ATLAS Offline Software
Loading...
Searching...
No Matches
FibrePackerBase Class Referenceabstract

#include <FibrePackerBase.h>

Inheritance diagram for FibrePackerBase:
Collaboration diagram for FibrePackerBase:

Public Types

enum class  InputDataFrameType { Normal , Alignement }
 type of input data frame More...
using myDataWord = uint32_t

Public Member Functions

 FibrePackerBase ()
 Basic class for FEX input data packers.
virtual ~FibrePackerBase ()
virtual myDataWord crc9full (const std::vector< myDataWord > &inwords, size_t num_bits) const
 Functions calculating CRC over input data.
virtual myDataWord crc9d32 (const std::vector< myDataWord > &inwords, size_t num_words, bool bit_reverse) const
virtual myDataWord crc9d23 (myDataWord inword, myDataWord in_crc, bool bit_reverse) const
virtual std::vector< myDataWordgetPackedData (const std::vector< myDataWord > &inFrame, myDataWord bcNumber, InputDataFrameType frameType) const =0
 Function taking SC energies and other stuff and packing them into a data packet.
virtual std::vector< myDataWordgetPackedControl (const std::vector< myDataWord > &inFrame, myDataWord bcNumber, InputDataFrameType frameType) const =0
 Function returning control words.
virtual bool checkCRC (const std::vector< myDataWord > &encodedData, InputDataFrameType frameType) const =0
virtual myDataWord getBcNumber (const std::vector< myDataWord > &encodedData, InputDataFrameType frameType) const =0
virtual myDataWord getBcMask (InputDataFrameType frameType) const =0
virtual std::vector< myDataWordgetUnpackedData (const std::vector< myDataWord > &encodedData, InputDataFrameType frameType) const =0

Public Attributes

myDataWord K_28_5 = 0xbc
myDataWord K_28_1 = 0x3c
myDataWord K_28_0 = 0x1c

Detailed Description

Definition at line 9 of file FibrePackerBase.h.

Member Typedef Documentation

◆ myDataWord

using FibrePackerBase::myDataWord = uint32_t

Definition at line 25 of file FibrePackerBase.h.

Member Enumeration Documentation

◆ InputDataFrameType

type of input data frame

Enumerator
Normal 

Standard data frame.

Alignement 

Special mapping/alignement frame.

Definition at line 37 of file FibrePackerBase.h.

37 {
38 Normal,
39 Alignement
40 };

Constructor & Destructor Documentation

◆ FibrePackerBase()

FibrePackerBase::FibrePackerBase ( )
inline

Basic class for FEX input data packers.

FibrePackerBase is an abstract class providing standard interface for packer classes. In addition it contains definition of hex codes for standard K-values and standard implementation of 9 bit CRC32 and CRC23. It is assumed that derived classes will
override packing and unpacking functions and use provided CRC calculation.

Definition at line 22 of file FibrePackerBase.h.

22{}

◆ ~FibrePackerBase()

virtual FibrePackerBase::~FibrePackerBase ( )
inlinevirtual

Definition at line 23 of file FibrePackerBase.h.

23{}

Member Function Documentation

◆ checkCRC()

virtual bool FibrePackerBase::checkCRC ( const std::vector< myDataWord > & encodedData,
InputDataFrameType frameType ) const
pure virtual

◆ crc9d23()

FibrePackerBase::myDataWord FibrePackerBase::crc9d23 ( FibrePackerBase::myDataWord inword,
myDataWord in_crc,
bool bit_reverse ) const
virtual

CRC9D23 as specified in LAr VHDL

Function does CRC9D23 calculation. Thanslated from LATOME VHDL to python by Ed Flaherty, then to c++ by jb

Definition at line 111 of file FibrePackerBase.cxx.

