ATLAS Offline Software
BinsDiffByStrips.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3 */
4 
11 #include <dqm_core/AlgorithmConfig.h>
14 #include <dqm_core/AlgorithmManager.h>
15 
16 #include <TH1.h>
17 #include <TH1F.h>
18 #include <TH2F.h>
19 #include <TClass.h>
20 #include <TObjArray.h>
21 #include <TMath.h>
22 
23 #include <cmath>
24 #include <string>
25 #include <algorithm> // for std::sort
26 
27 
28 static dqm_algorithms::BinsDiffByStrips myInstance;
29 
31 {
32  dqm_core::AlgorithmManager::instance().registerAlgorithm("BinsDiffByStrips", this);
33  TH1::AddDirectory(false);
34 }
35 
37 {
38 }
39 
42 {
43 
44  return new BinsDiffByStrips();
45 }
46 
47 
50  const TObject& object,
51  const dqm_core::AlgorithmConfig& config ){
52 
54 
55  //==========================================================================
56  //-- Input Histogram Retrieval --
57  //==========================================================================
58  // Retrieve input object, test if it is a valid 2D histogram:
59 
60  const TH1* histogram;
61 
62  if( object.IsA()->InheritsFrom( "TH1" ) ) {
63  histogram = static_cast<const TH1*>(&object);
64  if (histogram->GetDimension() != 2 ){
65  throw dqm_core::BadConfig( ERS_HERE, name, "dimension != 2 " );
66  }
67  } else {
68  throw dqm_core::BadConfig( ERS_HERE, name, "does not inherit from TH1" );
69  }
70 
71  //==========================================================================
72  //-- Algorithm Configuration --
73  //==========================================================================
74  // Loading of parameters, thresholds from config,
75 
76  // Thresholds:
77  //-------------------
78  double gthreshold;
79  double rthreshold;
80  try {
81  rthreshold = dqm_algorithms::tools::GetFromMap( "MaxDeviation", config.getRedThresholds() );
82  gthreshold = dqm_algorithms::tools::GetFromMap( "MaxDeviation", config.getGreenThresholds() );
83  }
84  catch( dqm_core::Exception & ex ) {
85  throw dqm_core::BadConfig( ERS_HERE, name, ex.what(), ex );
86  }
87 
88  // Configuration Parameters:
89  //-------------------------------
90 
91 
92  // Parameters giving the minimum number(fraction) of bins with a certain status to change the histogram level result
93  // (If the histogram status is not determined by a Chi-Squared test):
94  const int nRedBinsToRedStatus = (int) dqm_algorithms::tools::GetFirstFromMap("NBinsRedToRedStatus", config.getParameters(), 1);
95  const double redFracToRedStatus = dqm_algorithms::tools::GetFirstFromMap("RedFractionToRedStatus", config.getParameters(), 0.01);
96  const int nYellowBinsToYellowStatus = (int) dqm_algorithms::tools::GetFirstFromMap("NBinsYellowToYellowStatus", config.getParameters(), 1);
97  const double yellowFracToYellowStatus = dqm_algorithms::tools::GetFirstFromMap("YellowFractionToYellowStatus", config.getParameters(), 0.05);
98  const double greenFracToGreenStatus = dqm_algorithms::tools::GetFirstFromMap("GreenFractionToGreenStatus", config.getParameters(), 0.5);
99 
100  // Minimum statistics for test:
101  const double minStat = dqm_algorithms::tools::GetFirstFromMap( "MinStat", config.getParameters(), -1);
102  if ( histogram->GetEntries() < minStat ) {
104  return result;
105  }
106 
107  // Parameter for exclusion of bins from consideration:
108  const double ignoreValue = dqm_algorithms::tools::GetFirstFromMap( "ignoreval", config.getParameters(), -99999);
109  const double minError = dqm_algorithms::tools::GetFirstFromMap( "minError", config.getParameters(), -1);
110 
111  // Parameter giving the range of the histogram to be tested:
112  std::vector<int> range;
113  try{
115  }
116  catch( dqm_core::Exception & ex ) {
117  throw dqm_core::BadConfig( ERS_HERE, name, ex.what(), ex );
118  }
119 
120  const bool yStrips = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap( "useStripsOfConstantY", config.getParameters(), 0));
121 
122  // Parameter giving minimal statistical significance for bin test results:
123  const double sigmaThresh = dqm_algorithms::tools::GetFirstFromMap("SigmaThresh", config.getParameters(), 5);
124  // Tag publishing options:
125  const bool publish = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap( "PublishBins", config.getParameters(), 0));
