Used in MCTruthClassifier)

Definition at line 386 of file AtlasPID.h.

386 {return isHeavyBoson(p->pdg_id());}

◆ isHeavyHadron()

template<class T >
bool isHeavyHadron ( const T &  p)
inline

Definition at line 909 of file AtlasPID.h.

909 { auto lq = leadingQuark(p); return (lq == CQUARK || lq == BQUARK || lq == TQUARK ) && isHadron(p); }

◆ isHeavyMeson()

template<class T >
bool isHeavyMeson ( const T &  p)
inline

Definition at line 916 of file AtlasPID.h.

916 { auto lq = leadingQuark(p); return (lq == CQUARK || lq == BQUARK || lq == TQUARK) && isMeson(p); }

◆ isHiddenValley() [1/3]

template<>
bool isHiddenValley ( const DecodedPID p)
inline

Definition at line 670 of file AtlasPID.h.

670  {
671  const auto& pp = (p.ndigits() == 7) ? p.shift(2) : DecodedPID(0);
672  return (p.ndigits() == 7 && p(0) == 4 && p(1) == 9 &&
673  (isQuark(pp) || isLepton(pp) || isBoson(pp) || isGlueball(pp) ||
674  isDiquark(pp) || isHadron(pp)));
675 }

◆ isHiddenValley() [2/3]

template<>
bool isHiddenValley ( const int &  p)
inline

Definition at line 676 of file AtlasPID.h.

676 { auto value_digits = DecodedPID(p); return isHiddenValley(value_digits);}

◆ isHiddenValley() [3/3]

template<class T >
bool isHiddenValley ( const T &  p)
inline

PDG rule 11k Hidden Valley particles have n = 4 and n_r = 9, and trailing numbers in agreement with their nearest-analog standard particles, as far as possible.

Thus 4900021 is the gauge boson g_v of a confining gauge field, 490000n_{q_v} and 490001n_{l_v} fundamental constituents charged or not under this, 4900022 is the γ_v of a non-confining field, and 4900n_{q_{v1}}n_{q_{v2}}n_J a Hidden Valley meson.

Definition at line 668 of file AtlasPID.h.

668 {return isHiddenValley(p->pdg_id());}

◆ isHiggs() [1/2]

template<>
bool isHiggs ( const int &  p)
inline

Definition at line 391 of file AtlasPID.h.

391 { return p == HIGGSBOSON; }

◆ isHiggs() [2/2]

template<class T >
bool isHiggs ( const T &  p)
inline

APID: HIGGS boson is only one particle.

Definition at line 390 of file AtlasPID.h.

390 {return isHiggs(p->pdg_id());}

◆ isKK() [1/3]

template<>
bool isKK ( const DecodedPID p)
inline

Definition at line 636 of file AtlasPID.h.

636 {return (p.ndigits() == 7 && (p(0) == 5 || p(0) == 6 ) && (p(1) != 9) );}

◆ isKK() [2/3]

template<>
bool isKK ( const int &  p)
inline

Definition at line 637 of file AtlasPID.h.

637 { auto value_digits = DecodedPID(p); return isKK(value_digits);}

◆ isKK() [3/3]

template<class T >
bool isKK ( const T &  p)
inline

PDG rule 11h A black hole in models with extra dimensions has code 5000040.

Kaluza-Klein excitations in models with extra dimensions have n = 5 or n = 6, to distinguish excitations of left-or right-handed fermions or, in case of mixing, the lighter or heavier state (cf. 11d). The non zero nr digit gives the radial excitation number, in scenarios where the level spacing allows these to be distinguished. Should the model also contain supersymmetry, excited SUSY states would be denoted by a nn_r > 0, with n = 1 or 2 as usual. Should some colored states be long-lived enough that hadrons would form around them, the coding strategy of 11g applies, with the initial two nnr digits preserved in the combined code.

Definition at line 635 of file AtlasPID.h.

635 {return isKK(p->pdg_id());}

◆ isLepton() [1/3]

template<>
bool isLepton ( const DecodedPID p)
inline

Definition at line 191 of file AtlasPID.h.

191 { return isLepton(p.pid()); }

◆ isLepton() [2/3]

template<>
bool isLepton ( const int &  p)
inline

Definition at line 190 of file AtlasPID.h.

190 { auto sp = std::abs(p); return sp >= ELECTRON && sp <= NUPRIME; }

◆ isLepton() [3/3]

template<class T >
bool isLepton ( const T &  p)
inline

APID: the fourth generation leptons are leptons.

Definition at line 189 of file AtlasPID.h.

189 {return isLepton(p->pdg_id());}

◆ isLeptoQuark() [1/2]

template<>
bool isLeptoQuark ( const int &  p)
inline

Definition at line 409 of file AtlasPID.h.

409 { return std::abs(p) == LEPTOQUARK; }

◆ isLeptoQuark() [2/2]

template<class T >
bool isLeptoQuark ( const T &  p)
inline

PDG rule 11c: “One-of-a-kind” exotic particles are assigned numbers in the range 41–80.

The subrange 61-80 can be used for new heavier fermions in generic models, where partners to the SM fermions would have codes offset by 60. If required, however, other assignments could be made.

Definition at line 408 of file AtlasPID.h.

408 {return isLeptoQuark(p->pdg_id());}

◆ isLightBaryon()

template<class T >
bool isLightBaryon ( const T &  p)
inline

Definition at line 931 of file AtlasPID.h.

931 { auto lq = leadingQuark(p); return (lq == DQUARK || lq == UQUARK||lq == SQUARK) && isBaryon(p); }

◆ isLightHadron()

template<class T >
bool isLightHadron ( const T &  p)
inline

Definition at line 908 of file AtlasPID.h.

908 { auto lq = leadingQuark(p); return (lq == DQUARK || lq == UQUARK||lq == SQUARK) && isHadron(p); }

◆ isLightMeson()

template<class T >
bool isLightMeson ( const T &  p)
inline

Definition at line 915 of file AtlasPID.h.

915 { auto lq = leadingQuark(p); return (lq == DQUARK || lq == UQUARK||lq == SQUARK) && isMeson(p); }

◆ isMeson() [1/3]

template<>
bool isMeson ( const DecodedPID p)
inline

Definition at line 245 of file AtlasPID.h.

245  {
246  if (p.ndigits() < 3 ) return false;
247  if (p.ndigits() == 7 && (p(0) == 1 || p(0) == 2)) return false; // APID don't match SUSY particles
248  if (std::abs(p.pid()) == K0S) return true;
249  if (std::abs(p.pid()) == K0L) return true;
250  if (std::abs(p.pid()) == K0) return true;
251  if (p.last() % 2 != 1 ) return false;
252  if (p.max_digit(1,3) >= QUARK_LIMIT ) return false; // Ignore pdg_ids which would describe states including fourth generation quarks
253  if (p.min_digit(1,3) == 0 ) return false;
254  if (*(p.second.rbegin() + 2) < *(p.second.rbegin() + 1) ) return false; // Quark ordering (nq2 >= nq3)
255  if (*(p.second.rbegin() + 2) == *(p.second.rbegin() + 1) && p.pid() < 0 ) return false; // Illegal antiparticle check (nq2 == nq3)
256  if (p.ndigits() == 3 ) return true;
257  if (*(p.second.rbegin() + 3) != 0 ) return false; // Only two quarks! (nq1 == 0)
258  if (p.ndigits() == 5 && p(0) == 1 ) return true;
259  if (p.ndigits() == 5 && p(0) == 2 && p.last() > 1 ) return true;
260  if (p.ndigits() == 5 && p(0) == 3 && p.last() > 1 ) return true;
261  if (p.ndigits() == 6 && p.last() % 2 == 1 ) return true;
262  if (p.ndigits() == 7 && p(0) == 9 && p(1) == 0 ) return true;
263 
264  return false;
265 }

◆ isMeson() [2/3]

template<>
bool isMeson ( const int &  p)
inline

Definition at line 266 of file AtlasPID.h.

266 { auto value_digits = DecodedPID(p); return isMeson(value_digits);}

◆ isMeson() [3/3]

template<class T >
bool isMeson ( const T &  p)
inline

Table 43.1 PDG rule 5a: The numbers specifying the meson’s quark content conform to the convention nq1= 0 and nq2 >= nq3.

The special case K0L is the sole exception to this rule. PDG rule 5C: The special numbers 310 and 130 are given to the K0S and K0L respectively. APID: The special code K0 is used when a generator uses K0S/K0L APID: states with fourth generation quarks are not mesons

Definition at line 244 of file AtlasPID.h.

