ATLAS Offline Software
TFCSONNXHandler.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3 */
4 
5 // See header file for documentation.
7 
8 // For reading the binary onnx files
9 #include <fstream>
10 #include <iterator>
11 #include <vector>
12 
13 // ONNX Runtime include(s).
14 #include <onnxruntime_cxx_api.h>
15 
16 // For reading and writing to root
17 #include "TBranch.h"
18 #include "TFile.h"
19 #include "TTree.h"
20 
21 // For throwing exceptions
22 #include <stdexcept>
23 
26  ATH_MSG_INFO("Setting up from inputFile.");
29  ATH_MSG_DEBUG("Setup from file complete");
30 };
31 
32 TFCSONNXHandler::TFCSONNXHandler(const std::vector<char> &bytes)
33  : m_bytes(bytes) {
34  ATH_MSG_INFO("Given onnx session bytes as input.");
35  // The super constructor got no inputFile,
36  // so it won't call setupNet itself
38  ATH_MSG_DEBUG("Setup from session complete");
39 };
40 
42  : VNetworkBase(copy_from) {
43  ATH_MSG_DEBUG("TFCSONNXHandler copy construtor called");
44  m_bytes = copy_from.m_bytes;
45  // Cannot copy a session
46  // m_session = copy_from.m_session;
47  // But can read it from bytes
50  m_inputNodeDims = copy_from.m_inputNodeDims;
53  m_outputLayers = copy_from.m_outputLayers;
54 };
55 
58  return m_computeLambda(inputs);
59 };
60 
61 // Writing out to ttrees
63  ATH_MSG_DEBUG("TFCSONNXHandler writing net to tree.");
64  this->writeBytesToTTree(tree, m_bytes);
65 };
66 
67 std::vector<std::string> TFCSONNXHandler::getOutputLayers() const {
68  ATH_MSG_DEBUG("TFCSONNXHandler output layers requested.");
69  return m_outputLayers;
70 };
71 
73  // As we don't copy the bytes, and the inputFile
74  // is at most a name, nothing is needed here.
75  ATH_MSG_DEBUG("Deleted nothing for ONNX.");
76 };
77 
78 void TFCSONNXHandler::print(std::ostream &strm) const {
79  if (m_inputFile.empty()) {
80  strm << "Unknown network";
81  } else {
82  strm << m_inputFile;
83  };
84  strm << "\nHas input nodes (name:dimensions);\n";
85  for (size_t inp_n = 0; inp_n < m_inputNodeNames.size(); inp_n++) {
86  strm << "\t" << m_inputNodeNames[inp_n] << ":[";
87  for (int dim : m_inputNodeDims[inp_n]) {
88  strm << " " << dim << ",";
89  };
90  strm << "]\n";
91  };
92  strm << "\nHas output nodes (name:dimensions);\n";
93  for (size_t out_n = 0; out_n < m_outputNodeNames.size(); out_n++) {
94  strm << "\t" << m_outputNodeNames[out_n] << ":[";
95  for (int dim : m_outputNodeDims[out_n]) {
96  strm << " " << dim << ",";
97  };
98  strm << "]\n";
99  };
100 };
101 
103  ATH_MSG_DEBUG("Setting up persisted variables for ONNX network.");
104  // depending which constructor was called,
105  // bytes may already be filled
106  if (m_bytes.empty()) {
108  };
109  ATH_MSG_DEBUG("Setup persisted variables for ONNX network.");
110 };
111 
113  // From
114  // https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/OnnxUtils.h
115  // m_session = AthONNX::CreateORTSession(inputFile);
116  // This segfaults.
117 
118  // TODO; should I be using m_session_options? see
119  // https://github.com/microsoft/onnxruntime-inference-examples/blob/2b42b442526b9454d1e2d08caeb403e28a71da5f/c_cxx/squeezenet/main.cpp#L71
120  ATH_MSG_INFO("Setting up ONNX session.");
121  this->readSerializedSession();
122 
123  // Need the type from the first node (which will be used to set
124  // just set it to undefined to avoid not initialised warnings
125  ONNXTensorElementDataType first_input_type =
126  ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
127 
128  // iterate over all input nodes
129  ATH_MSG_DEBUG("Getting input nodes.");
130  const int num_input_nodes = m_session->GetInputCount();
131  Ort::AllocatorWithDefaultOptions allocator;
132  for (int i = 0; i < num_input_nodes; i++) {
133 
134 #if ORT_API_VERSION > 11
135  Ort::AllocatedStringPtr node_names = m_session->GetInputNameAllocated(i, allocator);
136  m_storeInputNodeNames.push_back(std::move(node_names));
137  const char *input_name = m_storeInputNodeNames.back().get();
138 #else
139  const char *input_name = m_session->GetInputName(i, allocator);
140 #endif
141  m_inputNodeNames.push_back(input_name);
142  ATH_MSG_VERBOSE("Found input node named " << input_name);
143 
144  Ort::TypeInfo type_info = m_session->GetInputTypeInfo(i);
145 
146  // For some reason unless auto is used as the return type
147  // this causes a segfault once the loop ends....