126  const bool publishRed = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap( "PublishRedBins", config.getParameters(), 0));
127  int maxPublish = (int) dqm_algorithms::tools::GetFirstFromMap( "MaxPublish", config.getParameters(), 50);
128  if (maxPublish > 999) maxPublish=999;
129 
130  // Clustering options:
131  const bool clusterResults = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap( "ClusterResults", config.getParameters(), 1));
132  const double seedThreshold = dqm_algorithms::tools::GetFirstFromMap( "SeedThreshold", config.getParameters(), rthreshold);
133  const double growthThreshold = dqm_algorithms::tools::GetFirstFromMap( "GrowthThreshold", config.getParameters(), gthreshold);
134  const int topology = static_cast<int>(dqm_algorithms::tools::GetFirstFromMap( "Topology", config.getParameters(), tools::CylinderX));
135 
136  // Test Directionality: exclude bins over(under) average by setting to a value other than 1:
137  const bool greaterThan = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap( "GreaterThan", config.getParameters(), 0));
138  const bool lessThan = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap( "LessThan", config.getParameters(), 0));
139  bool findBinsOverAvg = true;
140  bool findBinsUnderAvg = true;
141 
142  if (!lessThan && greaterThan) {
143  findBinsUnderAvg = false;
144  }
145  else if (!greaterThan && lessThan) {
146  findBinsOverAvg = false;
147  }
148 
149 
150 
151  // Master switch: trust errors and make this algorithm a test of whether that trust is warranted: (changes three defaults and final test)
152  const bool testConsistencyWithErrors = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap("TestConsistencyWithErrors", config.getParameters(), 0));
153 
154  // Switch to use the mean error instead of the variance as the yard stick by which deviations are measured:
155  const bool useMeanErrorForScale = (testConsistencyWithErrors || static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap("UseMeanErrorForScale", config.getParameters(), 0)));
156 
157  // Switch to decide whether to do a Chi-Squared test:
158  const bool doChiSquaredTest = (testConsistencyWithErrors || static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap("DoChiSquaredTest", config.getParameters(), 0)));
159 
160  // Minimum bins required before(after) removal of outliers for testing of a strip to proceed:
161 
162  //minimum number of bins left after skimming for bins in this strip to be tested:
163  int minBinsBeforeSkimming = (int) dqm_algorithms::tools::GetFirstFromMap("MinBinsBeforeSkimming", config.getParameters(), -1);
164  if (minBinsBeforeSkimming < 3) {
165  if ( !testConsistencyWithErrors ) minBinsBeforeSkimming = 50;
166  else minBinsBeforeSkimming = 8;
167  }
168  //minimum number of bins left after skimming for bins in this strip to be tested:
169  int minBinsAfterSkimming = (int) dqm_algorithms::tools::GetFirstFromMap("MinBinsAfterSkimming", config.getParameters(), -1);
170  if (minBinsAfterSkimming < 2) {
171  if ( !testConsistencyWithErrors ) minBinsAfterSkimming = 8;
172  else minBinsAfterSkimming = 3;
173  }
174 
175  // What to do if minimum bin requirement is not met: mark all bins as "Undefined" or add them all to the next strip:
176  const bool combineStripsBeforeSkimming = static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap("CombineStripsBeforeSkimming", config.getParameters(), 1));
177 
178  // Parameter to declare a bin as green regardless of its relative deviation: (Also will exclude this bin from any clustering of bad bins)
179  double absDiffGreenThresh = dqm_algorithms::tools::GetFirstFromMap("AbsDiffGreenThresh", config.getParameters(), 0);
180 
181 
182 
183 
184 
185  // Parameters for configuring the iterative oulier identification process:
186 
187  // Switch to use error based outlier identification:
188  const bool findOutliersUsingErrors = (testConsistencyWithErrors || static_cast<bool>(dqm_algorithms::tools::GetFirstFromMap("FindOutliersUsingErrors", config.getParameters(), 0)));
189 
190  // Switch to configure non error based outlier identification: (id based on shape of distribution)
191  int nIter = (int) dqm_algorithms::tools::GetFirstFromMap( "nIterations", config.getParameters(), 100); //Defines a maximum: iteration will terminate on stabilization.