244 {return isMeson(p->pdg_id());}

◆ isMonopole() [1/3]

template<>
bool isMonopole ( const DecodedPID p)
inline

Definition at line 646 of file AtlasPID.h.

646 {return (p.ndigits() == 7 && p(0) == 4 && p(1) == 1 && (p(2) == 1 || p(2) == 2 ) && p(6) == 0);}

◆ isMonopole() [2/3]

template<>
bool isMonopole ( const int &  p)
inline

Definition at line 647 of file AtlasPID.h.

647 { auto value_digits = DecodedPID(p); return isMonopole(value_digits);}

◆ isMonopole() [3/3]

template<class T >
bool isMonopole ( const T &  p)
inline

PDG rule 11i Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a variable integer number nq1nq2 nq3 units of electric charge.

Codes 411nq1nq2 nq3 0 are then used when the magnetic and electrical charge sign agree and 412nq1nq2 nq3 0 when they disagree, with the overall sign of the particle set by the magnetic charge. For now no spin information is provided.

Definition at line 645 of file AtlasPID.h.

645 {return isMonopole(p->pdg_id());}

◆ isMSSMHiggs() [1/2]

template<>
bool isMSSMHiggs ( const int &  p)
inline

Definition at line 395 of file AtlasPID.h.

395 { return p == HIGGS2 || p == HIGGS3 || std::abs(p) == HIGGSPLUS; }

◆ isMSSMHiggs() [2/2]

template<class T >
bool isMSSMHiggs ( const T &  p)
inline

APID: Additional Higgs bosons for MSSM (Used in MCTruthClassifier)

Definition at line 394 of file AtlasPID.h.

394 {return isMSSMHiggs(p->pdg_id());}

◆ isMuon() [1/2]

template<>
bool isMuon ( const int &  p)
inline

Definition at line 206 of file AtlasPID.h.

206 { return std::abs(p) == MUON;}

◆ isMuon() [2/2]

template<class T >
bool isMuon ( const T &  p)
inline

Definition at line 205 of file AtlasPID.h.

205 {return isMuon(p->pdg_id());}

◆ isNeutral() [1/3]

template<>
bool isNeutral ( const DecodedPID p)
inline

Definition at line 1086 of file AtlasPID.h.

1086 { return p.pid() != 0 && charge3(p) == 0;}

◆ isNeutral() [2/3]

template<>
bool isNeutral ( const int &  p)
inline

Definition at line 1087 of file AtlasPID.h.

1087 { auto value_digits = DecodedPID(p); return isNeutral(value_digits);}

◆ isNeutral() [3/3]

template<class T >
bool isNeutral ( const T &  p)
inline

Definition at line 1085 of file AtlasPID.h.

1085 { return p->pdg_id() != 0 && charge3(p) == 0;}

◆ isNeutrino() [1/2]

template<>
bool isNeutrino ( const int &  p)
inline

Definition at line 213 of file AtlasPID.h.

213 { auto sp = std::abs(p); return sp == NU_E || sp == NU_MU || sp == NU_TAU || sp == NUPRIME; }

◆ isNeutrino() [2/2]

template<class T >
bool isNeutrino ( const T &  p)
inline

APID: the fourth generation neutrinos are neutrinos.

Definition at line 212 of file AtlasPID.h.

212 {return isNeutrino(p->pdg_id());}

◆ isNeutrinoRH() [1/2]

template<>
bool isNeutrinoRH ( const int &  p)
inline

Definition at line 421 of file AtlasPID.h.

421 { return (std::abs(p) == RH_NU_E || std::abs(p) == RH_NU_MU|| std::abs(p) == RH_NU_TAU);}

◆ isNeutrinoRH() [2/2]

template<class T >
bool isNeutrinoRH ( const T &  p)
inline

PDG Rule 12: APID: Helper function for right-handed neutrino states These are generator defined PDG ID values for right handed neutrinos.

(Defined for some MadGraph+Pythia8 samples and referenced in MCTruthClassifierGen.cxx)

Definition at line 420 of file AtlasPID.h.

420 {return isNeutrinoRH(p->pdg_id());}

◆ isNucleus() [1/3]

template<>
bool isNucleus ( const DecodedPID p)
inline

Definition at line 703 of file AtlasPID.h.

703  {
704  if (std::abs(p.pid()) == PROTON) return true;
705  if (p.ndigits() != 10) return false;
706  // charge should always be less than or equal to baryon number
707  // the following line is A >= Z
708  const int A = p(8) + 10*p(7) + 100*p(6);
709  const int Z = p(5) + 10*p(4) + 100*p(3);
710  return ( A >= Z && p(0) == 1 && p(1) == 0 );
711 }

◆ isNucleus() [2/3]

template<>
bool isNucleus ( const int &  p)
inline

Definition at line 712 of file AtlasPID.h.

712 { auto value_digits = DecodedPID(p); return isNucleus(value_digits);}

◆ isNucleus() [3/3]

template<class T >
bool isNucleus ( const T &  p)
inline

PDG rule 16 Nuclear codes are given as 10-digit numbers ±10LZZZAAAI.

For a (hyper)nucleus consisting of n_p protons, n_n neutrons and n_Λ Λ’s: A = n_p + n_n + n_Λ gives the total baryon number, Z = n_p gives the total charge, L = n_Λ gives the total number of strange quarks. I gives the isomer level, with I= 0 corresponding to the ground state and I > 0 to excitations, see [http://www.nndc.bnl.gov/amdc/web/nubase en.html], where states denoted m, n, p ,q translate to I= 1–4. As examples, the deuteron is 1000010020 and 235U is 1000922350. To avoid ambiguities, nuclear codes should not be applied to a single hadron, like p, n or Λ^0, where quark-contents-based codes already exist.

Definition at line 702 of file AtlasPID.h.

702 {return isNucleus(p->pdg_id());}

◆ isParton()

template<class T >
bool isParton ( const T &  p)
inline

Definition at line 1103 of file AtlasPID.h.

1103 { return isQuark(p)||isGluon(p);}

◆ isPentaquark() [1/3]

template<>
bool isPentaquark ( const DecodedPID p)
inline

Definition at line 343 of file AtlasPID.h.

343  {
344  return (p.ndigits() == 9 && p(0) == 1 &&
345  p.max_digit(1,6) < QUARK_LIMIT && p.min_digit(1,6) > 0 && // ignore 4th generation (anti-)quarks
346  ( p(3) >= p(4) && p(4) >= p(5) && p(5) >= p(6)) );
347 }

◆ isPentaquark() [2/3]

template<>
bool isPentaquark ( const int &  p)
inline

Definition at line 348 of file AtlasPID.h.

348 { auto value_digits = DecodedPID(p); return isPentaquark(value_digits);}

◆ isPentaquark() [3/3]

template<class T >
bool isPentaquark ( const T &  p)
inline

PDG rule 15 The 9-digit penta-quark codes are ±1nrnLnq1nq2nq3nq4nq5nJ, sorted such that nq1≥nq2≥nq3≥nq4.

In the particle the first four are quarks and the fifth an antiquark while the opposite holds in the antiparticle, which is given with a negative sign. The nr, nL, and nJ numbers have the same meaning as for ordinary hadrons.

Definition at line 342 of file AtlasPID.h.

342 {return isPentaquark(p->pdg_id());}

◆ isPhoton() [1/2]

template<>
bool isPhoton ( const int &  p)
inline

Definition at line 377 of file AtlasPID.h.

377 { return p == PHOTON; }

◆ isPhoton() [2/2]

template<class T >
bool isPhoton ( const T &  p)
inline

Definition at line 376 of file AtlasPID.h.

376 {return isPhoton(p->pdg_id());}

◆ isPythia8Specific() [1/3]

template<>
bool isPythia8Specific ( const DecodedPID p)
inline

Definition at line 412 of file AtlasPID.h.

412 { return (p.ndigits() == 7 && p(0) == 9 && p(1) == 9);}

◆ isPythia8Specific() [2/3]

template<>
bool isPythia8Specific ( const int &  p)
inline

Definition at line 413 of file AtlasPID.h.

413 { auto value_digits = DecodedPID(p); return isPythia8Specific(value_digits);}

◆ isPythia8Specific() [3/3]

template<class T >
bool isPythia8Specific ( const T &  p)
inline

Definition at line 411 of file AtlasPID.h.