111 {
112
119
120
121 long int mask = 0x00000001;
122 long int crc_word = 0x000;
123
124
125 //d_in_s is a '23-bit input word'
126
127 std::vector<long int> d_in_s(23,0);
128 std::vector<long int> crc_in_s(9,0);
129 std::vector<long int> crc_r(9,0);
130
131 // crc calculation
132
133 if (bit_reverse){
134
135 for(int i=0; i!= 23; i++){
136 d_in_s[22-i] = inword & (mask << i);
137 d_in_s[22-i] = d_in_s[22-i] >> i;
138 }
139
140 for(int i=0; i!= 9; i++){
141 crc_in_s[8-i] = in_crc & (mask << i);
142 crc_in_s[8-i] = crc_in_s[8-i] >> i;
143 }
144
145 } else {
146
147 for(int i=0; i!= 23; i++){
148 d_in_s[i] = inword & (mask << i);
149 d_in_s[i] = d_in_s[i] >> i;
150 }
151
152 for(int i=0; i!= 9; i++){
153 crc_in_s[i] = in_crc & (mask << i);
154 crc_in_s[i] = crc_in_s[i] >> i;
155 }
156 }
157
158 crc_r[0] = crc_in_s[1] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[6] ^ crc_in_s[7] ^ crc_in_s[8] ^ d_in_s[0] ^ d_in_s[2] ^ d_in_s[3] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[11] ^ d_in_s[15] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[20] ^ d_in_s[21] ^ d_in_s[22];
159 crc_r[1] = crc_in_s[1] ^ crc_in_s[2] ^ crc_in_s[4] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[12] ^ d_in_s[15] ^ d_in_s[16] ^ d_in_s[18];
160 crc_r[2] = crc_in_s[2] ^ crc_in_s[3] ^ crc_in_s[5] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[3] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[13] ^ d_in_s[16] ^ d_in_s[17] ^ d_in_s[19];
161 crc_r[3] = crc_in_s[0] ^ crc_in_s[1] ^ crc_in_s[3] ^ crc_in_s[5] ^ crc_in_s[7] ^ crc_in_s[8] ^ d_in_s[0] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[11] ^ d_in_s[14] ^ d_in_s[15] ^ d_in_s[17] ^ d_in_s[19] ^ d_in_s[21] ^ d_in_s[22];
162 crc_r[4] = crc_in_s[2] ^ crc_in_s[5] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[3] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[12] ^ d_in_s[16] ^ d_in_s[19] ^ d_in_s[21];
163 crc_r[5] = crc_in_s[1] ^ crc_in_s[3] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[10] ^ d_in_s[11] ^ d_in_s[13] ^ d_in_s[15] ^ d_in_s[17] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[21];
164 crc_r[6] = crc_in_s[0] ^ crc_in_s[1] ^ crc_in_s[2] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[3] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[12] ^ d_in_s[14] ^ d_in_s[15] ^ d_in_s[16] ^ d_in_s[21];
165 crc_r[7] = crc_in_s[2] ^ crc_in_s[3] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[6] ^ crc_in_s[7] ^ d_in_s[0] ^ d_in_s[1] ^ d_in_s[3] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[13] ^ d_in_s[16] ^ d_in_s[17] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[20] ^ d_in_s[21];
166 crc_r[8] = crc_in_s[0] ^ crc_in_s[3] ^ crc_in_s[4] ^ crc_in_s[5] ^ crc_in_s[6] ^ crc_in_s[7] ^ crc_in_s[8] ^ d_in_s[1] ^ d_in_s[2] ^ d_in_s[4] ^ d_in_s[5] ^ d_in_s[6] ^ d_in_s[7] ^ d_in_s[8] ^ d_in_s[9] ^ d_in_s[10] ^ d_in_s[14] ^ d_in_s[17] ^ d_in_s[18] ^ d_in_s[19] ^ d_in_s[20] ^ d_in_s[21] ^ d_in_s[22];
167
168
169 if (bit_reverse){
170 for(int i=0; i!= 9; i++)
171 crc_word = crc_word | (crc_r[8-i] << i);
172 } else{
173 for(int i=0; i!= 9; i++)
174 crc_word = crc_word | (crc_r[i] << i);
175 }
176
177 return (crc_word);
178
179}

◆ crc9d32()

FibrePackerBase::myDataWord FibrePackerBase::crc9d32 ( const std::vector< myDataWord > & inwords,
size_t num_words,
bool bit_reverse = true ) const
virtual

CRC9D32 as specified in LAr VHDL

Function does CRC9D32 calculation. Thanslated from LATOME VHDL to python by Ed Flaherty, then to c++ by jb

Definition at line 40 of file FibrePackerBase.cxx.