192  double iterThresh = dqm_algorithms::tools::GetFirstFromMap("IterDeviationThresh", config.getParameters(), 2.075);
193  double iVarExp = dqm_algorithms::tools::GetFirstFromMap("IterVariationExponent", config.getParameters(), 0.275);
194  double isbf = dqm_algorithms::tools::GetFirstFromMap("IterScaleBiasCorrectionFactor", config.getParameters(), 0.4);
195  double ibc = dqm_algorithms::tools::GetFirstFromMap("IterBreakConstant", config.getParameters(), 25);
196 
197 // empty ratio
198  double emptyRatio = dqm_algorithms::tools::GetFirstFromMap("EmptyRatio",
199 config.getParameters(), 0.3);
200  double outstandingRatio = dqm_algorithms::tools::GetFirstFromMap("OutstandingRatio",config.getParameters(), 50);
201 
202  //=======================================================
203  //-- Setup --
204  //=======================================================
205  //Prepare for testing
206 
207  int ixmax = range[1] - range[0] + 1;
208  int iymax = range[3] - range[2] + 1;
209 
210  int ismax = ixmax;
211  int inmax = iymax;
212  if( yStrips) {
213  ismax = iymax;
214  inmax = ixmax;
215  }
216 
217  //Build vectors to store the axis information more efficiently, keeping to Root's use of overflow bins to keep things
218  //intuitive, aswell as temporary arrays to facilitate booking of results histograms:
219  std::vector<double> xBinCenters;
220  std::vector<double> yBinCenters;
221  double * xBinEdges = new double[ixmax+1];
222  double * yBinEdges = new double[iymax+1];
223 
224  //X-Axis:
225  xBinCenters.push_back( histogram->GetXaxis()->GetBinLowEdge(range[0]) ); //Underflow bin
226  for ( int i = range[0]; i <= range[1]; i++ ) {
227  xBinCenters.push_back( histogram->GetXaxis()->GetBinCenter(i) );
228  xBinEdges[i-range[0]] = histogram->GetXaxis()->GetBinLowEdge(i);
229  }
230  xBinEdges[ixmax] = histogram->GetXaxis()->GetBinUpEdge(range[1]);
231  xBinCenters.push_back( xBinEdges[ixmax] ); //Overflow bin
232 
233  //Y-Axis:
234  yBinCenters.push_back( histogram->GetYaxis()->GetBinLowEdge(range[2]) ); //Underflow bin
235 
236  for ( int j = range[2]; j <= range[3]; j++ ) {
237  yBinCenters.push_back( histogram->GetYaxis()->GetBinCenter(j) );
238  yBinEdges[j-range[2]] = histogram->GetYaxis()->GetBinLowEdge(j);
239  }
240  yBinEdges[iymax] = histogram->GetYaxis()->GetBinUpEdge(range[3]);
241  yBinCenters.push_back( yBinEdges[iymax] ); //Overflow bin
242 
243  double * sBinEdges = xBinEdges;
244  if( yStrips ) {
245  sBinEdges = yBinEdges;
246  }
247 
248  //Book result histograms:
249  TH2F* inputBins = new TH2F("inputBins", histogram->GetTitle(), ixmax, xBinEdges, iymax, yBinEdges);
250  TH2F* binwiseStatus = new TH2F("binewiseStatus", "BinsDiffByStrips Status Results per Bin", ixmax, xBinEdges,
251  iymax, yBinEdges);
252  TH2F* binDeviations = new TH2F("binDeviations","Input bin content normalized by skimmed average and variance per strip",
253  ixmax, xBinEdges, iymax, yBinEdges);
254  TH1F* stripAverages = new TH1F("stripAverages", "Average Value from Cells in Strip After Removal of Outliers",
255  ismax, sBinEdges);
256  TH1F* stripVariances = new TH1F("stripVariances","Standard Variance of Cells in Strip After Removal of Outliers",
257  ismax, sBinEdges);
258 
259  delete[] xBinEdges;
260  delete[] yBinEdges;
261  //Intialize result variables:
262  double maxDeviation = 0;
263  std::vector <tools::binContainer> yellowBins;
264  std::vector <tools::binContainer> redBins;
265  int nBinsRed = 0;
266  int nBinsYellow = 0;
267  int nBinsGreen = 0;
268  int nBinsUndefined = 0;
269 
270 
271  //===============================================================================================
272  //-- Test --
273  //===============================================================================================
274  // Examination of bin values, filling of result histograms, and determination of dq result:
275 
276  std::vector<std::vector<tools::binContainer> > strips;
277 //test_change begin
278 std::vector<tools::binContainer> AllBinInOneStrip;
279 double emptyBinCounter=0;