411 {return isPythia8Specific(p->pdg_id());}

◆ isQuark() [1/3]

template<>
bool isQuark ( const DecodedPID p)
inline

Definition at line 169 of file AtlasPID.h.

169 { return isQuark(p.pid()); }

◆ isQuark() [2/3]

template<>
bool isQuark ( const int &  p)
inline

Definition at line 168 of file AtlasPID.h.

168 { return p != 0 && (std::abs(p) <= TPRIME || std::abs(p) == MAVTOP);}

◆ isQuark() [3/3]

template<class T >
bool isQuark ( const T &  p)
inline

PDG rule 2: Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to do this they are first ordered by family and within families by weak isospin.

APID: the fourth generation quarks are quarks.

Definition at line 167 of file AtlasPID.h.

167 {return isQuark(p->pdg_id());}

◆ isQuarkonium() [1/3]

template<>
bool isQuarkonium ( const DecodedPID p)
inline

Definition at line 274 of file AtlasPID.h.

274  {
275  if (!isMeson(p)) return false; //< all quarkonia are mesons
276  return (*(p.second.rbegin() + 2) > SQUARK && p.last() > 0 && *(p.second.rbegin() + 1) == *(p.second.rbegin() + 2));
277 }

◆ isQuarkonium() [2/3]

template<>
bool isQuarkonium ( const int &  p)
inline

Definition at line 278 of file AtlasPID.h.

278 { auto value_digits = DecodedPID(p); return isQuarkonium(value_digits);}

◆ isQuarkonium() [3/3]

template<class T >
bool isQuarkonium ( const T &  p)
inline

Is this a heavy-flavour quarkonium meson?

Note
Original by LHCb in Rivet analysis LHCB_2016_I1504058
phi = s,sbar is not considered quarkonium

Definition at line 273 of file AtlasPID.h.

273 {return isQuarkonium(p->pdg_id());}

◆ isRBaryon() [1/3]

template<>
bool isRBaryon ( const DecodedPID p)
inline

Definition at line 590 of file AtlasPID.h.

590  {
591  if (!(p.ndigits() == 7 && (p(0) == 1 || p(0) == 2))) return false;
592  auto pp = p.shift(1);
593  return (
594  // Handle ~gluino-quark-quark-quark states
595  (pp.ndigits() == 5 && p(0) == 1 && pp(0) == COMPOSITEGLUON && pp.min_digit(1,4) > 0 && pp.max_digit(1,4) < QUARK_LIMIT && pp(2) <= pp(1) && pp(3) <= pp(2) && (pp.last() == 2 || pp.last() == 4)) ||
596  // Handle squark-quark-quark states (previously called Sbaryons)
597  (pp.ndigits() == 4 && pp.min_digit(1,4) > 0 && pp.max_digit(1,4) < QUARK_LIMIT && pp(1) <= pp(0) && pp(2) <= pp(1) && (pp.last() == 1 || pp.last() == 3))
598  );
599 }

◆ isRBaryon() [2/3]

template<>
bool isRBaryon ( const int &  p)
inline

Definition at line 600 of file AtlasPID.h.

600 { auto value_digits = DecodedPID(p); return isRBaryon(value_digits); }

◆ isRBaryon() [3/3]

template<class T >
bool isRBaryon ( const T &  p)
inline

Definition at line 589 of file AtlasPID.h.

589 { return isRBaryon(p->pdg_id()); }

◆ isResonance()

template<class T >
bool isResonance ( const T &  p)
inline

Definition at line 400 of file AtlasPID.h.

400 { return isZ(p) || isW(p) || isHiggs(p) || isTop(p); } // APID: not including t' (pdg_id=8), Z', Z'' and W'+ or BSM Higgs bosons

◆ isRGlueball() [1/3]

template<>
bool isRGlueball ( const DecodedPID p)
inline

Definition at line 563 of file AtlasPID.h.

563  {
564  if (p.ndigits() != 7 || p(0) != 1) return false;
565  auto pp = p.shift(1);
566  return
567  ( ( pp.ndigits() == 3 && pp(0) == COMPOSITEGLUON && pp(1) == COMPOSITEGLUON && (pp.last() == 1 || pp.last() == 3) ) ||
568  ( pp.ndigits() == 4 && pp(0) == COMPOSITEGLUON && pp(1) == COMPOSITEGLUON && pp(2) == COMPOSITEGLUON && (pp.last() == 1 || pp.last() == 5) ) );
569 }

◆ isRGlueball() [2/3]

template<>
bool isRGlueball ( const int &  p)
inline

Definition at line 570 of file AtlasPID.h.

570 { auto value_digits = DecodedPID(p); return isRGlueball(value_digits); }

◆ isRGlueball() [3/3]

template<class T >
bool isRGlueball ( const T &  p)
inline

PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles sufficiently long-lived for color-singlet hadronic states to form around them.

In the context of supersymmetric scenarios, these states are called R-hadrons, since they carry odd R- parity. R-hadron codes, defined here, should be viewed as templates for corresponding codes also in other scenarios, for any long-lived particle that is either an unflavored color octet or a flavored color triplet. The R-hadron code is obtained by combining the SUSY particle code with a code for the light degrees of freedom, with as many intermediate zeros removed from the former as required to make place for the latter at the end. (To exemplify, a sparticle n00000n˜q combined with quarks q1 and q2 obtains code n00n˜qnq1 nq2 nJ .) Specifically, the new-particle spin decouples in the limit of large masses, so that the final nJ digit is defined by the spin state of the light-quark system alone. An appropriate number of nq digits is used to define the ordinary-quark content. As usual, 9 rather than 21 is used to denote a gluon/gluino in composite states. The sign of the hadron agrees with that of the constituent new particle (a color triplet) where there is a distinct new antiparticle, and else is defined as for normal hadrons. Particle names are R with the flavor content as lower index. APID: Definition of R-Glueballs: 100099X (X=1,3), 100999Y (Y=1,5) APID: NB In the current numbering scheme, some states with 2 gluinos + gluon or 2 gluons + gluino could have degenerate PDG_IDs.

Definition at line 562 of file AtlasPID.h.

562 { return isRGlueball(p->pdg_id()); }

◆ isRHadron() [1/3]

template<>
bool isRHadron ( const DecodedPID p)
inline

Definition at line 604 of file AtlasPID.h.

604  {
605  return (isRBaryon(p) || isRMeson(p) || isRGlueball(p));
606 }

◆ isRHadron() [2/3]

template<>
bool isRHadron ( const int &  p)
inline

Definition at line 607 of file AtlasPID.h.

607 { auto value_digits = DecodedPID(p); return isRHadron(value_digits); }

◆ isRHadron() [3/3]

template<class T >
bool isRHadron ( const T &  p)
inline

Definition at line 603 of file AtlasPID.h.

603 { return isRHadron(p->pdg_id()); }

◆ isRMeson() [1/3]

template<>
bool isRMeson ( const DecodedPID p)
inline

Definition at line 575 of file AtlasPID.h.

575  {
576  if (!(p.ndigits() == 7 && (p(0) == 1 || p(0) == 2))) return false;
577  auto pp = p.shift(1);
578  return (
579  // Handle ~gluino-quark-antiquark states
580  (pp.ndigits() == 4 && p(0) == 1 && pp(0) == COMPOSITEGLUON && pp.min_digit(1,3) > 0 && pp.max_digit(1,3) < QUARK_LIMIT && pp(2) <= pp(1) && (pp.last() == 1 || pp.last() == 3)) ||
581  // Handle squark-antiquark states (previously called Smeson/mesoninos)
582  (pp.ndigits() == 3 && pp.min_digit(1,3) > 0 && pp.max_digit(1,3) < QUARK_LIMIT && pp(1) <= pp(0) && pp.last() == 2)
583  );
584 }

◆ isRMeson() [2/3]

template<>
bool isRMeson ( const int &  p)
inline

Definition at line 585 of file AtlasPID.h.

585 { auto value_digits = DecodedPID(p); return isRMeson(value_digits); }

◆ isRMeson() [3/3]

template<class T >
bool isRMeson ( const T &  p)
inline

Definition at line 574 of file AtlasPID.h.

574 { return isRMeson(p->pdg_id()); }

◆ isSlepton() [1/3]

template<>
bool isSlepton ( const DecodedPID p)
inline

Definition at line 483 of file AtlasPID.h.

483 { auto pp = p.shift(1); return (p.ndigits() == 7 && (p(0) == 1 || p(0) == 2) && isSMLepton(pp));}

◆ isSlepton() [2/3]

template<>
bool isSlepton ( const int &  p)
inline

Definition at line 484 of file AtlasPID.h.

