ATLAS Offline Software
Public Types | Public Member Functions | Public Attributes | List of all members
EfexLatomeFibrePacker Class Reference

#include <EfexLatomeFibrePacker.h>

Inheritance diagram for EfexLatomeFibrePacker:
Collaboration diagram for EfexLatomeFibrePacker:

Public Types

enum  InputDataFrameType { InputDataFrameType::Normal, InputDataFrameType::Alignement }
 type of input data frame More...
 
using myDataWord = uint32_t
 

Public Member Functions

 EfexLatomeFibrePacker ()
 Class implementing packing and unpacking data into LAr LATOME eFex format. More...
 
virtual ~EfexLatomeFibrePacker ()
 
virtual std::vector< myDataWordgetPackedData (const std::vector< myDataWord > &inFrame, myDataWord bcNumber, InputDataFrameType frameType) const override
 Function packing the data into the LATOME format, either standard or alignement frame. More...
 
virtual std::vector< myDataWordgetPackedControl (const std::vector< myDataWord > &inFrame, myDataWord bcNumber, InputDataFrameType frameType) const override
 Function returning control words. More...
 
virtual bool checkCRC (const std::vector< myDataWord > &encodedData, InputDataFrameType frameType) const override
 
virtual myDataWord getBcNumber (const std::vector< myDataWord > &encodedData, InputDataFrameType frameType) const override
 
virtual myDataWord getBcMask (InputDataFrameType frameType) const override
 
virtual std::vector< myDataWordgetUnpackedData (const std::vector< myDataWord > &encodedData, InputDataFrameType frameType) const override
 Function unpacking the data from LATOME format, either standard or alignement frame. More...
 
virtual myDataWord crc9full (const std::vector< myDataWord > &inwords, size_t num_bits) const
 Functions calculating CRC over input data. More...
 
virtual myDataWord crc9d32 (const std::vector< myDataWord > &inwords, size_t num_words, bool bit_reverse) const
 
virtual myDataWord crc9d23 (myDataWord inword, myDataWord in_crc, bool bit_reverse) const
 

Public Attributes

myDataWord K_28_5 = 0xbc
 
myDataWord K_28_1 = 0x3c
 
myDataWord K_28_0 = 0x1c
 

Detailed Description

Definition at line 10 of file EfexLatomeFibrePacker.h.

Member Typedef Documentation

◆ myDataWord

using FibrePackerBase::myDataWord = uint32_t
inherited

Definition at line 25 of file FibrePackerBase.h.

Member Enumeration Documentation

◆ InputDataFrameType

type of input data frame

Enumerator
Normal 

Standard data frame.

Alignement 

Special mapping/alignement frame.

Definition at line 37 of file FibrePackerBase.h.

37  {
38  Normal,
39  Alignement
40  };

Constructor & Destructor Documentation

◆ EfexLatomeFibrePacker()

EfexLatomeFibrePacker::EfexLatomeFibrePacker ( )
inline

Class implementing packing and unpacking data into LAr LATOME eFex format.

The class does heavy lifting of packing and unpacking LATOME data packet. The format is taken from https://gitlab.cern.ch/atlas-lar-be-firmware/LATOME/LATOME/raw/master/LATOME/doc/LAr-LATOME-FW/LAr-LATOME-FW.pdf version from 29th of January 2020

Definition at line 21 of file EfexLatomeFibrePacker.h.

21 {}

◆ ~EfexLatomeFibrePacker()

virtual EfexLatomeFibrePacker::~EfexLatomeFibrePacker ( )
inlinevirtual

Definition at line 22 of file EfexLatomeFibrePacker.h.

22 {}

Member Function Documentation

◆ checkCRC()

bool EfexLatomeFibrePacker::checkCRC ( const std::vector< myDataWord > &  encodedData,
InputDataFrameType  frameType 
) const
overridevirtual

Implements FibrePackerBase.

Definition at line 110 of file EfexLatomeFibrePacker.cxx.