148  auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
149  if (i == 0)
150  first_input_type = tensor_info.GetElementType();
151  // Check the type has not changed
152  if (tensor_info.GetElementType() != first_input_type) {
153  ATH_MSG_ERROR("First type was " << first_input_type << ". In node " << i
154  << " found type "
155  << tensor_info.GetElementType());
156  throw std::runtime_error("Networks with varying input types not "
157  "yet impelmented in TFCSONNXHandler.");
158  };
159 
160  std::vector<int64_t> recieved_dimension = tensor_info.GetShape();
161  ATH_MSG_VERBOSE("There are " << recieved_dimension.size()
162  << " dimensions.");
163  // This vector sometimes includes a symbolic dimension
164  // which is represented by -1
165  // A symbolic dimension is usually a conversion error,
166  // from a numpy array with a shape like (None, 7),
167  // in which case it's safe to treat it as having
168  // dimension 1.
169  std::vector<int64_t> dimension_of_node;
170  for (int64_t node_dim : recieved_dimension) {
171  if (node_dim < 1) {
172  ATH_MSG_WARNING("Found symbolic dimension "
173  << node_dim << " in node named " << input_name
174  << ". Will treat this as dimension 1.");
175  dimension_of_node.push_back(1);
176  } else {
177  dimension_of_node.push_back(node_dim);
178  };
179  };
180  m_inputNodeDims.push_back(dimension_of_node);
181  };
182  ATH_MSG_DEBUG("Finished looping on inputs.");
183 
184  // Outputs
185  // Store the type from the first node (which will be used to set
186  // m_computeLambda)
187  ONNXTensorElementDataType first_output_type =
188  ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
189 
190  // iterate over all output nodes
191  int num_output_nodes = m_session->GetOutputCount();
192  ATH_MSG_DEBUG("Getting " << num_output_nodes << " output nodes.");
193  for (int i = 0; i < num_output_nodes; i++) {
194 #if ORT_API_VERSION > 11
195  Ort::AllocatedStringPtr node_names = m_session->GetOutputNameAllocated(i, allocator);
196  m_storeOutputNodeNames.push_back(std::move(node_names));
197  const char *output_name = m_storeOutputNodeNames.back().get();
198 #else
199  const char *output_name = m_session->GetOutputName(i, allocator);
200 #endif
201  m_outputNodeNames.push_back(output_name);
202  ATH_MSG_VERBOSE("Found output node named " << output_name);
203 
204  const Ort::TypeInfo type_info = m_session->GetOutputTypeInfo(i);
205  auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
206  if (i == 0)
207  first_output_type = tensor_info.GetElementType();
208 
209  // Check the type has not changed
210  if (tensor_info.GetElementType() != first_output_type) {
211  ATH_MSG_ERROR("First type was " << first_output_type << ". In node " << i
212  << " found type "
213  << tensor_info.GetElementType());
214  throw std::runtime_error("Networks with varying output types not "
215  "yet impelmented in TFCSONNXHandler.");
216  };
217 
218  const std::vector<int64_t> recieved_dimension = tensor_info.GetShape();
219  ATH_MSG_VERBOSE("There are " << recieved_dimension.size()
220  << " dimensions.");
221  // Again, check for sybolic dimensions
222  std::vector<int64_t> dimension_of_node;
223  int node_size = 1;
224  for (int64_t node_dim : recieved_dimension) {
225  if (node_dim < 1) {
226  ATH_MSG_WARNING("Found symbolic dimension "
227  << node_dim << " in node named " << output_name
228  << ". Will treat this as dimension 1.");
229  dimension_of_node.push_back(1);
230  } else {
231  dimension_of_node.push_back(node_dim);
232  node_size *= node_dim;
233  };
234  };
235  m_outputNodeDims.push_back(dimension_of_node);
236  m_outputNodeSize.push_back(node_size);
237 
238  // The outputs are treated as a flat vector
239  for (int part_n = 0; part_n < node_size; part_n++) {
240  // compose the output name
241  std::string layer_name =
242  std::string(output_name) + "_" + std::to_string(part_n);
243  ATH_MSG_VERBOSE("Found output layer named " << layer_name);