484 { auto value_digits = DecodedPID(p); return isSlepton(value_digits);}

◆ isSlepton() [3/3]

template<class T >
bool isSlepton ( const T &  p)
inline

Definition at line 482 of file AtlasPID.h.

482 { return isSlepton(p->pdg_id()); }

◆ isSleptonLH() [1/3]

template<>
bool isSleptonLH ( const DecodedPID p)
inline

Definition at line 489 of file AtlasPID.h.

489  {
490  auto pp = p.shift(1); return (p.ndigits() == 7 && p(0) == 1 && isSMLepton(pp));
491 }

◆ isSleptonLH() [2/3]

template<>
bool isSleptonLH ( const int &  p)
inline

Definition at line 492 of file AtlasPID.h.

492 { auto value_digits = DecodedPID(p); return isSleptonLH(value_digits);}

◆ isSleptonLH() [3/3]

template<class T >
bool isSleptonLH ( const T &  p)
inline

Definition at line 488 of file AtlasPID.h.

488 { return isSleptonLH(p->pdg_id()); }

◆ isSleptonRH() [1/3]

template<>
bool isSleptonRH ( const DecodedPID p)
inline

Definition at line 497 of file AtlasPID.h.

497  {
498  auto pp = p.shift(1); return (p.ndigits() == 7 && p(0) == 2 && isSMLepton(pp));
499 }

◆ isSleptonRH() [2/3]

template<>
bool isSleptonRH ( const int &  p)
inline

Definition at line 500 of file AtlasPID.h.

500 { auto value_digits = DecodedPID(p); return isSleptonRH(value_digits);}

◆ isSleptonRH() [3/3]

template<class T >
bool isSleptonRH ( const T &  p)
inline

Definition at line 496 of file AtlasPID.h.

496 { return isSleptonRH(p->pdg_id()); }

◆ isSMLepton() [1/3]

template<>
bool isSMLepton ( const DecodedPID p)
inline

Definition at line 196 of file AtlasPID.h.

196 { return isSMLepton(p.pid()); }

◆ isSMLepton() [2/3]

template<>
bool isSMLepton ( const int &  p)
inline

Definition at line 195 of file AtlasPID.h.

195 { auto sp = std::abs(p); return sp >= ELECTRON && sp <= NU_TAU; }

◆ isSMLepton() [3/3]

template<class T >
bool isSMLepton ( const T &  p)
inline

APID: the fourth generation leptons are not standard model leptons.

Definition at line 194 of file AtlasPID.h.

194 {return isSMLepton(p->pdg_id());}

◆ isSMNeutrino() [1/2]

template<>
bool isSMNeutrino ( const int &  p)
inline

Definition at line 216 of file AtlasPID.h.

216 { auto sp = std::abs(p); return sp == NU_E || sp == NU_MU || sp == NU_TAU; }

◆ isSMNeutrino() [2/2]

template<class T >
bool isSMNeutrino ( const T &  p)
inline

Definition at line 215 of file AtlasPID.h.

215 {return isSMNeutrino(p->pdg_id());}

◆ isSMQuark() [1/3]

template<>
bool isSMQuark ( const DecodedPID p)
inline

Definition at line 174 of file AtlasPID.h.

174 { return isSMQuark(p.pid()); }

◆ isSMQuark() [2/3]

template<>
bool isSMQuark ( const int &  p)
inline

Definition at line 173 of file AtlasPID.h.

173 { return p != 0 && std::abs(p) <= TQUARK;}

◆ isSMQuark() [3/3]

template<class T >
bool isSMQuark ( const T &  p)
inline

Definition at line 172 of file AtlasPID.h.

172 {return isSMQuark(p->pdg_id());}

◆ isSquark() [1/3]

template<>
bool isSquark ( const DecodedPID p)
inline

Definition at line 459 of file AtlasPID.h.

459  {
460  auto pp = p.shift(1); return (p.ndigits() == 7 && (p(0) == 1 || p(0) == 2) && isSMQuark(pp));
461 }

◆ isSquark() [2/3]

template<>
bool isSquark ( const int &  p)
inline

Definition at line 462 of file AtlasPID.h.

462 { auto value_digits = DecodedPID(p); return isSquark(value_digits);}

◆ isSquark() [3/3]

template<class T >
bool isSquark ( const T &  p)
inline

PDG rule 11d Fundamental supersymmetric particles are identified by adding a nonzero n to the particle number.

The superpartner of a boson or a left-handed fermion has n = 1 while the superpartner of a right-handed fermion has n = 2. When mixing occurs, such as between the winos and charged Higgsinos to give charginos, or between left and right sfermions, the lighter physical state is given the smaller basis state number.

Definition at line 458 of file AtlasPID.h.

458 { return isSquark(p->pdg_id()); }

◆ isSquarkLH() [1/3]

template<>
bool isSquarkLH ( const DecodedPID p)
inline

Definition at line 467 of file AtlasPID.h.

467  {
468  auto pp = p.shift(1); return (p.ndigits() == 7 && p(0) == 1 && isSMQuark(pp));
469 }

◆ isSquarkLH() [2/3]

template<>
bool isSquarkLH ( const int &  p)
inline

Definition at line 470 of file AtlasPID.h.

470 { auto value_digits = DecodedPID(p); return isSquarkLH(value_digits);}

◆ isSquarkLH() [3/3]

template<class T >
bool isSquarkLH ( const T &  p)
inline

Definition at line 466 of file AtlasPID.h.

466 { return isSquarkLH(p->pdg_id()); }

◆ isSquarkRH() [1/3]

template<>
bool isSquarkRH ( const DecodedPID p)
inline

Definition at line 475 of file AtlasPID.h.

475  {
476  auto pp = p.shift(1); return (p.ndigits() == 7 && p(0) == 2 && isSMQuark(pp));
477 }

◆ isSquarkRH() [2/3]

template<>
bool isSquarkRH ( const int &  p)
inline

Definition at line 478 of file AtlasPID.h.

478 { auto value_digits = DecodedPID(p); return isSquarkRH(value_digits);}

◆ isSquarkRH() [3/3]

template<class T >
bool isSquarkRH ( const T &  p)
inline

Definition at line 474 of file AtlasPID.h.

474 { return isSquarkRH(p->pdg_id()); }

◆ isStrange() [1/2]

template<>
bool isStrange ( const int &  p)
inline

Definition at line 177 of file AtlasPID.h.

177 { return std::abs(p) == SQUARK;}

◆ isStrange() [2/2]

template<class T >
bool isStrange ( const T &  p)
inline

Definition at line 176 of file AtlasPID.h.

176 {return isStrange(p->pdg_id());}

◆ isStrangeBaryon()

template<class T >
bool isStrangeBaryon ( const T &  p)
inline

Definition at line 933 of file AtlasPID.h.

933 { return leadingQuark(p) == SQUARK && isBaryon(p); }

◆ isStrangeHadron()

template<class T >
bool isStrangeHadron ( const T &  p)
inline

Definition at line 910 of file AtlasPID.h.

910 { return leadingQuark(p) == SQUARK && isHadron(p); }

◆ isStrangeMeson()

template<class T >
bool isStrangeMeson ( const T &  p)
inline

Definition at line 917 of file AtlasPID.h.

917 { return leadingQuark(p) == SQUARK && isMeson(p); }

◆ isStrongInteracting() [1/2]

template<>
bool isStrongInteracting ( const int &  p)
inline

Definition at line 1179 of file AtlasPID.h.

1179 { return (isGluon(p) || isQuark(p) || isDiquark(p) || isGlueball(p) || isLeptoQuark(p) || isHadron(p) || isRHadron(p));} // APID: Glueballs and R-Hadrons are also strong-interacting

◆ isStrongInteracting() [2/2]

template<class T >
bool isStrongInteracting ( const T &  p)
inline

Definition at line 1178 of file AtlasPID.h.

1178 {return isStrongInteracting(p->pdg_id());}

◆ isSuperpartner() [1/3]

template<>
bool isSuperpartner ( const DecodedPID p)
inline

Definition at line 513 of file AtlasPID.h.

513  {
514  return isSlepton(p) || isSquark(p) || isGaugino(p);
515 }

◆ isSuperpartner() [2/3]

template<>
bool isSuperpartner ( const int &  p)
inline

Definition at line 516 of file AtlasPID.h.