111  {
112 
113  auto inputData = encodedData;
114  myDataWord CRCCheck = 0;
115 
116  // Comment SJH: why do we need two cases here
117  // (may have been different originally, but not now?)
118  switch(frameType){
119 
120  case InputDataFrameType::Normal: // one K character in first data word
121  inputData.at(0) = inputData.at(0) & 0xffffff00;
122  // old code
123  // CRCCheck = crc9d32(inputData,7l,true); // calculate CRC32 on first 6 words
124  // new code
125  CRCCheck = crc9full(inputData,224); // calculate CRC on 224 bits = 7*32 bit words
126  break;
127 
128  case InputDataFrameType::Alignement: // two K characters in first data word, but zeroing only the first one
129  inputData.at(0) = inputData.at(0) & 0xffffff00;
130  // old code
131  // CRCCheck = crc9d32(inputData,7l,true); // calculate CRC32 on first 6 words
132  // new code
133  CRCCheck = crc9full(inputData,224); // calculate CRC on 224 bits = 7*32 bit words
134  break;
135 
136  }
137 
138  return (CRCCheck == 0);
139 }

◆ crc9d23()

FibrePackerBase::myDataWord FibrePackerBase::crc9d23 ( FibrePackerBase::myDataWord  inword,
myDataWord  in_crc,
bool  bit_reverse 
) const
virtualinherited

CRC9D23 as specified in LAr VHDL

Function does CRC9D23 calculation. Thanslated from LATOME VHDL to python by Ed Flaherty, then to c++ by jb

Definition at line 111 of file FibrePackerBase.cxx.

111  {
112 
121  long int mask = 0x00000001;
122  long int crc_word = 0x000;
123 
124 
125  //d_in_s is a '23-bit input word'
126 
127  std::vector<long int> d_in_s(23,0);
128  std::vector<long int> crc_in_s(9,0);
129  std::vector<long int> crc_r(9,0);
130 
131  // crc calculation
132 
133  if (bit_reverse){
134 
135  for(int i=0; i!= 23; i++){
136  d_in_s[22-i] = inword & (mask << i);
137  d_in_s[22-i] = d_in_s[22-i] >> i;
138  }
139 
140  for(int i=0; i!= 9; i++){
141  crc_in_s[8-i] = in_crc & (mask << i);
142  crc_in_s[8-i] = crc_in_s[8-i] >> i;
143  }
144 
145  } else {
146 
147  for(int i=0; i!= 23; i++){
148  d_in_s[i] = inword & (mask << i);
149  d_in_s[i] = d_in_s[i] >> i;
150  }
151 
152  for(int i=0; i!= 9; i++){
153  crc_in_s[i] = in_crc & (mask << i);
154  crc_in_s[i] = crc_in_s[i] >> i;
155  }
156  }
157 
158  crc_r[0] = crc_in_s[1] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[6] ^ crc_in_s[7] ^ crc_in_s[8] ^ d_in_s[0] ^ d_in_s[2] ^ d_in_s[3] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[11] ^ d_in_s[15] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[20] ^ d_in_s[21] ^ d_in_s[22];
159  crc_r[1] = crc_in_s[1] ^ crc_in_s[2] ^ crc_in_s[4] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[12] ^ d_in_s[15] ^ d_in_s[16] ^ d_in_s[18];
160  crc_r[2] = crc_in_s[2] ^ crc_in_s[3] ^ crc_in_s[5] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[3] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[13] ^ d_in_s[16] ^ d_in_s[17] ^ d_in_s[19];
161  crc_r[3] = crc_in_s[0] ^ crc_in_s[1] ^ crc_in_s[3] ^ crc_in_s[5] ^ crc_in_s[7] ^ crc_in_s[8] ^ d_in_s[0] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[11] ^ d_in_s[14] ^ d_in_s[15] ^ d_in_s[17] ^ d_in_s[19] ^ d_in_s[21] ^ d_in_s[22];
162  crc_r[4] = crc_in_s[2] ^ crc_in_s[5] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[3] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[12] ^ d_in_s[16] ^ d_in_s[19] ^ d_in_s[21];
163  crc_r[5] = crc_in_s[1] ^ crc_in_s[3] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[10] ^ d_in_s[11] ^ d_in_s[13] ^ d_in_s[15] ^ d_in_s[17] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[21];
164  crc_r[6] = crc_in_s[0] ^ crc_in_s[1] ^ crc_in_s[2] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[3] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[12] ^ d_in_s[14] ^ d_in_s[15] ^ d_in_s[16] ^ d_in_s[21];
165  crc_r[7] = crc_in_s[2] ^ crc_in_s[3] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[6] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[3] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[13] ^ d_in_s[16] ^ d_in_s[17] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[20] ^ d_in_s[21];
166  crc_r[8] = crc_in_s[0] ^ crc_in_s[3] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[6] ^ crc_in_s[7] ^ crc_in_s[8] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[14] ^ d_in_s[17] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[20] ^ d_in_s[21] ^ d_in_s[22];
167 
168 
169  if (bit_reverse){
170  for(int i=0; i!= 9; i++)
171  crc_word = crc_word | (crc_r[8-i] << i);
172  } else{
173  for(int i=0; i!= 9; i++)
174  crc_word = crc_word | (crc_r[i] << i);
175  }
176 
177  return (crc_word);
178 
179 }