40 {
47
48 long int mask = 0x00000001;
49 long int crc_word = 0x000;
50
51
52 //d_in_s is a '23-bit input word'
53
54 std::vector<long int> d_in(32,0);
55 std::vector<long int> crc_s(9,1);
56 std::vector<long int> crc_r(9,1);
57
58 for(size_t k=0; k != num_words; k++){
59
60 // 32-bit word crc calculation
61
62 if (bit_reverse){
63 for(int i=0; i!= 32; i++){
64 d_in [31-i] = inwords.at(k) & (mask << i);
65 d_in[31-i] = d_in[31-i] >> i;
66 }
67 } else {
68 for(int i=0; i!= 32; i++){
69 d_in [i] = inwords.at(k) & (mask << i);
70 d_in[i] = d_in[i] >> i;
71 }
72 }
73
74 // in the first iteration CRC_S must be set to all 1's: note CRC_R is set to 1's above
75 // then CRC_S must equal the previous CRC_R
76
77 for(int j=0; j!= 9; j++)
78 crc_s[j] = crc_r[j];
79
80
81 crc_r[0]= crc_s[0] ^ crc_s[2] ^ crc_s[3] ^ crc_s[6] ^ crc_s[8] ^ d_in[0] ^ d_in[2] ^ d_in[3] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[8] ^ d_in[9] ^ d_in[10] ^ d_in[11] ^ d_in[15] ^ d_in[18] ^ d_in[19] ^ d_in[20] ^ d_in[21] ^ d_in[22] ^ d_in[23] ^ d_in[25] ^ d_in[26] ^ d_in[29] ^ d_in[31];
82 crc_r[1]= crc_s[1] ^ crc_s[2] ^ crc_s[4] ^ crc_s[6] ^ crc_s[7] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[2] ^ d_in[4] ^ d_in[5] ^ d_in[12] ^ d_in[15] ^ d_in[16] ^ d_in[18] ^ d_in[24] ^ d_in[25] ^ d_in[27] ^ d_in[29] ^ d_in[30] ^ d_in[31];
83 crc_r[2]= crc_s[2] ^ crc_s[3] ^ crc_s[5] ^ crc_s[7] ^ crc_s[8] ^ d_in[1] ^ d_in[2] ^ d_in[3] ^ d_in[5] ^ d_in[6] ^ d_in[13] ^ d_in[16] ^ d_in[17] ^ d_in[19] ^ d_in[25] ^ d_in[26] ^ d_in[28] ^ d_in[30] ^ d_in[31];
84 crc_r[3]= crc_s[0] ^ crc_s[2] ^ crc_s[4] ^ d_in[0] ^ d_in[4] ^ d_in[5] ^ d_in[8] ^ d_in[9] ^ d_in[10] ^ d_in[11] ^ d_in[14] ^ d_in[15] ^ d_in[17] ^ d_in[19] ^ d_in[21] ^ d_in[22] ^ d_in[23] ^ d_in[25] ^ d_in[27];
85 crc_r[4]= crc_s[1] ^ crc_s[2] ^ crc_s[5] ^ crc_s[6] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[2] ^ d_in[3] ^ d_in[7] ^ d_in[8] ^ d_in[12] ^ d_in[16] ^ d_in[19] ^ d_in[21] ^ d_in[24] ^ d_in[25] ^ d_in[28] ^ d_in[29] ^ d_in[31];
86 crc_r[5]= crc_s[0] ^ crc_s[7] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[4] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[10] ^ d_in[11] ^ d_in[13] ^ d_in[15] ^ d_in[17] ^ d_in[18] ^ d_in[19] ^ d_in[21] ^ d_in[23] ^ d_in[30] ^ d_in[31];
87 crc_r[6]= crc_s[0] ^ crc_s[1] ^ crc_s[2] ^ crc_s[3] ^ crc_s[6] ^ d_in[0] ^ d_in[1] ^ d_in[3] ^ d_in[9] ^ d_in[10] ^ d_in[12] ^ d_in[14] ^ d_in[15] ^ d_in[16] ^ d_in[21] ^ d_in[23] ^ d_in[24] ^ d_in[25] ^ d_in[26] ^ d_in[29];
88 crc_r[7]= crc_s[0] ^ crc_s[1] ^ crc_s[4] ^ crc_s[6] ^ crc_s[7] ^ crc_s[8] ^ d_in[0] ^ d_in[1] ^ d_in[3] ^ d_in[4] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[8] ^ d_in[9] ^ d_in[13] ^ d_in[16] ^ d_in[17] ^ d_in[18] ^ d_in[19] ^ d_in[20] ^ d_in[21] ^ d_in[23] ^ d_in[24] ^ d_in[27] ^ d_in[29] ^ d_in[30] ^ d_in[31];
89 crc_r[8]= crc_s[1] ^ crc_s[2] ^ crc_s[5] ^ crc_s[7] ^ crc_s[8] ^ d_in[1] ^ d_in[2] ^ d_in[4] ^ d_in[5] ^ d_in[6] ^ d_in[7] ^ d_in[8] ^ d_in[9] ^ d_in[10] ^ d_in[14] ^ d_in[17] ^ d_in[18] ^ d_in[19] ^ d_in[20] ^ d_in[21] ^ d_in[22] ^ d_in[24] ^ d_in[25] ^ d_in[28] ^ d_in[30] ^ d_in[31];
90
91 crc_word = 0x000;
92
93 if (bit_reverse){
94
95 for(int i=0; i!= 9; i++)
96 crc_word = crc_word | (crc_r[8-i] << i);
97
98 } else {
99
100 for(int i=0; i!= 9; i++)
101 crc_word = crc_word | (crc_r[i] << i);
102
103 }
104
105 }
106
107 return (crc_word);
108
109}