516 { auto value_digits = DecodedPID(p); return isSuperpartner(value_digits);}

◆ isSuperpartner() [3/3]

template<class T >
bool isSuperpartner ( const T &  p)
inline

Definition at line 512 of file AtlasPID.h.

512 { return isSuperpartner(p->pdg_id()); }

◆ isSUSY() [1/3]

template<>
bool isSUSY ( const DecodedPID p)
inline

Definition at line 624 of file AtlasPID.h.

624 {return (isSuperpartner(p) || isRHadron(p));}

◆ isSUSY() [2/3]

template<>
bool isSUSY ( const int &  p)
inline

Definition at line 625 of file AtlasPID.h.

625 { auto value_digits = DecodedPID(p); return isSUSY(value_digits);}

◆ isSUSY() [3/3]

template<class T >
bool isSUSY ( const T &  p)
inline

Definition at line 623 of file AtlasPID.h.

623 {return isSUSY(p->pdg_id());}

◆ isTau() [1/2]

template<>
bool isTau ( const int &  p)
inline

Definition at line 209 of file AtlasPID.h.

209 { return std::abs(p) == TAU;}

◆ isTau() [2/2]

template<class T >
bool isTau ( const T &  p)
inline

Definition at line 208 of file AtlasPID.h.

208 {return isTau(p->pdg_id());}

◆ isTechnicolor() [1/3]

template<>
bool isTechnicolor ( const DecodedPID p)
inline

Definition at line 526 of file AtlasPID.h.

526  {
527  const auto& pp = (p.ndigits() == 7) ? p.shift(2) : DecodedPID(0);
528  return (p.ndigits() == 7 && p(0) == 3 && (p(1) == 0 || p(1) == 1) &&
529  (isQuark(pp) || isLepton(pp) || isBoson(pp) || isGlueball(pp) ||
530  isDiquark(pp) || isHadron(pp)));
531 }

◆ isTechnicolor() [2/3]

template<>
bool isTechnicolor ( const int &  p)
inline

Definition at line 532 of file AtlasPID.h.

532 { auto value_digits = DecodedPID(p); return isTechnicolor(value_digits);}

◆ isTechnicolor() [3/3]

template<class T >
bool isTechnicolor ( const T &  p)
inline

PDG rule 11e Technicolor states have n = 3, with technifermions treated like ordinary fermions.

States which are ordinary color singlets have n_r = 0. Color octets have n_r = 1. If a state has non-trivial quantum numbers under the topcolor groups SU(3)1×SU(3)2, the quantum numbers are specified by tech, ij, where i and j are 1 or 2. nLis then 2i+j. The coloron V8, is a heavy gluon color octet and thus is 3100021

Definition at line 524 of file AtlasPID.h.

524 {return isTechnicolor(p->pdg_id());}

◆ isTetraquark() [1/3]

template<>
bool isTetraquark ( const DecodedPID p)
inline

Definition at line 326 of file AtlasPID.h.

326  {
327  return (p.ndigits() == 9 && p(0) == 1 && p(5) == 0 &&
328  p.max_digit(1,3) < QUARK_LIMIT && p.min_digit(1,3) > 0 && // ignore 4th generation quarks for nq3 and nq4
329  p.max_digit(4,6) < QUARK_LIMIT && p.min_digit(4,6) > 0 && // ignore 4th generation quarks for nq1 and nq2
330  ( p(3) >= p(4) && p(6) >= p(7) ) && ( ( p(3) > p(6) ) || ( p(3) == p(6) && (p(4) >= p(7))))
331  );
332 }

◆ isTetraquark() [2/3]

template<>
bool isTetraquark ( const int &  p)
inline

Definition at line 333 of file AtlasPID.h.

333 { auto value_digits = DecodedPID(p); return isTetraquark(value_digits);}

◆ isTetraquark() [3/3]

template<class T >
bool isTetraquark ( const T &  p)
inline

PDG rule 14 The 9-digit tetra-quark codes are ±1nrnLnq1nq20nq3nq4nJ.

For the particle q1q2 is a diquark and ̄q3 ̄q4 an antidiquark, sorted such that nq1≥nq2, nq3≥nq4, nq1≥nq3, and nq2≥nq4 if nq1=nq3. For the antiparticle, given with a negative sign, ̄q1 ̄q2 is an antidiquark and q3q4 a diquark, with the same sorting except that either nq1>nq3 or nq2>nq4 (so that flavour-diagonal states are particles). The nr, nL, and nJ numbers have the same meaning as for ordinary hadrons. APID: states with fourth generation quarks are not tetraquarks

Definition at line 325 of file AtlasPID.h.

325 {return isTetraquark(p->pdg_id());}

◆ isTop() [1/2]

template<>
bool isTop ( const int &  p)
inline

Definition at line 186 of file AtlasPID.h.

186 { return std::abs(p) == TQUARK;}

◆ isTop() [2/2]

template<class T >
bool isTop ( const T &  p)
inline

Definition at line 185 of file AtlasPID.h.

185 {return isTop(p->pdg_id());}

◆ isTopBaryon()

template<class T >
bool isTopBaryon ( const T &  p)
inline

Definition at line 936 of file AtlasPID.h.

936 { return leadingQuark(p) == TQUARK && isBaryon(p); }

◆ isTopHadron()

template<class T >
bool isTopHadron ( const T &  p)
inline

Definition at line 913 of file AtlasPID.h.

913 { return leadingQuark(p) == TQUARK && isHadron(p); }

◆ isTopMeson()

template<class T >
bool isTopMeson ( const T &  p)
inline

Definition at line 920 of file AtlasPID.h.

920 { return leadingQuark(p) == TQUARK && isMeson(p); }

◆ isTrajectory() [1/2]

template<>
bool isTrajectory ( const int &  p)
inline

Definition at line 360 of file AtlasPID.h.

360 { return std::abs(p) == POMERON || std::abs(p) == ODDERON || std::abs(p) == REGGEON; }

◆ isTrajectory() [2/2]

template<class T >
bool isTrajectory ( const T &  p)
inline

PDG rule 8: The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD areassigned codes 990, 9990, and 110 respectively.

Definition at line 359 of file AtlasPID.h.

359 {return isTrajectory(p->pdg_id());}

◆ isTransportable() [1/3]

template<>
bool isTransportable ( const DecodedPID p)
inline

Definition at line 874 of file AtlasPID.h.

874 { return isPhoton(p.pid()) || isGeantino(p.pid()) || isHadron(p) || isLepton(p.pid()) || p.pid() == DARKPHOTON;}

◆ isTransportable() [2/3]

template<>
bool isTransportable ( const int &  p)
inline

Definition at line 875 of file AtlasPID.h.

875 { auto value_digits = DecodedPID(p); return isTransportable(value_digits);}

◆ isTransportable() [3/3]

template<class T >
bool isTransportable ( const T &  p)
inline

Definition at line 873 of file AtlasPID.h.

873 {return isTransportable(p->pdg_id());}

◆ isValid() [1/3]

template<>
bool isValid ( const DecodedPID p)
inline

Definition at line 879 of file AtlasPID.h.

879  {
880  return p.pid() !=0 && ( isQuark(p) || isLepton(p) || isBoson(p) || isGlueball(p) ||
881  isTrajectory(p.pid()) || isGenSpecific(p.pid()) || isDiquark(p) ||
882  isBSM(p) || isHadron(p) || isNucleus(p) || isGeantino(p.pid()) ||
883  isPythia8Specific(p) ); }

◆ isValid() [2/3]

template<>
bool isValid ( const int &  p)
inline

Definition at line 884 of file AtlasPID.h.

884  { if (!p) return false; if (std::abs(p) < 42) return true;
885  if (isGenSpecific(p)) return true;
886  auto value_digits = DecodedPID(p); return isValid(value_digits);
887 }

◆ isValid() [3/3]

template<class T >
bool isValid ( const T &  p)
inline

Av: we implement here an ATLAS-sepcific convention: all particles which are 99xxxxx are fine.

Definition at line 878 of file AtlasPID.h.

878 {return isValid(p->pdg_id());}

◆ isW() [1/2]

template<>
bool isW ( const int &  p)
inline

Definition at line 383 of file AtlasPID.h.

383 { return std::abs(p) == WPLUSBOSON; }

◆ isW() [2/2]

template<class T >
bool isW ( const T &  p)
inline

Definition at line 382 of file AtlasPID.h.