244  m_outputLayers.push_back(layer_name);
245  }
246  }
247  ATH_MSG_DEBUG("Removing prefix from stored layers.");
249  ATH_MSG_DEBUG("Finished output nodes.");
250 
251  ATH_MSG_DEBUG("Setting up m_computeLambda with input type "
252  << first_input_type << " and output type "
253  << first_output_type);
254  if (first_input_type == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT &&
255  first_output_type == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT) {
256  // gotta capture this in the lambda so it can access class methods
257  m_computeLambda = [this](NetworkInputs const &inputs) {
258  return computeTemplate<float, float>(inputs);
259  };
260  } else if (first_input_type == ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE &&
261  first_output_type == ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE) {
262  m_computeLambda = [this](NetworkInputs const &inputs) {
263  return computeTemplate<double, double>(inputs);
264  };
265  } else {
266  throw std::runtime_error("Haven't yet implemented that combination of "
267  "input and output types as a subclass of VState.");
268  };
269  ATH_MSG_DEBUG("Finished setting lambda function.");
270 };
271 
272 // Needs to also work if the input file is a root file
273 std::vector<char> TFCSONNXHandler::getSerializedSession(const std::string& tree_name) {
274  ATH_MSG_DEBUG("Getting serialized session for ONNX network.");
275 
276  if (this->isRootFile()) {
277  ATH_MSG_INFO("Reading bytes from root file.");
278  TFile tfile(this->m_inputFile.c_str(), "READ");
279  TTree *tree = (TTree *)tfile.Get(tree_name.c_str());
280  std::vector<char> bytes = this->readBytesFromTTree(*tree);
281  ATH_MSG_DEBUG("Found bytes size " << bytes.size());
282  return bytes;
283  } else {
284  ATH_MSG_INFO("Reading bytes from text file.");
285  // see https://stackoverflow.com/a/50317432
286  std::ifstream input(this->m_inputFile, std::ios::binary);
287 
288  std::vector<char> bytes((std::istreambuf_iterator<char>(input)),
289  (std::istreambuf_iterator<char>()));
290 
291  input.close();
292  ATH_MSG_DEBUG("Found bytes size " << bytes.size());
293  return bytes;
294  }
295 };
296 
297 std::vector<char> TFCSONNXHandler::readBytesFromTTree(TTree &tree) {
298  ATH_MSG_DEBUG("TFCSONNXHandler reading bytes from tree.");
299  std::vector<char> bytes;
300  char data;
301  tree.SetBranchAddress("serialized_m_session", &data);
302  for (int i = 0; tree.LoadTree(i) >= 0; i++) {
303  tree.GetEntry(i);
304  bytes.push_back(data);
305  };
306  ATH_MSG_DEBUG("TFCSONNXHandler read bytes from tree.");
307  return bytes;
308 };
309 
311  const std::vector<char> &bytes) {
312  ATH_MSG_DEBUG("TFCSONNXHandler writing bytes to tree.");
313  char m_session_data;
314  tree.Branch("serialized_m_session", &m_session_data,
315  "serialized_m_session/B");
316  for (Char_t here : bytes) {
317  m_session_data = here;
318  tree.Fill();
319  };
320  tree.Write();
321  ATH_MSG_DEBUG("TFCSONNXHandler written bytes to tree.");
322 };
323 
325  ATH_MSG_DEBUG("Transforming bytes to session.");
326  Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
327  Ort::SessionOptions opts;
328  opts.SetInterOpNumThreads(1);
329  opts.SetIntraOpNumThreads(1);
330  // Prevent ONNX from spawning additional threads
331  m_session =
332  std::make_unique<Ort::Session>(env, m_bytes.data(), m_bytes.size(), opts);
333  ATH_MSG_DEBUG("Transformed bytes to session.");
334 };
335 
336 template <typename Tin, typename Tout>
339  // working from
340  // https://github.com/microsoft/onnxruntime-inference-examples/blob/main/c_cxx/squeezenet/main.cpp#L71
341  // and
342  // https://github.com/microsoft/onnxruntime-inference-examples/blob/main/c_cxx/MNIST/MNIST.cpp
343  ATH_MSG_DEBUG("Setting up inputs for computation on ONNX network.");
344  ATH_MSG_DEBUG("Input type " << typeid(Tin).name() << " output type "
345  << typeid(Tout).name());
346 
347  // The inputs must be reformatted to the correct data structure.