◆ crc9d32()

FibrePackerBase::myDataWord FibrePackerBase::crc9d32 ( const std::vector< myDataWord > &  inwords,
size_t  num_words,
bool  bit_reverse = true 
) const
virtualinherited

CRC9D32 as specified in LAr VHDL

Function does CRC9D32 calculation. Thanslated from LATOME VHDL to python by Ed Flaherty, then to c++ by jb

Definition at line 40 of file FibrePackerBase.cxx.

40  {
48  long int mask = 0x00000001;
49  long int crc_word = 0x000;
50 
51 
52  //d_in_s is a '23-bit input word'
53 
54  std::vector<long int> d_in(32,0);
55  std::vector<long int> crc_s(9,1);
56  std::vector<long int> crc_r(9,1);
57 
58  for(size_t k=0; k != num_words; k++){
59 
60  // 32-bit word crc calculation
61 
62  if (bit_reverse){
63  for(int i=0; i!= 32; i++){
64  d_in [31-i] = inwords.at(k) & (mask << i);
65  d_in[31-i] = d_in[31-i] >> i;
66  }
67  } else {
68  for(int i=0; i!= 32; i++){
69  d_in [i] = inwords.at(k) & (mask << i);
70  d_in[i] = d_in[i] >> i;
71  }
72  }
73 
74  // in the first iteration CRC_S must be set to all 1's: note CRC_R is set to 1's above
75  // then CRC_S must equal the previous CRC_R
76 
77  for(int j=0; j!= 9; j++)
78  crc_s[j] = crc_r[j];
79 
80 
81  crc_r[0]= crc_s[0] ^ crc_s[2] ^ crc_s[3] ^ crc_s[6] ^ crc_s[8] ^ d_in[0] ^ d_in[2] ^ d_in[3] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[8] ^ d_in[9] ^ d_in[10] ^ d_in[11] ^ d_in[15] ^ d_in[18] ^ d_in[19] ^ d_in[20] ^ d_in[21] ^ d_in[22] ^ d_in[23] ^ d_in[25] ^ d_in[26] ^ d_in[29] ^ d_in[31];
82  crc_r[1]= crc_s[1] ^ crc_s[2] ^ crc_s[4] ^ crc_s[6] ^ crc_s[7] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[2] ^ d_in[4] ^ d_in[5] ^ d_in[12] ^ d_in[15] ^ d_in[16] ^ d_in[18] ^ d_in[24] ^ d_in[25] ^ d_in[27] ^ d_in[29] ^ d_in[30] ^ d_in[31];
83  crc_r[2]= crc_s[2] ^ crc_s[3] ^ crc_s[5] ^ crc_s[7] ^ crc_s[8] ^ d_in[1] ^ d_in[2] ^ d_in[3] ^ d_in[5] ^ d_in[6] ^ d_in[13] ^ d_in[16] ^ d_in[17] ^ d_in[19] ^ d_in[25] ^ d_in[26] ^ d_in[28] ^ d_in[30] ^ d_in[31];
84  crc_r[3]= crc_s[0] ^ crc_s[2] ^ crc_s[4] ^ d_in[0] ^ d_in[4] ^ d_in[5] ^ d_in[8] ^ d_in[9] ^ d_in[10] ^ d_in[11] ^ d_in[14] ^ d_in[15] ^ d_in[17] ^ d_in[19] ^ d_in[21] ^ d_in[22] ^ d_in[23] ^ d_in[25] ^ d_in[27];
85  crc_r[4]= crc_s[1] ^ crc_s[2] ^ crc_s[5] ^ crc_s[6] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[2] ^ d_in[3] ^ d_in[7] ^ d_in[8] ^ d_in[12] ^ d_in[16] ^ d_in[19] ^ d_in[21] ^ d_in[24] ^ d_in[25] ^ d_in[28] ^ d_in[29] ^ d_in[31];
86  crc_r[5]= crc_s[0] ^ crc_s[7] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[4] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[10] ^ d_in[11] ^ d_in[13] ^ d_in[15] ^ d_in[17] ^ d_in[18] ^ d_in[19] ^ d_in[21] ^ d_in[23] ^ d_in[30] ^ d_in[31];
87  crc_r[6]= crc_s[0] ^ crc_s[1] ^ crc_s[2] ^ crc_s[3] ^ crc_s[6] ^ d_in[0] ^ d_in[1] ^ d_in[3] ^ d_in[9] ^ d_in[10] ^ d_in[12] ^ d_in[14] ^ d_in[15] ^ d_in[16] ^ d_in[21] ^ d_in[23] ^ d_in[24] ^ d_in[25] ^ d_in[26] ^ d_in[29];
88  crc_r[7]= crc_s[0] ^ crc_s[1] ^ crc_s[4] ^ crc_s[6] ^ crc_s[7] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[3] ^ d_in[4] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[8] ^ d_in[9] ^ d_in[13] ^ d_in[16] ^ d_in[17] ^ d_in[18] ^ d_in[19] ^ d_in[20] ^ d_in[21] ^ d_in[23] ^ d_in[24] ^ d_in[27] ^ d_in[29] ^ d_in[30] ^ d_in[31];
89  crc_r[8]= crc_s[1] ^ crc_s[2] ^ crc_s[5] ^ crc_s[7] ^ crc_s[8] ^ d_in[1] ^ d_in[2] ^ d_in[4] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[8] ^ d_in[9] ^ d_in[10] ^ d_in[14] ^ d_in[17] ^ d_in[18] ^ d_in[19] ^ d_in[20] ^ d_in[21] ^ d_in[22] ^ d_in[24] ^ d_in[25] ^ d_in[28] ^ d_in[30] ^ d_in[31];
90 
91  crc_word = 0x000;
92 
93  if (bit_reverse){
94 
95  for(int i=0; i!= 9; i++)
96  crc_word = crc_word | (crc_r[8-i] << i);
97 
98  } else {
99 
100  for(int i=0; i!= 9; i++)
101  crc_word = crc_word | (crc_r[i] << i);
102 
103  }
104 
105  }
106 
107  return (crc_word);
108 
109 }