382 {return isW(p->pdg_id());}

◆ isWeaklyDecayingBHadron() [1/3]

template<>
bool isWeaklyDecayingBHadron ( const DecodedPID p)
inline

Definition at line 968 of file AtlasPID.h.

968 { return isWeaklyDecayingBHadron(p.pid()); }

◆ isWeaklyDecayingBHadron() [2/3]

template<>
bool isWeaklyDecayingBHadron ( const int &  p)
inline

Definition at line 943 of file AtlasPID.h.

943  {
944  const int pid = std::abs(p);
945  return ( pid == 511 || // B0
946  pid == 521 || // B+
947  pid == 531 || // B_s0
948  pid == 541 || // B_c+
949  pid == 5122 || // Lambda_b0
950  pid == 5132 || // Xi_b-
951  pid == 5232 || // Xi_b0
952  pid == 5112 || // Sigma_b-
953  pid == 5212 || // Sigma_b0
954  pid == 5222 || // Sigma_b+
955  pid == 5332 || // Omega_b-
956  pid == 5142 || // Xi_bc0
957  pid == 5242 || // Xi_bc+
958  pid == 5412 || // Xi'_bc0
959  pid == 5422 || // Xi'_bc+
960  pid == 5342 || // Omega_bc0
961  pid == 5432 || // Omega'_bc0
962  pid == 5442 || // Omega_bcc+
963  pid == 5512 || // Xi_bb-
964  pid == 5522 || // Xi_bb0
965  pid == 5532 || // Omega_bb-
966  pid == 5542 ); // Omega_bbc0
967 }

◆ isWeaklyDecayingBHadron() [3/3]

template<class T >
bool isWeaklyDecayingBHadron ( const T &  p)
inline

Definition at line 942 of file AtlasPID.h.

942 {return isWeaklyDecayingBHadron(p->pdg_id());}

◆ isWeaklyDecayingCHadron() [1/3]

template<>
bool isWeaklyDecayingCHadron ( const DecodedPID p)
inline

Definition at line 992 of file AtlasPID.h.

992 { return isWeaklyDecayingCHadron(p.pid()); }

◆ isWeaklyDecayingCHadron() [2/3]

template<>
bool isWeaklyDecayingCHadron ( const int &  p)
inline

Definition at line 978 of file AtlasPID.h.

978  {
979  const int pid = std::abs(p);
980  return ( pid == 411 || // D+
981  pid == 421 || // D0
982  pid == 431 || // Ds+
983  pid == 4122 || // Lambda_c+
984  pid == 4132 || // Xi_c0
985  pid == 4232 || // Xi_c+
986  pid == 4212 || // Xi_c0
987  pid == 4332 || // Omega_c0
988  pid == 4412 || // Xi_cc+
989  pid == 4422 || // Xi_cc++
990  pid == 4432 ); // Omega_cc+
991 }

◆ isWeaklyDecayingCHadron() [3/3]

template<class T >
bool isWeaklyDecayingCHadron ( const T &  p)
inline

Definition at line 977 of file AtlasPID.h.

977 {return isWeaklyDecayingCHadron(p->pdg_id());}

◆ isZ() [1/2]

template<>
bool isZ ( const int &  p)
inline

Definition at line 380 of file AtlasPID.h.

380 { return p == Z0BOSON; }

◆ isZ() [2/2]

template<class T >
bool isZ ( const T &  p)
inline

Definition at line 379 of file AtlasPID.h.

379 {return isZ(p->pdg_id());}

◆ leadingQuark() [1/3]

template<>
int leadingQuark ( const DecodedPID p)
inline

Definition at line 890 of file AtlasPID.h.

890  {
891  if (isQuark(p.pid())) { return std::abs(p.pid());}
892  if (isMeson(p)) { return p.max_digit(1,3);}
893  if (isDiquark(p)) { return p.max_digit(2,4);}
894  if (isBaryon(p)) { return p.max_digit(1,4);}
895  if (isTetraquark(p)) { return p.max_digit(1,5);}
896  if (isPentaquark(p)) { return p.max_digit(1,6);}
897  if (isSUSY(p)) { // APID SUSY case
898  auto pp = p.shift(1);
899  if ( pp.ndigits() == 1 ) { return 0; } // Handle squarks
900  if ( pp.ndigits() == 3 ) { pp = DecodedPID(pp(1)); } // Handle ~q qbar pairs
901  if ( pp.ndigits() > 3 ) { pp = pp.shift(1); } // Drop gluinos and squarks
902  return leadingQuark(pp); }
903  return 0;
904 }

◆ leadingQuark() [2/3]

template<>
int leadingQuark ( const int &  p)
inline

Definition at line 906 of file AtlasPID.h.

906 { auto value_digits = DecodedPID(p); return leadingQuark(value_digits);}

◆ leadingQuark() [3/3]

template<class T >
int leadingQuark ( const T &  p)
inline

Definition at line 889 of file AtlasPID.h.

889 {return leadingQuark(p->pdg_id());}

◆ numberOfLambdas() [1/3]

template<>
int numberOfLambdas ( const DecodedPID p)
inline

Definition at line 825 of file AtlasPID.h.

825  {
826  if (std::abs(p.pid()) == LAMBDA0) { return (p.pid() > 0) ? 1 : -1; }
827  if (isNucleus(p) && p.ndigits() == 10) { return (p.pid() > 0) ? p(2) : -p(2); }
828  return 0;
829 }

◆ numberOfLambdas() [2/3]

template<>
int numberOfLambdas ( const int &  p)
inline

Definition at line 830 of file AtlasPID.h.

830 { auto value_digits = DecodedPID(p); return numberOfLambdas(value_digits);}

◆ numberOfLambdas() [3/3]

template<class T >
int numberOfLambdas ( const T &  p)
inline

Definition at line 824 of file AtlasPID.h.

824 {return numberOfLambdas(p->pdg_id());}

◆ numberOfProtons() [1/3]

template<>
int numberOfProtons ( const DecodedPID p)
inline

Definition at line 834 of file AtlasPID.h.

834  {
835  if (std::abs(p.pid()) == PROTON) { return (p.pid() > 0) ? 1 : -1; }
836  if (isNucleus(p)) {
837  const int result = p(5) + 10*p(4) + 100*p(3);
838  return (p.pid() > 0) ? result : -result;
839  }
840  return 0;
841 }

◆ numberOfProtons() [2/3]

template<>
int numberOfProtons ( const int &  p)
inline

Definition at line 842 of file AtlasPID.h.

842 { auto value_digits = DecodedPID(p); return numberOfProtons(value_digits);}

◆ numberOfProtons() [3/3]

template<class T >
int numberOfProtons ( const T &  p)
inline

Definition at line 833 of file AtlasPID.h.

833 {return numberOfProtons(p->pdg_id());}

◆ spin() [1/3]

template<>
double spin ( const DecodedPID p)
inline

Definition at line 1148 of file AtlasPID.h.

1148 { return 1.0*spin2(p)/2.0; }

◆ spin() [2/3]

template<>
double spin ( const int &  p)
inline

Definition at line 1149 of file AtlasPID.h.

1149 { auto value_digits = DecodedPID(p); return spin(value_digits);}

◆ spin() [3/3]

template<class T >
double spin ( const T &  p)
inline

Definition at line 1147 of file AtlasPID.h.

1147 { return spin(p->pdg_id()); }

◆ spin2() [1/3]

template<>
int spin2 ( const DecodedPID p)
inline

Definition at line 1108 of file AtlasPID.h.