348  const size_t num_input_nodes = m_inputNodeNames.size();
349  // A pointer to all the nodes we will make
350  // Gonna keep the data in each node flat, becuase that's easier
351  std::vector<std::vector<Tin>> input_values(num_input_nodes);
352  std::vector<Ort::Value> node_values;
353  // Non const values that will be needed at each step.
354  std::string node_name;
355  int n_dimensions, elements_in_node, key_number;
356  size_t first_digit;
357  // Move along the list of node names gathered in the constructor
358  // we need both the node name, and the dimension
359  // so we cannot itterate directly on the vector.
360  ATH_MSG_DEBUG("Looping over " << num_input_nodes
361  << " input nodes of ONNX network.");
362  for (size_t node_n = 0; node_n < m_inputNodeNames.size(); node_n++) {
363  ATH_MSG_DEBUG("Node n = " << node_n);
364  node_name = m_inputNodeNames[node_n];
365  ATH_MSG_DEBUG("Node name " << node_name);
366  // Get the shape of this node
367  n_dimensions = m_inputNodeDims[node_n].size();
368  ATH_MSG_DEBUG("Node dimensions " << n_dimensions);
369  elements_in_node = 1;
370  for (int dimension_len : m_inputNodeDims[node_n]) {
371  elements_in_node *= dimension_len;
372  };
373  ATH_MSG_DEBUG("Elements in node " << elements_in_node);
374  for (auto inp : inputs) {
375  ATH_MSG_DEBUG("Have input named " << inp.first);
376  };
377  // Get the node content and remove any common prefix from the elements
378  const std::map<std::string, double> node_inputs = inputs.at(node_name);
379  std::vector<Tin> node_elements(elements_in_node);
380 
381  ATH_MSG_DEBUG("Found node named " << node_name << " with "
382  << elements_in_node << " elements.");
383  // Then the rest should be numbers from 0 up
384  for (auto element : node_inputs){
385  first_digit = element.first.find_first_of("0123456789");
386  // if there is no digit, it's not an element
387  if (first_digit < element.first.length()){
388  key_number = std::stoi(element.first.substr(first_digit));
389  node_elements[key_number] = element.second;
390  }
391  }
392  input_values[node_n] = node_elements;
393 
394  ATH_MSG_DEBUG("Creating ort tensor n_dimensions = "
395  << n_dimensions
396  << ", elements_in_node = " << elements_in_node);
397  // Doesn't copy data internally, so vector arguments need to stay alive
398  Ort::Value node = Ort::Value::CreateTensor<Tin>(
399  m_memoryInfo, input_values[node_n].data(), elements_in_node,
400  m_inputNodeDims[node_n].data(), n_dimensions);
401  // Problems with the string steam when compiling seperatly.
402  // ATH_MSG_DEBUG("Created input node " << node << " from values " <<
403  // input_values[node_n]);
404 
405  node_values.push_back(std::move(node));
406  }
407 
408  ATH_MSG_DEBUG("Running computation on ONNX network.");
409  // All inputs have been correctly formatted and the net can be run.
410  auto output_tensors = m_session->Run(
411  Ort::RunOptions{nullptr}, m_inputNodeNames.data(), &node_values[0],
412  num_input_nodes, m_outputNodeNames.data(), m_outputNodeNames.size());
413 
414  ATH_MSG_DEBUG("Sorting outputs from computation on ONNX network.");
415  // Finaly, the output must be rearanged in the expected format.
417  // as the output format is just a string to double map
418  // the outputs will be keyed like "<node_name>_<part_n>"
419  std::string output_name;
420  const Tout *output_node;
421  for (size_t node_n = 0; node_n < m_outputNodeNames.size(); node_n++) {
422  // get a pointer to the data
423  output_node = output_tensors[node_n].GetTensorMutableData<Tout>();
424  ATH_MSG_VERBOSE("output node " << output_node);
425  elements_in_node = m_outputNodeSize[node_n];
426  node_name = m_outputNodeNames[node_n];
427  // Does the GetTensorMutableData really always return a
428  // flat array?