◆ crc9full()

FibrePackerBase::myDataWord FibrePackerBase::crc9full ( const std::vector< myDataWord > &  inwords,
size_t  num_bits 
) const
virtualinherited

Functions calculating CRC over input data.

CRC9 with polynomial 1011111011 over num_bits bits

Uses a more succinct CRC calculation and flexible in terms of digits, checked versus old code but only supports bit reversal = true

Definition at line 11 of file FibrePackerBase.cxx.

12 {
21  size_t num_words = inwords.size();
22  if ( (num_bits+31)/32 > num_words )
23  {
24  std::cout << "ERROR: not enough words (" << num_words << ") for " << num_bits << "-bit CRC calculation." << std::endl;
25  return 0;
26  }
27  long int val = 0x1ff;
28  for ( size_t i = 0 ; i < num_bits ; ++i )
29  {
30  if ( (inwords.at(i/32)>>(i%32)) & 1 )
31  val ^= 1;
32  if ( val&1 )
33  val ^= 0x37d; // 1101111101 = polynomial reversed
34  val >>= 1;
35  }
36  return val;
37 }

◆ getBcMask()

FibrePackerBase::myDataWord EfexLatomeFibrePacker::getBcMask ( InputDataFrameType  frameType) const
overridevirtual

Implements FibrePackerBase.

Definition at line 166 of file EfexLatomeFibrePacker.cxx.

166  {
167  // BC number is just 7 bits for normal frames
168  // but the full 12 bits from align frames.
169  return (frameType == InputDataFrameType::Alignement) ? 0xfff : 0x07f;
170 }

◆ getBcNumber()

FibrePackerBase::myDataWord EfexLatomeFibrePacker::getBcNumber ( const std::vector< myDataWord > &  encodedData,
InputDataFrameType  frameType 
) const
overridevirtual

Implements FibrePackerBase.