1108  {
1109  if (isSUSY(p)) {
1110  auto pp = p.shift(1);
1111  auto ap = std::abs(pp.pid());
1112  if (ap < TABLESIZE ) { return std::abs(double_spin.at(ap)-1); } // sparticles (0->1, 1 -> 0, 2->1, 4->3)
1113  return p.last()-1; // R-Hadrons (p.last() == 2J +1)
1114  }
1115  if (isHiddenValley(p)) { //Hidden Valley spins
1116  auto pp = p.shift(2);
1117  if (isHadron(pp)) { return pp.last()-1; } // Hadrons (p.last == 2J+1 - special cases handled above)
1118  }
1119  if (isKK(p)) { // Kaluza-Klein spins
1120  auto pp = p.shift(2);
1121  auto ap = std::abs(pp.pid());
1122  if (ap < TABLESIZE ) { return double_spin.at(ap); } // fundamental particles
1123  }
1124  if (isDM(std::abs(p.pid()))) { //DM spins
1125  if (p.ndigits() == 7) { // Determining the spins for the more elaborate, 7-digit DM codes
1126  auto pp = p.shift(3); // The first two digits indicate the particle is DM, the third indicates left/right-handedness (see 11(j))
1127  auto ap = std::abs(pp.pid());
1128  if (ap < TABLESIZE) { return double_spin.at(ap); } // fundamental particles
1129  }else if (std::abs(p.pid()) < TABLESIZE) { // Just to make sure the correct spin is returned for DM 51-60
1130  return std::abs(double_spin.at(std::abs(p.pid())));
1131  }
1132  }
1133  auto ap = std::abs(p.pid());
1134  if (ap == K0S) { return 0; }
1135  if (ap == K0L) { return 0; }
1136  if (ap == MAVTOP) { return 1; } // TODO check this
1137  if (ap == DARKPHOTON) { return 2; } // TODO check this
1138  if (ap < TABLESIZE ) { return double_spin.at(ap); } // fundamental particles
1139  if (isHadron(p)) { return p.last()-1; } // Hadrons (p.last == 2J+1 - special cases handled above)
1140  if (isMonopole(p)) { return 0; } // PDG 11i - For now no spin information is provided. Also matches the definition in the G4Extensions/Monopole package.
1141  if (isGenericMultichargedParticle(p)) { return 0; } // APID Matches the definition in the G4Extensions/Monopole package.
1142  if (isNucleus(p)) { return 1; } // TODO need to explicitly deal with nuclei
1143  return p.last() > 0 ? 1 : 0; // Anything else - best guess
1144 }

◆ spin2() [2/3]

template<>
int spin2 ( const int &  p)
inline

Definition at line 1145 of file AtlasPID.h.

1145 { auto value_digits = DecodedPID(p); return spin2(value_digits);}

◆ spin2() [3/3]

template<class T >
int spin2 ( const T &  p)
inline

Definition at line 1107 of file AtlasPID.h.

1107 { return spin2(p->pdg_id()); }

◆ strangeness() [1/3]

template<>
int strangeness ( const DecodedPID p)
inline

Definition at line 787 of file AtlasPID.h.

787  {
788  if (isNucleus(p) && p.ndigits() == 10) { return (p.pid() > 0) ? -p(2) : p(2); }
789  if (isStrange(p.pid())) { return (p.pid() > 0) ? -1 : 1; }
790  if (!hasStrange(p) && !hasSquark(p,SQUARK)) { return 0; }
791  if (std::abs(p.pid()) == K0) { return (p.pid() > 0) ? 1 : -1; }
792  size_t nq = 0;
793  int sign = 1;
794  int signmult = 1;
795  int result=0;
796  bool classified = false;
797  if (!classified && isMeson(p)) { classified = true; nq = 2; if ((*(p.second.rbegin()+2)) == 2||(*(p.second.rbegin()+2)) == 4 ) { sign=-1;} signmult =-1; }
798  if (!classified && isDiquark(p)) {return is_strange.at(p(0))+is_strange.at(p(1)); }
799  if (!classified && isBaryon(p)) { classified = true; nq = 3; }
800  if (!classified && isTetraquark(p)){ return is_strange.at(p(3)) + is_strange.at(p(4)) - is_strange.at(p(6)) - is_strange.at(p(7)); }
801  if (!classified && isPentaquark(p)){ return is_strange.at(p(3)) + is_strange.at(p(4)) + is_strange.at(p(5)) + is_strange.at(p(6)) - is_strange.at(p(7)); }
802  if (!classified && isSUSY(p)) {
803  nq = 0;
804  auto pp = p.shift(1);
805  if (pp.ndigits() < 3 ) { return strangeness(pp); } // super-partners of fundamental particles
806  if (pp(0) == COMPOSITEGLUON) {
807  if (pp(1) == COMPOSITEGLUON) { return 0; } // R-Glueballs
808  if ( pp.ndigits() == 4 || pp.ndigits() == 5) {
809  pp = pp.shift(1); // Remove gluino
810  }
811  }
812  if (pp.ndigits() == 3) { classified = true; nq = 2; if (p.last()%2==0) {sign = -1;} signmult = -1; } // states with quark-antiquark or squark-antiquark
813  if (pp.ndigits() == 4) { classified = true; nq = 3; } // states with quark-quark-quark or squark-quark-quark
814  }
815  for (auto r = p.second.rbegin() + 1; r != p.second.rbegin() + 1 + nq; ++r) {
816  result += is_strange.at(*r)*sign;
817  sign*=signmult;
818  }
819  return p.pid() > 0 ? result : -result;
820 }

◆ strangeness() [2/3]

template<>
int strangeness ( const int &  p)
inline

Definition at line 821 of file AtlasPID.h.

821 { auto value_digits = DecodedPID(p); return strangeness(value_digits);}

◆ strangeness() [3/3]

template<class T >
int strangeness ( const T &  p)
inline

Definition at line 786 of file AtlasPID.h.

786 {return strangeness(p->pdg_id());}

◆ threeCharge()

template<class T >
double threeCharge ( const T &  p)
inline

Definition at line 1003 of file AtlasPID.h.