429  // Likely yes, see use of memcopy on line 301 of
430  // onnxruntime/core/languge_interop_ops/pyop/pyop.cc
431  for (int part_n = 0; part_n < elements_in_node; part_n++) {
432  ATH_MSG_VERBOSE("Node part " << part_n << " contains "
433  << output_node[part_n]);
434  // compose the output name
435  output_name = node_name + "_" + std::to_string(part_n);
436  outputs[output_name] = static_cast<double>(output_node[part_n]);
437  }
438  }
440  ATH_MSG_DEBUG("Returning outputs from computation on ONNX network.");
441  return outputs;
442 };
443 
444 // Possible to avoid copy?
445 // https://github.com/microsoft/onnxruntime/issues/8328
446 // https://github.com/microsoft/onnxruntime/pull/11789
447 // https://github.com/microsoft/onnxruntime/pull/8502
448 
449 // Giving this its own streamer to call setupNet
450 void TFCSONNXHandler::Streamer(TBuffer &buf) {
451  ATH_MSG_DEBUG("In TFCSONNXHandler streamer.");
452  if (buf.IsReading()) {
453  ATH_MSG_INFO("Reading buffer in TFCSONNXHandler ");
454  // Get the persisted variables filled in
455  TFCSONNXHandler::Class()->ReadBuffer(buf, this);
456  // Setup the net, creating the non persisted variables
457  // exactly as in the constructor
458  this->setupNet();
459 #ifndef __FastCaloSimStandAlone__
460  // When running inside Athena, delete persisted information
461  // to conserve memory
462  this->deleteAllButNet();
463 #endif
464  } else {
465  ATH_MSG_INFO("Writing buffer in TFCSONNXHandler ");
466  // Persist variables
467  TFCSONNXHandler::Class()->WriteBuffer(buf, this);
468  };
469  ATH_MSG_DEBUG("Finished TFCSONNXHandler streamer.");
470 };
VNetworkBase::NetworkOutputs
std::map< std::string, double > NetworkOutputs
Format for network outputs.
Definition: VNetworkBase.h:100
data
char data[hepevt_bytes_allocation_ATLAS]
Definition: HepEvt.cxx:11
TFCSONNXHandler.h
yodamerge_tmp.dim
dim
Definition: yodamerge_tmp.py:239
TFCSONNXHandler::writeBytesToTTree
void writeBytesToTTree(TTree &tree, const std::vector< char > &bytes)
Write the content of the proto file to a TTree as a branch.
Definition: TFCSONNXHandler.cxx:310
ATH_MSG_INFO
#define ATH_MSG_INFO(x)
Definition: AthMsgStreamMacros.h:31
TFCSONNXHandler::m_inputNodeNames
std::vector< const char * > m_inputNodeNames
names that index the input nodes
Definition: TFCSONNXHandler.h:234
TFCSONNXHandler::computeTemplate
NetworkOutputs computeTemplate(NetworkInputs const &input)
Do not persistify.
TFCSONNXHandler::getOutputLayers
std::vector< std::string > getOutputLayers() const override
List the names of the outputs.
Definition: TFCSONNXHandler.cxx:67
tree
TChain * tree
Definition: tile_monitor.h:30
TFCSONNXHandler::m_outputNodeNames
std::vector< const char * > m_outputNodeNames
Do not persistify.
Definition: TFCSONNXHandler.h:258
TFCSONNXHandler::m_computeLambda
std::function< NetworkOutputs(NetworkInputs)> m_computeLambda
computeTemplate with apropreate types selected.
Definition: TFCSONNXHandler.h:307
TFCSONNXHandler::print
virtual void print(std::ostream &strm) const override
Write a short description of this net to the string stream.
Definition: TFCSONNXHandler.cxx:78
VNetworkBase::NetworkInputs
std::map< std::string, std::map< std::string, double > > NetworkInputs
Format for network inputs.
Definition: VNetworkBase.h:90
TFCSONNXHandler::compute
NetworkOutputs compute(NetworkInputs const &inputs) const override
Function to pass values to the network.
Definition: TFCSONNXHandler.cxx:57
TFCSONNXHandler::writeNetToTTree
void writeNetToTTree(TTree &tree) override
Save the network to a TTree.
Definition: TFCSONNXHandler.cxx:62
TFCSONNXHandler::m_outputLayers
std::vector< std::string > m_outputLayers
Do not persistify.