Definition at line 141 of file EfexLatomeFibrePacker.cxx.

142  {
143  myDataWord BcNumber =0;
144 
145  switch(frameType){
146 
148  {
149  myDataWord bcId02 = (encodedData.at(6) >> 20 ) & 0x7;
150  myDataWord bcId34 = (encodedData.at(0) >> 30 ) & 0x3;
151  myDataWord bcId56 = (encodedData.at(0) >> 8 ) & 0x3;
152 
153  BcNumber = bcId02 | (bcId34 << 3) | (bcId56 << 5);
154  break;
155  }
157  {
158  BcNumber = encodedData.at(6) & 0xfff;
159  break;
160  }
161  }
162 
163  return BcNumber;
164 }

◆ getPackedControl()

std::vector< FibrePackerBase::myDataWord > EfexLatomeFibrePacker::getPackedControl ( const std::vector< myDataWord > &  inFrame,
myDataWord  bcNumber,
InputDataFrameType  frameType 
) const
overridevirtual

Function returning control words.

The control words are used to distinguish between standard data and K characters. Each K character is 8 bit long and can be at one of four positions in 32 bit word. Control words encode location of K characters in 32 bit words, for example 0x1 means K character in the lowest byte, 0x3 means two K-characters in two lowest bytes

Implements FibrePackerBase.

Definition at line 89 of file EfexLatomeFibrePacker.cxx.

91  {
92 
93  std::vector<myDataWord> controlWords(FexDefs::num32BitWordsPerFibre(),0);
94 
95  switch(frameType){
96 
97  case InputDataFrameType::Normal: // one K character in first data word
98  controlWords.at(0) = 0x1;
99  break;
100 
101  case InputDataFrameType::Alignement: // two K characters in first data word
102  controlWords.at(0) = 0x3;
103  break;
104 
105  }
106 
107  return controlWords;
108 }

◆ getPackedData()

std::vector< FibrePackerBase::myDataWord > EfexLatomeFibrePacker::getPackedData ( const std::vector< myDataWord > &  inFrame,
myDataWord  bcNumber,
InputDataFrameType  frameType 
) const
overridevirtual

Function packing the data into the LATOME format, either standard or alignement frame.

The function expects input data in vector inFrame. For normal frame, this is a vector of supercell energies. For alignement frame this function expects LATOME meta information in following format: inFrame[0] ... latome_id inFrame[1] ... latome_src_id inFrame[2] ... fiber_id

FEX_ID is always set to zero because it's eFex

Implements FibrePackerBase.

Definition at line 13 of file EfexLatomeFibrePacker.cxx.

15  {
16 
17  std::vector<myDataWord> dataToLoad(FexDefs::num32BitWordsPerFibre(),0);
18  auto supercells = inFrame;
19 
20  switch(frameType){
21 
22  case InputDataFrameType::Normal: // Standard data pattern
23  {
24  for(auto& icell:supercells)
25  icell = icell & 0x3ff; // truncate to 10 bits
26 
27  myDataWord bcId = bcNumber & 0x7f ; // 7 bits from BCID
28 
29  myDataWord bcId02 = bcId & 0x7;
30  myDataWord bcId34 = (bcId >> 3) & 0x3;
31  myDataWord bcId56 = (bcId >> 5) & 0x3;
32 
33  dataToLoad.at(0) = (bcId56 << 8) | (supercells.at(0) <<10) |
34  (supercells.at(1) << 20) | (bcId34 << 30);
35  dataToLoad.at(1) = supercells.at(2) | (supercells.at(3) << 10) |
36  (supercells.at(4) << 20) | (((supercells.at(19) >>8) & 0x3) << 30);
37  dataToLoad.at(2) = supercells.at(5) | (supercells.at(6) << 10) |
38  (supercells.at(7) << 20) | (((supercells.at(19) >>6) & 0x3) << 30);
39  dataToLoad.at(3) = supercells.at(8) | (supercells.at(9) << 10) |
40  (supercells.at(10) << 20) | (((supercells.at(19) >>4) & 0x3) << 30);
41  dataToLoad.at(4) = supercells.at(11) | (supercells.at(12) << 10) |
42  (supercells.at(13) << 20) | (((supercells.at(19) >>2) & 0x3) << 30);
43  dataToLoad.at(5) = supercells.at(14) | (supercells.at(15) << 10) |
44  (supercells.at(16) << 20) | (((supercells.at(19) ) & 0x3) << 30);
45  dataToLoad.at(6) = supercells.at(17) | (supercells.at(18) << 10)| bcId02 << 20;
46 
47  // original code
48  // myDataWord tempCRC = crc9d32(dataToLoad,6l,true); // calculate CRC32 on first 6 words
49  // myDataWord myCRCReminder = crc9d23(dataToLoad[6],tempCRC,true); // CRC23 on the last word
50  // new code
51  myDataWord myCRCReminder = crc9full(dataToLoad,215); // 215 = 32*6+23
52 
53  dataToLoad.at(0) = K_28_5 | dataToLoad.at(0) ; // add K-character
54  dataToLoad[6] = dataToLoad[6] | ( myCRCReminder << 23) ; // add CRC check
55 
56  break;
57  }
58  case InputDataFrameType::Alignement: // Special pattern, LATOME alignement/mapping frame
59  {
60 
61  myDataWord latome_id = supercells.at(0) & 0xff; // 8b
62  myDataWord latome_src_id = supercells.at(1) & 0xffffffff; // 32b
63  myDataWord fiber_id = supercells.at(2) & 0x3f; // 6b
64  myDataWord bcId = bcNumber & 0xfff ; // 12 bits of BCID
65 
66  dataToLoad.at(0) = (fiber_id << 16) | (latome_id << 24);
67  dataToLoad.at(1) = latome_src_id;
68  dataToLoad.at(6) = bcId;
69 
70  dataToLoad.at(0) = (K_28_0 << 8) | dataToLoad.at(0) ; // add K_28_0, this is used for CRC calculation
71 
72  // original code
73  // myDataWord tempCRC = crc9d32(dataToLoad,6l,true); // calculate CRC32 on first 6 words
74  //myDataWord myCRCReminder = crc9d23(dataToLoad[6],tempCRC,true); // CRC23 on the last word
75  // new code
76  myDataWord myCRCReminder = crc9full(dataToLoad,215); // 215 = 32*6+23
77 
78  dataToLoad.at(0) = K_28_5 | dataToLoad.at(0) ; // add K_28_5, this is not used for CRC calculation
79  dataToLoad[6] = dataToLoad[6] | ( myCRCReminder << 23) ; // add CRC check to the famous last word
80 
81  break;
82  }
83  }
84 
85  return dataToLoad;
86 
87 }

◆ getUnpackedData()

std::vector< FibrePackerBase::myDataWord > EfexLatomeFibrePacker::getUnpackedData ( const std::vector< myDataWord > &  encodedData,
InputDataFrameType  frameType 
) const
overridevirtual

Function unpacking the data from LATOME format, either standard or alignement frame.

For normal frame, the function returns a vector of supercell energies. For alignement frame the function returns LATOME meta information in following format: inFrame[0] ... latome_id inFrame[1] ... latome_src_id inFrame[2] ... fiber_id

Implements FibrePackerBase.

Definition at line 172 of file EfexLatomeFibrePacker.cxx.

173  {
174  std::vector<myDataWord> unpackedData;
175 
176  switch(frameType){
177 
179  {
180  std::vector<myDataWord> supercells(EfexDefs::maxSuperCellsPerFibre(),0);
181 
182  // see: https://gitlab.cern.ch/atlas-l1calo-online/infraL1Calo/-/commit/1dc82d1ce21c14ca56d90e1af7d1af9bdb7990df#note_5865270
183  // 20 10-bit counts encoded in 7 32-bit words
184  // word 0 has 2, word 1-5 have 3 each (so 15 in total),
185  // word 6 has 2 more, and the last count is spread over the extra
186  // 2 bits in words 1-5
187 
188  supercells[0] = (encodedData[0] >> 10) & 0x3ff;
189  supercells[1] = (encodedData[0] >> 20) & 0x3ff;
190  supercells[2] = (encodedData[1] ) & 0x3ff;
191  supercells[3] = (encodedData[1] >> 10) & 0x3ff;
192  supercells[4] = (encodedData[1] >> 20) & 0x3ff;
193  supercells[5] = (encodedData[2] ) & 0x3ff;
194  supercells[6] = (encodedData[2] >> 10) & 0x3ff;
195  supercells[7] = (encodedData[2] >> 20) & 0x3ff;
196  supercells[8] = (encodedData[3] ) & 0x3ff;
197  supercells[9] = (encodedData[3] >> 10) & 0x3ff;
198  supercells[10] = (encodedData[3] >> 20) & 0x3ff;
199  supercells[11] = (encodedData[4] ) & 0x3ff;
200  supercells[12] = (encodedData[4] >> 10) & 0x3ff;
201  supercells[13] = (encodedData[4] >> 20) & 0x3ff;
202  supercells[14] = (encodedData[5] ) & 0x3ff;
203  supercells[15] = (encodedData[5] >> 10) & 0x3ff;
204  supercells[16] = (encodedData[5] >> 20) & 0x3ff;
205  supercells[17] = (encodedData.at(6) ) & 0x3ff;
206  supercells[18] = (encodedData[6] >> 10) & 0x3ff;
207  supercells.at(19) = ((encodedData[5] >> 30) & 0x3) |
208  ((encodedData[4] >> 30) & 0x3) << 2 |
209  ((encodedData[3] >> 30) & 0x3) << 4 |
210  ((encodedData[2] >> 30) & 0x3) << 6 |
211  ((encodedData[1] >> 30) & 0x3) << 8 ;
212  unpackedData=std::move(supercells);
213  break;
214  }
216  {
217  myDataWord latome_id = (encodedData.at(0) >> 24) & 0xff; // 8b
218  myDataWord latome_src_id = encodedData.at(1) & 0xffffffff; // 32b
219  myDataWord fiber_id = (encodedData.at(0) >> 16) & 0x3f; // 6b
220 
221  unpackedData.push_back(latome_id);
222  unpackedData.push_back(latome_src_id);
223  unpackedData.push_back(fiber_id);
224  break;
225  }
226  }
227 
228 
229  return unpackedData;
230 
231 }

Member Data Documentation

◆ K_28_0

myDataWord FibrePackerBase::K_28_0 = 0x1c
inherited

Definition at line 32 of file FibrePackerBase.h.

◆ K_28_1

myDataWord FibrePackerBase::K_28_1 = 0x3c
inherited

Definition at line 31 of file FibrePackerBase.h.

◆ K_28_5

myDataWord FibrePackerBase::K_28_5 = 0xbc
inherited

Definition at line 30 of file FibrePackerBase.h.


The documentation for this class was generated from the following files:
FexDefs::num32BitWordsPerFibre
static int num32BitWordsPerFibre()
Definition: FexDefs.h:17
WriteCellNoiseToCool.icell
icell
Definition: WriteCellNoiseToCool.py:339
ORAlgo::Normal
@ Normal
FibrePackerBase::K_28_5
myDataWord K_28_5
Definition: FibrePackerBase.h:30
python.utils.AtlRunQueryLookup.mask
string mask
Definition: AtlRunQueryLookup.py:459
EfexDefs::maxSuperCellsPerFibre
static int maxSuperCellsPerFibre()
Definition: EfexDefs.h:27
FibrePackerBase::crc9full
virtual myDataWord crc9full(const std::vector< myDataWord > &inwords, size_t num_bits) const
Functions calculating CRC over input data.
Definition: FibrePackerBase.cxx:11
FibrePackerBase::K_28_0
myDataWord K_28_0
Definition: FibrePackerBase.h:32
lumiFormat.i
int i
Definition: lumiFormat.py:85
bcId
uint16_t bcId(uint32_t data)
Definition: TgcByteStreamData.h:326
FibrePackerBase::InputDataFrameType::Alignement
@ Alignement
Special mapping/alignement frame.
FibrePackerBase::myDataWord
uint32_t myDataWord
Definition: FibrePackerBase.h:25
Pythia8_RapidityOrderMPI.val
val
Definition: Pythia8_RapidityOrderMPI.py:14
FibrePackerBase::InputDataFrameType::Normal
@ Normal
Standard data frame.
fitman.k
k
Definition: fitman.py:528