◆ crc9full()

FibrePackerBase::myDataWord FibrePackerBase::crc9full ( const std::vector< myDataWord > & inwords,
size_t num_bits ) const
virtual

Functions calculating CRC over input data.

CRC9 with polynomial 1011111011 over num_bits bits

Uses a more succinct CRC calculation and flexible in terms of digits, checked versus old code but only supports bit reversal = true

Definition at line 11 of file FibrePackerBase.cxx.

12{
20
21 size_t num_words = inwords.size();
22 if ( (num_bits+31)/32 > num_words )
23 {
24 std::cout << "ERROR: not enough words (" << num_words << ") for " << num_bits << "-bit CRC calculation." << std::endl;
25 return 0;
26 }
27 long int val = 0x1ff;
28 for ( size_t i = 0 ; i < num_bits ; ++i )
29 {
30 if ( (inwords.at(i/32)>>(i%32)) & 1 )
31 val ^= 1;
32 if ( val&1 )
33 val ^= 0x37d; // 1101111101 = polynomial reversed
34 val >>= 1;
35 }
36 return val;
37}

◆ getBcMask()

virtual myDataWord FibrePackerBase::getBcMask ( InputDataFrameType frameType) const
pure virtual

◆ getBcNumber()

virtual myDataWord FibrePackerBase::getBcNumber ( const std::vector< myDataWord > & encodedData,
InputDataFrameType frameType ) const
pure virtual

◆ getPackedControl()

virtual std::vector< myDataWord > FibrePackerBase::getPackedControl ( const std::vector< myDataWord > & inFrame,
myDataWord bcNumber,
InputDataFrameType frameType ) const
pure virtual

Function returning control words.

The control words are used to distinguish between standard data and K characters. Each K character is 8 bit long and can be at one of four positions in 32 bit word. Control words encode location of K characters in 32 bit words, for example 0x1 means K character in the lowest byte, 0x3 means two K-characters in two lowest bytes

Implemented in EfexLatomeFibrePacker, EfexTobPacker, and EfexTrexFibrePacker.

◆ getPackedData()

virtual std::vector< myDataWord > FibrePackerBase::getPackedData ( const std::vector< myDataWord > & inFrame,
myDataWord bcNumber,
InputDataFrameType frameType ) const
pure virtual

Function taking SC energies and other stuff and packing them into a data packet.

Implemented in EfexLatomeFibrePacker, EfexTobPacker, and EfexTrexFibrePacker.

◆ getUnpackedData()

virtual std::vector< myDataWord > FibrePackerBase::getUnpackedData ( const std::vector< myDataWord > & encodedData,
InputDataFrameType frameType ) const
pure virtual

Member Data Documentation

◆ K_28_0

myDataWord FibrePackerBase::K_28_0 = 0x1c

Definition at line 32 of file FibrePackerBase.h.

◆ K_28_1

myDataWord FibrePackerBase::K_28_1 = 0x3c

Definition at line 31 of file FibrePackerBase.h.

◆ K_28_5

myDataWord FibrePackerBase::K_28_5 = 0xbc

Definition at line 30 of file FibrePackerBase.h.


The documentation for this class was generated from the following files: