ATLAS Offline Software
Loading...
Searching...
No Matches
util.convertXGBoostToRootTree Namespace Reference

Classes

class  XBGoostTextNode

Functions

 dump_tree (tree_structure)
 dump2ROOT (model, output_filename, output_treename='xgboost')
 convertXGBoostToRootTree (model, output_filename, tree_name='xgboost')
 test (model_file, tree_file, objective, tree_name='xgboost', ntests=10000, test_file=None)
 test_regression (booster, mva_utils, objective, ntests=10000, test_file=None)
 test_binary (booster, mva_utils, objective, ntests=10000, test_file=None)
 test_multiclass (booster, mva_utils, objective, ntests=10000, test_file=None)
 check_file (fn)

Variables

str __author__ = "Yuan-Tang Chou"
 level
 parser = argparse.ArgumentParser(description=__doc__)
 help
 type
 str
 default
 action
 int
 args = parser.parse_args()
list supported_objective = ['binary:logistic', 'reg:linear', 'reg:squarederror','multi:softprob']
 output_treename = convertXGBoostToRootTree(args.input, args.output, args.tree_name)
 result = test(args.input, args.output, args.objective, args.tree_name, args.ntests, args.test_file)
 objective = args.objective
 data = np.load(args.test_file)

Detailed Description

Convert XGBoost model to TTree to be used with MVAUtils. 

Function Documentation

◆ check_file()

util.convertXGBoostToRootTree.check_file ( fn)

Definition at line 279 of file convertXGBoostToRootTree.py.

279def check_file(fn):
280 f = ROOT.TFile.Open(fn)
281 keys = f.GetListOfKeys()
282 keys = list(keys)
283 if len(keys) != 1:
284 logging.info("file %s is empty", fn)
285 return False
286 tree = f.Get(keys[0].GetName())
287 if type(tree) is not ROOT.TTree:
288 logging.info("cannot find TTree in file %s", fn)
289 return False
290 if not tree.GetEntries():
291 logging.info("tree is empty")
292 return False
293 return True
294
295

◆ convertXGBoostToRootTree()

util.convertXGBoostToRootTree.convertXGBoostToRootTree ( model,
output_filename,
tree_name = 'xgboost' )
Model: - a string, in this case, it is the name of the input file containing the xgboost model
         you can get this model with xgboost with `bst.save_model('my_model.model')
       - directly a xgboost booster object

Definition at line 133 of file convertXGBoostToRootTree.py.

133def convertXGBoostToRootTree(model, output_filename, tree_name='xgboost'):
134 """
135 Model: - a string, in this case, it is the name of the input file containing the xgboost model
136 you can get this model with xgboost with `bst.save_model('my_model.model')
137 - directly a xgboost booster object
138 """
139 if type(model) is str:
140 bst = xgb.Booster()
141 bst.load_model(model)
142 return dump2ROOT(bst, output_filename, tree_name)
143 else:
144 return dump2ROOT(model, output_filename, tree_name)
145
146

◆ dump2ROOT()

util.convertXGBoostToRootTree.dump2ROOT ( model,
output_filename,
output_treename = 'xgboost' )

Definition at line 93 of file convertXGBoostToRootTree.py.

93def dump2ROOT(model, output_filename, output_treename='xgboost'):
94 model.dump_model('dump_model.json', dump_format='json')
95 with open('dump_model.json', 'r') as dump_json:
96 model_dump = dump_json.read()
97 trees = json.loads(model_dump)
98 fout = ROOT.TFile.Open(output_filename, 'recreate')
99
100 features_array = ROOT.std.vector('int')()
101 values_array = ROOT.std.vector('float')()
102 default_lefts_array = ROOT.std.vector('bool')()
103
104 title = 'creator=xgboost'
105 root_tree = ROOT.TTree(output_treename, title)
106 root_tree.Branch('vars', 'vector<int>', ROOT.AddressOf(features_array))
107 root_tree.Branch('values', 'vector<float>', ROOT.AddressOf(values_array))
108 root_tree.Branch('default_left', 'vector<bool>', ROOT.AddressOf(default_lefts_array))
109
110 logging.info("tree support nan: using XGBoost implementation")
111
112 for tree in trees:
113 tree_structure = tree
114 features, values, default_lefts = dump_tree(tree_structure)
115
116 features_array.clear()
117 values_array.clear()
118 default_lefts_array.clear()
119
120 for value in values:
121 values_array.push_back(value)
122 for feature in features:
123 features_array.push_back(feature)
124 for default_left in default_lefts:
125 default_lefts_array.push_back(default_left)
126
127 root_tree.Fill()
128
129 root_tree.Write()
130 fout.Close()
131 return output_treename
132

◆ dump_tree()

util.convertXGBoostToRootTree.dump_tree ( tree_structure)
dump a single decision tree to arrays to be written into the TTree

Definition at line 67 of file convertXGBoostToRootTree.py.