Definition: TFCSONNXHandler.h:318
ATH_MSG_VERBOSE
#define ATH_MSG_VERBOSE(x)
Definition: AthMsgStreamMacros.h:28
TFCSONNXHandler::setupPersistedVariables
void setupPersistedVariables() override
Perform actions that prep data to create the net.
Definition: TFCSONNXHandler.cxx:102
TFCSONNXHandler::deleteAllButNet
void deleteAllButNet() override
Get rid of any memory objects that arn't needed to run the net.
Definition: TFCSONNXHandler.cxx:72
postInclude.inputs
inputs
Definition: postInclude.SortInput.py:15
ATH_MSG_ERROR
#define ATH_MSG_ERROR(x)
Definition: AthMsgStreamMacros.h:33
TFCSONNXHandler::getSerializedSession
std::vector< char > getSerializedSession(const std::string &tree_name=m_defaultTreeName)
Return content of the proto (.onnx) file in memory.
Definition: TFCSONNXHandler.cxx:273
CaloCondBlobAlgs_fillNoiseFromASCII.inputFile
string inputFile
Definition: CaloCondBlobAlgs_fillNoiseFromASCII.py:17
lumiFormat.i
int i
Definition: lumiFormat.py:85
TFCSONNXHandler::TFCSONNXHandler
TFCSONNXHandler(const std::string &inputFile)
TFCSONNXHandler constructor.
Definition: TFCSONNXHandler.cxx:24
ATH_MSG_DEBUG
#define ATH_MSG_DEBUG(x)
Definition: AthMsgStreamMacros.h:29
PlotPulseshapeFromCool.input
input
Definition: PlotPulseshapeFromCool.py:106
TFCSONNXHandler::m_inputNodeDims
std::vector< std::vector< int64_t > > m_inputNodeDims
Do not persistify.
Definition: TFCSONNXHandler.h:276
TFCSONNXHandler::setupNet
void setupNet() override
Perform actions that prepare network for use.
Definition: TFCSONNXHandler.cxx:112
TFCSONNXHandler::readSerializedSession
void readSerializedSession()
Do not persistify.
Definition: TFCSONNXHandler.cxx:324
TFCSONNXHandler::m_outputNodeSize
std::vector< int64_t > m_outputNodeSize
Do not persistify.
Definition: TFCSONNXHandler.h:292
python.CreateTierZeroArgdict.outputs
outputs
Definition: CreateTierZeroArgdict.py:189
checkTriggerxAOD.tfile
tfile
Definition: checkTriggerxAOD.py:277
VNetworkBase::removePrefixes
void removePrefixes(NetworkOutputs &outputs) const
Remove any common prefix from the outputs.
Definition: VNetworkBase.cxx:151
TFCSONNXHandler::m_outputNodeDims
std::vector< std::vector< int64_t > > m_outputNodeDims
Do not persistify.
Definition: TFCSONNXHandler.h:284
VNetworkBase
Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration.
Definition: VNetworkBase.h:38
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:221
ActsTrk::to_string
std::string to_string(const DetectorType &type)
Definition: GeometryDefs.h:34
TFCSONNXHandler::m_memoryInfo
Ort::MemoryInfo m_memoryInfo
Do not persistify.
Definition: TFCSONNXHandler.h:312
ATH_MSG_WARNING
#define ATH_MSG_WARNING(x)
Definition: AthMsgStreamMacros.h:32
TFCSONNXHandler::m_bytes
std::vector< char > m_bytes
Content of the proto file.
Definition: TFCSONNXHandler.h:170
VNetworkBase::isRootFile
bool isRootFile(std::string const &filename="") const
Check if a string is possibly a root file path.
Definition: VNetworkBase.cxx:101
TFCSONNXHandler::readBytesFromTTree
std::vector< char > readBytesFromTTree(TTree &tree)
Retrieve the content of the proto file from a TTree.
Definition: TFCSONNXHandler.cxx:297
VNetworkBase::m_inputFile
std::string m_inputFile
Path to the file describing the network, including filename.
Definition: VNetworkBase.h:245
athena.opts
opts
Definition: athena.py:88
python.DataFormatRates.env
env
Definition: DataFormatRates.py:32
node
Definition: memory_hooks-stdcmalloc.h:74
TFCSONNXHandler::m_session
std::unique_ptr< Ort::Session > m_session
The network session itself.
Definition: TFCSONNXHandler.h:210
TFCSONNXHandler
Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration.
Definition: TFCSONNXHandler.h:43