1003 { return charge3(p);}
isStrange
bool isStrange(const T &p)
Definition: AtlasPID.h:176
beamspotman.r
def r
Definition: beamspotman.py:672
isGaugino
bool isGaugino(const T &p)
Definition: AtlasPID.h:504
isStrongInteracting
bool isStrongInteracting(const T &p)
Definition: AtlasPID.h:1178
isNucleus
bool isNucleus(const T &p)
PDG rule 16 Nuclear codes are given as 10-digit numbers ±10LZZZAAAI.
Definition: AtlasPID.h:702
get_generator_info.result
result
Definition: get_generator_info.py:21
isHeavyBoson
bool isHeavyBoson(const T &p)
APID: Additional "Heavy"/"prime" versions of W and Z bosons (Used in MCTruthClassifier)
Definition: AtlasPID.h:386
isTetraquark
bool isTetraquark(const T &p)
PDG rule 14 The 9-digit tetra-quark codes are ±1nrnLnq1nq20nq3nq4nJ.
Definition: AtlasPID.h:325
isRMeson
bool isRMeson(const T &p)
Definition: AtlasPID.h:574
find
std::string find(const std::string &s)
return a remapped string
Definition: hcg.cxx:135
isSleptonRH
bool isSleptonRH(const T &p)
Definition: AtlasPID.h:496
isBSM
bool isBSM(const T &p)
APID: graviton and all Higgs extensions are BSM.
Definition: AtlasPID.h:846
baryonNumber
double baryonNumber(const T &p)
Definition: AtlasPID.h:773
isHiddenValley
bool isHiddenValley(const T &p)
PDG rule 11k Hidden Valley particles have n = 4 and n_r = 9, and trailing numbers in agreement with t...
Definition: AtlasPID.h:668
isBoson
bool isBoson(const T &p)
PDG rule 9: Two-digit numbers in the range 21–30 are provided for the Standard Model gauge and Higgs ...
Definition: AtlasPID.h:369
isGenSpecific
bool isGenSpecific(const T &p)
Main Table for MC internal use 81–100,901–930,998-999,1901–1930,2901–2930, and 3901–3930.
Definition: AtlasPID.h:425
Monitored::Z
@ Z
Definition: HistogramFillerUtils.h:24
isMeson
bool isMeson(const T &p)
Table 43.1 PDG rule 5a: The numbers specifying the meson’s quark content conform to the convention nq...
Definition: AtlasPID.h:244
hasQuark
bool hasQuark(const T &p, const int &q)
isKK
bool isKK(const T &p)
PDG rule 11h A black hole in models with extra dimensions has code 5000040.
Definition: AtlasPID.h:635
isSquarkRH
bool isSquarkRH(const T &p)
Definition: AtlasPID.h:474
MuonGM::round
float round(const float toRound, const unsigned int decimals)
Definition: Mdt.cxx:27
isRGlueball
bool isRGlueball(const T &p)
PDG rule 11g: Within several scenarios of new physics, it is possible to have colored particles suffici...
Definition: AtlasPID.h:562
CaloClusterMLCalib::epsilon
constexpr float epsilon
Definition: CaloClusterMLGaussianMixture.h:16
numberOfLambdas
int numberOfLambdas(const T &p)
Definition: AtlasPID.h:824
isNeutrino
bool isNeutrino(const T &p)
APID: the fourth generation neutrinos are neutrinos.
Definition: AtlasPID.h:212
isSquark
bool isSquark(const T &p)
PDG rule 11d Fundamental supersymmetric particles are identified by adding a nonzero n to the particl...
Definition: AtlasPID.h:458
isSleptonLH
bool isSleptonLH(const T &p)
Definition: AtlasPID.h:488
isValid
bool isValid(const T &p)
Av: we implement here an ATLAS-sepcific convention: all particles which are 99xxxxx are fine.
Definition: AtlasPID.h:878
checkRpcDigits.digit
digit
Definition: checkRpcDigits.py:186
python.AtlRunQueryParser.ap
ap
Definition: AtlRunQueryParser.py:825
xAOD::Muon_v1
Class describing a Muon.
Definition: Muon_v1.h:38
isGenericMultichargedParticle
bool isGenericMultichargedParticle(const T &p)
In addition, there is a need to identify ”Q-ball” and similar very exotic (multi-charged) particles w...
Definition: AtlasPID.h:684
isSMQuark
bool isSMQuark(const T &p)
Definition: AtlasPID.h:172
isSMLepton
bool isSMLepton(const T &p)
APID: the fourth generation leptons are not standard model leptons.
Definition: AtlasPID.h:194
isGluon
bool isGluon(const T &p)
Definition: AtlasPID.h:373
isHiggs
bool isHiggs(const T &p)
APID: HIGGS boson is only one particle.
Definition: AtlasPID.h:390
fractionalCharge
double fractionalCharge(const T &p)
Definition: AtlasPID.h:996
isQuark
bool isQuark(const T &p)
PDG rule 2: Quarks and leptons are numbered consecutively starting from 1 and 11 respectively; to do ...
Definition: AtlasPID.h:167
A
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:209
isCCbarMeson
bool isCCbarMeson(const T &p)
Definition: AtlasPID.h:922
strangeness
int strangeness(const T &p)
Definition: AtlasPID.h:786
isBottom
bool isBottom(const T &p)
Definition: AtlasPID.h:182
lumiFormat.i
int i
Definition: lumiFormat.py:85
leadingQuark
int leadingQuark(const T &p)
Definition: AtlasPID.h:889
isPythia8Specific
bool isPythia8Specific(const T &p)
Definition: AtlasPID.h:411
isMonopole
bool isMonopole(const T &p)
PDG rule 11i Magnetic monopoles and dyons are assumed to have one unit of Dirac monopole charge and a...
Definition: AtlasPID.h:645
isWeaklyDecayingCHadron
bool isWeaklyDecayingCHadron(const T &p)
Definition: AtlasPID.h:977
isZ
bool isZ(const T &p)
Definition: AtlasPID.h:379
isPentaquark
bool isPentaquark(const T &p)
PDG rule 15 The 9-digit penta-quark codes are ±1nrnLnq1nq2nq3nq4nq5nJ, sorted such that nq1≥nq2≥nq3≥n...
Definition: AtlasPID.h:342
isGlueball
bool isGlueball(const T &p)
APID: Definition of Glueballs: SM glueballs 99X (X=1,5), 999Y (Y=3,7)
Definition: AtlasPID.h:441
isSuperpartner
bool isSuperpartner(const T &p)
Definition: AtlasPID.h:512
ParticleGun_EoverP_Config.pid
pid
Definition: ParticleGun_EoverP_Config.py:62
sign
int sign(int a)
Definition: TRT_StrawNeighbourSvc.h:108
isBBbarMeson
bool isBBbarMeson(const T &p)
Definition: AtlasPID.h:926
isNeutral
bool isNeutral(const T &p)
Definition: AtlasPID.h:1085
hasStrange
bool hasStrange(const T &p)
Definition: AtlasPID.h:736
isChLepton
bool isChLepton(const T &p)
APID: the fourth generation leptons are leptons.
Definition: AtlasPID.h:199
isSUSY
bool isSUSY(const T &p)
Definition: AtlasPID.h:623
isTau
bool isTau(const T &p)
Definition: AtlasPID.h:208
isGraviton
bool isGraviton(const T &p)
Definition: AtlasPID.h:397
isDM
bool isDM(const T &p)
PDG rule 11j: The nature of Dark Matter (DM) is not known, and therefore a definitive classificationi...
Definition: AtlasPID.h:658
DecodedPID
Implementation of classification functions according to PDG2022.
Definition: AtlasPID.h:16
isExcited
bool isExcited(const T &p)
PDG rule 11f Excited (composite) quarks and leptons are identified by setting n= 4 and nr= 0.
Definition: AtlasPID.h:536
isHadron
bool isHadron(const T &p)
Definition: AtlasPID.h:351
isNeutrinoRH
bool isNeutrinoRH(const T &p)
PDG Rule 12: APID: Helper function for right-handed neutrino states These are generator defined PDG I...
Definition: AtlasPID.h:420
charge
double charge(const T &p)
Definition: AtlasPID.h:997
isBaryon
bool isBaryon(const T &p)
Table 43.2 APID: states with fourth generation quarks are not baryons.
Definition: AtlasPID.h:282
isGeantino
bool isGeantino(const T &p)
Definition: AtlasPID.h:437
isSlepton
bool isSlepton(const T &p)
Definition: AtlasPID.h:482
isWeaklyDecayingBHadron
bool isWeaklyDecayingBHadron(const T &p)
Definition: AtlasPID.h:942
isFourthGeneration
bool isFourthGeneration(const T &p)
Is this a 4th generation fermion? APID: 4th generation fermions are not standard model particles.
Definition: AtlasPID.h:220
spin2
int spin2(const T &p)
Definition: AtlasPID.h:1107
isW
bool isW(const T &p)
Definition: AtlasPID.h:382
isRBaryon
bool isRBaryon(const T &p)
Definition: AtlasPID.h:589
isTop
bool isTop(const T &p)
Definition: AtlasPID.h:185
isTransportable
bool isTransportable(const T &p)
Definition: AtlasPID.h:873
numberOfProtons
int numberOfProtons(const T &p)
Definition: AtlasPID.h:833
isLepton
bool isLepton(const T &p)
APID: the fourth generation leptons are leptons.
Definition: AtlasPID.h:189
isCharm
bool isCharm(const T &p)
Definition: AtlasPID.h:179
isPhoton
bool isPhoton(const T &p)
Definition: AtlasPID.h:376
charge3
int charge3(const T &p)
Definition: AtlasPID.h:995
hasSquark
bool hasSquark(const T &p, const int &q)
Definition: AtlasPID.h:610
isSquarkLH
bool isSquarkLH(const T &p)
Definition: AtlasPID.h:466
isSMNeutrino
bool isSMNeutrino(const T &p)
Definition: AtlasPID.h:215
isRHadron
bool isRHadron(const T &p)
Definition: AtlasPID.h:603
extractSporadic.q
list q
Definition: extractSporadic.py:97
isQuarkonium
bool isQuarkonium(const T &p)
Is this a heavy-flavour quarkonium meson?
Definition: AtlasPID.h:273
isTechnicolor
bool isTechnicolor(const T &p)
PDG rule 11e Technicolor states have n = 3, with technifermions treated like ordinary fermions.
Definition: AtlasPID.h:524
isTrajectory
bool isTrajectory(const T &p)
PDG rule 8: The pomeron and odderon trajectories and a generic reggeon trajectory of states in QCD ar...
Definition: AtlasPID.h:359
isElectron
bool isElectron(const T &p)
Definition: AtlasPID.h:202
isDiquark
bool isDiquark(const T &p)
PDG rule 4 Diquarks have 4-digit numbers with nq1 >= nq2 and nq3 = 0 APID: states with top quarks are...
Definition: AtlasPID.h:227
baryonNumber3
int baryonNumber3(const T &p)
Definition: AtlasPID.h:748
isEMInteracting
bool isEMInteracting(const T &p)
Definition: AtlasPID.h:1100
containedQuarks
std::vector< int > containedQuarks(const T &p)
Definition: AtlasPID.h:1153
spin
double spin(const T &p)
Definition: AtlasPID.h:1147
isMSSMHiggs
bool isMSSMHiggs(const T &p)
APID: Additional Higgs bosons for MSSM (Used in MCTruthClassifier)
Definition: AtlasPID.h:394
python.SystemOfUnits.L
float L
Definition: SystemOfUnits.py:92
isMuon
bool isMuon(const T &p)
Definition: AtlasPID.h:205
isLeptoQuark
bool isLeptoQuark(const T &p)
PDG rule 11c: “One-of-a-kind” exotic particles are assigned numbers in the range 41–80.
Definition: AtlasPID.h:408