67def dump_tree(tree_structure):
68 """
69 dump a single decision tree to arrays to be written into the TTree
70 """
71
72 split_values = []
73 split_features = []
74 default_left = []
75 top = XBGoostTextNode(tree_structure)
76
77 def preorder(node):
78 # visit root
79 split_features.append(node.get_split_feature())
80 split_values.append(node.get_value())
81 default_left.append(node.get_default_left())
82
83 # visit (yes)left
84 if node.get_left() is not None:
85 preorder(node.get_left())
86 # visit (no)right
87 if node.get_right() is not None:
88 preorder(node.get_right())
89
90 preorder(top)
91 return split_features, split_values, default_left
92

◆ test()

util.convertXGBoostToRootTree.test ( model_file,
tree_file,
objective,
tree_name = 'xgboost',
ntests = 10000,
test_file = None )

Definition at line 147 of file convertXGBoostToRootTree.py.

147def test(model_file, tree_file, objective, tree_name='xgboost', ntests=10000, test_file=None):
148 bst = xgb.Booster()
149 bst.load_model(model_file)
150 f = ROOT.TFile.Open(tree_file)
151 tree = f.Get(tree_name)
152 try:
153 _ = ROOT.MVAUtils.BDT
154 except Exception:
155 print("cannot import MVAUtils")
156 return None
157
158 mva_utils = ROOT.MVAUtils.BDT(tree)
159
160 if 'binary' in objective:
161 logging.info("testing binary")
162 return test_binary(bst, mva_utils, objective, ntests, test_file)
163 elif 'multi' in objective:
164 logging.info("testing multi-class")
165 return test_multiclass(bst,mva_utils, objective, ntests, test_file)
166 else:
167 logging.info("testing regression")
168 return test_regression(bst, mva_utils, objective, ntests, test_file)
169
void print(char *figname, TCanvas *c1)

◆ test_binary()

util.convertXGBoostToRootTree.test_binary ( booster,
mva_utils,
objective,
ntests = 10000,
test_file = None )

Definition at line 206 of file convertXGBoostToRootTree.py.

206def test_binary(booster, mva_utils, objective, ntests=10000, test_file=None):
207 import numpy as np
208 logging.info("Testing input features with binary classification")
209 if test_file is not None:
210 data_input = np.load(test_file)
211 logging.info("using as input %s inputs from file %s", len(data_input), test_file)
212 else:
213 logging.error("Please provide an input test file for testing")
214
215 start = time.time()
216 dTest = xgb.DMatrix(data_input)
217 results_xgboost = booster.predict(dTest)
218 logging.info("xgboost (vectorized) timing = %s ms/input", (time.time() - start) * 1000 / len(data_input))
219
220 input_values_vector = ROOT.std.vector("float")()
221 results_MVAUtils = []
222 start = time.time()
223 for input_values in data_input:
224 input_values_vector.clear()
225 for v in input_values:
226 input_values_vector.push_back(v)
227 output_MVAUtils = mva_utils.GetClassification(input_values_vector)
228 results_MVAUtils.append(output_MVAUtils)
229 logging.info("mvautils (not vectorized+overhead) timing = %s ms/input", (time.time() - start) * 1000 / len(data_input))
230
231 for input_values, output_xgb, output_MVAUtils in zip(data_input, results_xgboost, results_MVAUtils):
232 if not np.allclose(output_xgb, output_MVAUtils):
233 logging.info("output are different:"
234 "mvautils: %s\n"
235 "xgboost: %s\n"
236 "inputs: %s", output_MVAUtils, output_xgb, input_values)
237 return False
238 return True
239

◆ test_multiclass()

util.convertXGBoostToRootTree.test_multiclass ( booster,
mva_utils,
objective,
ntests = 10000,
test_file = None )

Definition at line 240 of file convertXGBoostToRootTree.py.

240def test_multiclass(booster, mva_utils, objective, ntests=10000, test_file=None):
241 import numpy as np
242 logging.info("using multiclass model")
243
244 if test_file is not None:
245 data_input = np.load(test_file)
246 logging.info("using as input %s inputs from file %s", len(data_input), test_file)
247 else:
248 logging.error("Please provide an input test file for testing")
249
250 start = time.time()
251 dTest = xgb.DMatrix(data_input)
252 results_xgboost = booster.predict(dTest)
253
254 nclasses = results_xgboost.shape[1]
255 logging.info("xgboost (vectorized) timing = %s ms/input", (time.time() - start) * 1000 / len(data_input))
256
257 input_values_vector = ROOT.std.vector("float")()
258 results_MVAUtils = []
259 start = time.time()
260 for input_values in data_input:
261 input_values_vector.clear()
262 for v in input_values:
263 input_values_vector.push_back(v)
264 output_MVAUtils = mva_utils.GetMultiResponse(input_values_vector, nclasses)
265 results_MVAUtils.append(output_MVAUtils)
266
267 logging.info("mvautils (not vectorized+overhead) timing = %s ms/input", (time.time() - start) * 1000 / len(data_input))
268
269 for input_values, output_xgb, output_MVAUtils in zip(data_input, results_xgboost, results_MVAUtils):
270 if not np.allclose(output_xgb, output_MVAUtils):
271 logging.info("output are different:"
272 "mvautils: %s\n"
273 "xgboost: %s\n"
274 "inputs: %s", output_MVAUtils, output_xgb, input_values)
275 return False
276 return True
277
278

◆ test_regression()

util.convertXGBoostToRootTree.test_regression ( booster,
mva_utils,
objective,
ntests = 10000,
test_file = None )

Definition at line 170 of file convertXGBoostToRootTree.py.

170def test_regression(booster, mva_utils, objective, ntests=10000, test_file=None):
171 import numpy as np
172 logging.info("Tesing input features with regression")
173
174 if test_file is not None:
175 data_input = np.load(test_file)
176 logging.info("using as input %s inputs from file %s", len(data_input), test_file)
177 else:
178 logging.error("Please provide an input test file for testing")
179
180 start = time.time()
181 dTest = xgb.DMatrix(data_input)
182 results_xgboost = booster.predict(dTest)
183 logging.info("xgboost (vectorized) timing = %s ms/input", (time.time() - start) * 1000 / len(data_input))
184
185 input_values_vector = ROOT.std.vector("float")()
186 results_MVAUtils = []
187 start = time.time()
188 for input_values in data_input:
189 input_values_vector.clear()
190 for v in input_values:
191 input_values_vector.push_back(v)
192 output_MVAUtils = mva_utils.GetResponse(input_values_vector)
193 results_MVAUtils.append(output_MVAUtils)
194 logging.info("mvautils (not vectorized+overhead) timing = %s ms/input", (time.time() - start) * 1000 / len(data_input))
195
196 for input_values, output_xgb, output_MVAUtils in zip(data_input, results_xgboost, results_MVAUtils):
197 if not np.allclose(output_xgb, output_MVAUtils, rtol=1E-4):
198 logging.info("output are different:"
199 "mvautils: %s\n"
200 "xgboost: %s\n"
201 "inputs: %s", output_MVAUtils, output_xgb, input_values)
202 return False
203 return True
204
205

Variable Documentation

◆ __author__

str util.convertXGBoostToRootTree.__author__ = "Yuan-Tang Chou"
private

Definition at line 7 of file convertXGBoostToRootTree.py.

◆ action

util.convertXGBoostToRootTree.action

Definition at line 303 of file convertXGBoostToRootTree.py.

◆ args

util.convertXGBoostToRootTree.args = parser.parse_args()

Definition at line 308 of file convertXGBoostToRootTree.py.

◆ data

util.convertXGBoostToRootTree.data = np.load(args.test_file)

Definition at line 346 of file convertXGBoostToRootTree.py.

◆ default

util.convertXGBoostToRootTree.default

Definition at line 301 of file convertXGBoostToRootTree.py.

◆ help

util.convertXGBoostToRootTree.help

Definition at line 300 of file convertXGBoostToRootTree.py.

◆ int

util.convertXGBoostToRootTree.int

Definition at line 304 of file convertXGBoostToRootTree.py.

◆ level

util.convertXGBoostToRootTree.level

Definition at line 20 of file convertXGBoostToRootTree.py.

◆ objective

util.convertXGBoostToRootTree.objective = args.objective

Definition at line 344 of file convertXGBoostToRootTree.py.

◆ output_treename

util.convertXGBoostToRootTree.output_treename = convertXGBoostToRootTree(args.input, args.output, args.tree_name)

Definition at line 329 of file convertXGBoostToRootTree.py.

◆ parser

util.convertXGBoostToRootTree.parser = argparse.ArgumentParser(description=__doc__)

Definition at line 299 of file convertXGBoostToRootTree.py.

◆ result

util.convertXGBoostToRootTree.result = test(args.input, args.output, args.objective, args.tree_name, args.ntests, args.test_file)

Definition at line 339 of file convertXGBoostToRootTree.py.

◆ str

util.convertXGBoostToRootTree.str

Definition at line 301 of file convertXGBoostToRootTree.py.

◆ supported_objective

list util.convertXGBoostToRootTree.supported_objective = ['binary:logistic', 'reg:linear', 'reg:squarederror','multi:softprob']

Definition at line 312 of file convertXGBoostToRootTree.py.

◆ type

util.convertXGBoostToRootTree.type

Definition at line 301 of file convertXGBoostToRootTree.py.