280 int name_flag = 0;
281 //test_change end
282  //Loop to process histogram and pack it into a vector of strip vectors:
283  for ( int is = 1; is <= ismax; is++ ) {
284  std::vector<tools::binContainer> inputs;
285 
286  int ix = is;
287  int iy = 1;
288  if ( yStrips ) {
289  iy = is;
290  ix = 1;
291  }
292  for ( int in = 1; in <= inmax; in++ ) {
293 
294  if ( yStrips ) {
295  ix = in;
296  }
297  else {
298  iy = in;
299  }
300 
301  int bin = histogram->GetBin(ix + range[0]-1,iy + range[2]-1);
302  double value = histogram->GetBinContent(bin);
303  double error = histogram->GetBinError(bin);
304  inputBins->SetBinContent(ix,iy,value);
305  inputBins->SetBinError(ix,iy,error);
306  if(value==0) emptyBinCounter++;
307 tools::binContainer binContent_tmp = {value,error,1,ix,iy,xBinCenters[ix],yBinCenters[iy] };
308 AllBinInOneStrip.push_back(binContent_tmp);
309  if( (value != ignoreValue) && (error > minError) ){
310  tools::binContainer binContent = {value,error,1,ix,iy,xBinCenters[ix],yBinCenters[iy] };
311 
312  inputs.push_back(binContent);
313  }
314  else {
315  binwiseStatus->SetBinContent(ix,iy,dqm_core::Result::Disabled);
316  }
317  }
318 
319  // If there are not enough bins in this strip and we are not combining strips, then
320  // all the active bins in this strip should be considered undefined and ignored.
321  if( (!combineStripsBeforeSkimming) && ((int)inputs.size() < minBinsBeforeSkimming) ) {
322  nBinsUndefined += inputs.size();
323  }
324  else if(inputs.size() != 0) {
325  strips.push_back(inputs);
326  }
327  }
328 
329  //If combine strips before skimming is on, combine the strips with the fewest active bins with their neighbors.
330  if( combineStripsBeforeSkimming ) {
331  tools::MergePastMinStat(strips,minBinsBeforeSkimming);
332  }
333 
334 
335  //Vectors to store values for chi-squared test, if one is performed: (could one be performed on deviations alone?)
336  std::vector<double> inputValues;
337  std::vector<double> inputErrors;
338  std::vector<double> stripAveragesVector;
339  std::vector<double> stripErrors;
340 
341  std::vector<tools::binContainer> deviations;
342  //Loop over strips:
343  for( std::vector<std::vector<tools::binContainer> >::iterator stripItr = strips.begin(); stripItr != strips.end(); ++stripItr ) {
344 
345  if ( stripItr->empty() ) {
346  continue;
347  }
348 
349  //Find outliers and average when outliers are exluded:
350  double stripAvg = 0;
351  double iScale = 0;
352  int nIn = 0;
353  int nTot = stripItr->size();
355  tools::findOutliersUsingErrors(*stripItr, stripAvg, iScale, nIn, absDiffGreenThresh);
356  }
357  else {
358  tools::findOutliers(*stripItr, stripAvg, iScale, nIn, nIter, iVarExp , iterThresh, isbf, ibc);
359  }
360 
361  // Check if there are enough bins after outliers skimming for any bins from this strip to be flagged,
362  // if not, either label them all as undefined (error = -1) or combine with the next strip:
363  // (Note: in the second case we do not reset binContent.test:
364  // outliers found here will be excluded in the first iteration when they are processed with the next strip)
365 
366  if ( (nIn < minBinsAfterSkimming) ) {
367  for (std::vector<tools::binContainer>::const_iterator it = stripItr->begin(); it != stripItr->end(); ++it) {
368  tools::binContainer deviationContainer = { 0, -3, -13, it->ix, it->iy, it->x, it->y };
369  deviations.push_back(deviationContainer);
370  }
371  continue; //Next strip;
372  }
373 
374 
375  double stripVariance = 0;
376  double stripVarianceError = 0;
377  double stripAvgError = 0;
378  double err2Sum = 0;
379 
380  if( !useMeanErrorForScale ) {
381  // We will now calculate the variance with two methods, one using the the number of bins in (nIn), the number out,
382  // and range from above, and one looking at the standard variance of the nIn bins in inputs marked as good by
383  // findOutliers. We will then take a weighted average of the two measures as our final estimate of the variance of
384  // the underlying, outlier free population.
385 
386  // Get range and measures of distribution:
387  double S2 = 0;
388  double sumSquaredDiffFromAvg = 0;
389  double sumCompensator = 0;
390  double err2Diff2Sum = 0;
391  double min = 0;
392  double max = 0;
393  nIn = 0;
394 
395 
396  for (std::vector<tools::binContainer>::const_iterator it = stripItr->begin(); it != stripItr->end(); ++it) {
397  //it->test will evaluate as true iff tools::findOutliers determined it was sufficiently close to the mean
398  // to not be a variance spoiling outlier:
399 
400  if(it->test){
401  if( nIn == 0 ) {
402  min = it->value;
403  max = it->value;
404  }
405  if( it->value > max ) max = it->value;
406  if( it->value < min ) min = it->value;
407  nIn++;
408 
409  double diffFromAvg = it->value - stripAvg;
410  sumSquaredDiffFromAvg += std::pow( diffFromAvg, 2);
411  sumCompensator += ( diffFromAvg ); //Use to compensate for floating point issues if they should crop up:
412  // (would be zero if precision was perfect)
413 
414  double inputErr2 = std::pow(it->error,2.);
415  err2Sum += inputErr2;
416  err2Diff2Sum += inputErr2 * std::pow( diffFromAvg, 2);
417  }
418  }
419 
420  // Record the range
421  double range = max - min;
422 
423 
424  //Method 1: ErfInverse:
425  double countingVariance = 0;
426  double countingWeight = 0;
427 
428  if( (nTot != 0) && (range != 0) && ((nTot - nIn) != 0) ) {
429  double erfin = TMath::ErfInverse( (1.0 * nIn) / nTot );
430  double erfin2 = std::pow(erfin,2);
431 
432  if( erfin2 != 0 ) {
433  countingVariance = range / (erfin * 2 * std::sqrt(2));
434  countingWeight = 8 * std::pow(erfin2 / (range * std::exp(erfin2)),2) * std::pow(1.0 * nTot,3.) / (M_PI * nIn * (nTot - nIn));
435  }
436  }
437 
438  //Method 2: Compensated Bounded Variance:
439  double boundedVariance = 0;
440  double boundedWeight = 0;
441  double sumWeights = 0;
442  if(nIn > 2) {
443  S2 = (sumSquaredDiffFromAvg - (std::pow(sumCompensator,2)/nIn) )/(nIn - 1);
444  boundedVariance = std::sqrt(S2);
445  double boundEffect = 1;
446  double U = 0;
447  if( countingVariance != 0 ) {
448  U = range / (2 * countingVariance);
449  }
450  else if( boundedVariance != 0 ) {
451  U = range / (2 * boundedVariance);
452  }
453  if( U != 0 ) {
454  boundEffect = TMath::Erf( U / 2 ) ;
455  }
456  if(boundEffect != 0) {
457  boundedVariance = boundedVariance / boundEffect;
458  }
459  double boundedErr2 = 0;
460  if (S2 != 0) {
461  boundedErr2 = ( std::pow( err2Diff2Sum / (std::pow(nIn-1,2.) * S2), 2) + std::pow( boundedVariance*(1 - boundEffect)/2,2) );
462  }
463  if( boundedErr2 != 0 ) {
464  boundedWeight = 1/boundedErr2;
465  }
466  sumWeights = ( countingWeight + boundedWeight );
467  stripVariance = 0;
468  if(sumWeights != 0) {
469  //Recalculate boundEffect and rederive boundedVariance using preliminary combined strip variance:
470  stripVariance = (countingVariance * countingWeight + boundedVariance * boundedWeight ) / sumWeights;
471  if(stripVariance != 0 ) {
472  boundEffect = TMath::Erf( range / (4 * stripVariance) );
473  if( boundEffect != 0 ) {
474  boundedVariance = std::sqrt(S2) / boundEffect;
475  boundedErr2 = ( std::pow( err2Diff2Sum / (std::pow(nIn-1,2.) * S2), 2) + std::pow( boundedVariance*(1 - boundEffect)/2,2) );
476  }
477  }
478  }
479 
480 
481  }
482  else if ( iScale != 0 ){
483  //Use the iScale as a last resort, as method 1 is not very good with nIn <= 2 either, but give it a big error
484  boundedVariance = iScale;
485  boundedWeight = std::pow(iScale, -2);
486  }
487 
488  // Make final Combination of the two variance estimations, weighted with their errors:
489  sumWeights = ( countingWeight + boundedWeight );
490  stripVariance = 0;
491 
492  if(sumWeights != 0) {
493  stripVariance = (countingVariance * countingWeight + boundedVariance * boundedWeight ) / sumWeights;
494  stripVarianceError = 1./std::sqrt(sumWeights);
495 
496  }
497  }
498  else if (nIn > 2) {
499  // Just calculate error based quantities and use these:
500  for (std::vector<tools::binContainer>::const_iterator it = stripItr->begin(); it != stripItr->end(); ++it) {
501  //it->test will evaluate as true iff tools::findOutliers determined it was sufficiently close to the mean
502  // to not be a variance spoiling outlier:
503  if(it->test){
504  err2Sum += std::pow(it->error,2.);
505  }
506  }
507  stripVariance = std::sqrt( err2Sum / nIn ); //<- what we would expect the variance to be if the errors are correct
508  stripVarianceError = stripVariance / std::sqrt( nIn );
509  }
510 
511 
512  // Calculate error on the mean:
513  stripAvgError = std::sqrt(err2Sum)/nIn;
514 
515  int is = 0;
516  if (yStrips) {
517  is = stripItr->front().iy;
518  }
519  else {
520  is = stripItr->front().ix;
521  }
522 
523  // Store final skimmed Average and Variance found for this strip:
524  stripAverages->SetBinContent(is,stripAvg);
525  stripAverages->SetBinError(is,stripAvgError);
526  stripVariances->SetBinContent(is,stripVariance);
527  stripVariances->SetBinError(is,stripVarianceError);
528 
529 
530  if(doChiSquaredTest) {
531  for (std::vector<tools::binContainer>::const_iterator it = stripItr->begin(); it != stripItr->end(); ++it) {
532  inputValues.push_back( it->value );
533  inputErrors.push_back( 0. );
534  stripAveragesVector.push_back( stripAvg );
535  stripErrors.push_back( stripVariance );
536  }
537  }
538 
539  //Now find the deviation from the strip average, in multiples of the strip variance, for each bin in this strip:
540  for (std::vector<tools::binContainer>::const_iterator it = stripItr->begin(); it != stripItr->end(); ++it) {
541  double deviation = 0;
542  double deviationError = -1;
543  double diffFromAvg = it->value - stripAvg;
544 
545 // test_change begin
546  if(stripVariance > 0.00001){
547  deviation = diffFromAvg / stripVariance;
548  if ( nIn > 1 ) {
549  deviationError = sqrt( (( std::pow(it->error,2) + std::pow(stripAvgError,2) ) / std::pow(stripVariance,2))
550  + ( std::pow(diffFromAvg,2) * std::pow(stripVarianceError,2) / std::pow(stripVariance,4)) );
551 
552  }
553  }
554  else {deviation=0;
555  deviationError=0;
556  if( (it->test==0) && (std::abs(it->value)/std::abs(stripAvg)) > outstandingRatio ) {
557  name_flag = 1;
558  }
559  } //test_change
560  int binStatus = 0;
561  if ( std::abs(diffFromAvg) < (absDiffGreenThresh + std::sqrt(std::pow(it->error,2) + (err2Sum/nIn))) ) {
562  binStatus = 3;
563  }
564  //Save bin for future processing and tests:
565  tools::binContainer deviationContainer = { deviation , deviationError, binStatus, it->ix, it->iy, it->x, it->y };
566  deviations.push_back(deviationContainer);
567  //Write bin to result histogram:
568  int bin = binDeviations->GetBin(it->ix,it->iy);
569  binDeviations->SetBinContent(bin,deviation);
570  binDeviations->SetBinError(bin,deviationError); // i change this
571  }
572  }
573 
574 
575  //If clustering of results is turned on, cluster the bins according to their deviation:
576  std::vector<tools::binCluster> clusters;
577  std::vector<tools::binCluster> redClusters;
578  std::vector<tools::binCluster> yellowClusters;
579  if(clusterResults) {
580 
581  //First sort the bins:
582  std::sort( deviations.begin(), deviations.end(), dqm_algorithms::tools::binContainer::comp );
583 
584  //Now map the deviations according to ix, iy,
585  std::vector<std::vector<tools::binContainer*> > binMap = makeBinMap(deviations, ixmax, iymax, topology);
586  //Now do the clustering:
587  for (std::vector<tools::binContainer>::iterator it = deviations.begin(); it != deviations.end(); ++it) {
588  if( (it->value > seedThreshold + it->error) && !it->test ) {
589  tools::binCluster cluster = tools::buildCluster(*it,binMap,xBinCenters,yBinCenters,growthThreshold,topology);
590  if(cluster.n > 1) {
591  // Only keep clusters with more than 1 bin
592  clusters.push_back(cluster);
593  }
594  else {
595  // Unmark this bin: it is not in a cluster
596  it->test = 0;
597  }
598  }
599  }
600 
601 
602  //Score each cluster based on the significance of its total deviation: (Using the same criteria to be used for bins)
603  for( std::vector<tools::binCluster>::const_iterator it = clusters.begin(); it != clusters.end(); ++it) {
604  double fabsDeviation = std::abs(it->value);
605  double significanceBound = sigmaThresh * it->error;
606  bool overAvg = ( it->value >= 0 );
607  if ( (findBinsOverAvg && overAvg) || (findBinsUnderAvg && !overAvg) ) {
608  if ( fabsDeviation > (gthreshold + significanceBound) ) {
609  if ( fabsDeviation > (rthreshold + significanceBound) ) {
610  nBinsRed += it->n;
611  if (publish || publishRed) {
612  redClusters.push_back(*it);
613  }
614  continue;
615  }
616  nBinsYellow += it->n;
617  if (publish) {
618  yellowClusters.push_back(*it);
619  }
620  }
621  }
622  }
623  }
624 
625  tools::binContainer maxDevBin = { 0, -999.9, 0, 0, 0, 0, 0 };
626 
627  // Now score each bin based on the significance of its deviation:
628  for (std::vector<tools::binContainer>::const_iterator it = deviations.begin(); it != deviations.end(); ++it) {
629  int bin = binwiseStatus->GetBin(it->ix,it->iy);
630  //Check for bins with no defined deviation / deviation error
631  if ( it->error < 0 ) {
632  binwiseStatus->SetBinContent(bin,dqm_core::Result::Undefined);
633  nBinsUndefined++;
634  continue;
635  }
636  //Check if this is the maximum deviation so far:
637  if (std::abs(it->value) > std::abs(maxDeviation) ) { // i change the maxDeviation to
638  // std::abs(maxDeviation)
639  maxDeviation = it->value;
640  maxDevBin = *it;
641  }
642  //Check if this bin was marked as green by a prior test:
643  if ( it->test == 3 ) {
644  binwiseStatus->SetBinContent(bin,dqm_core::Result::Green);
645  nBinsGreen++;
646  continue;
647  }
648 
649 
650  double fabsDeviation = std::abs(it->value);
651  double significanceBound = sigmaThresh * it->error;
652 
653  //Flag Green bins:
654  if ( fabsDeviation < (gthreshold - significanceBound ) ) {
655  binwiseStatus->SetBinContent(bin,dqm_core::Result::Green);
656  nBinsGreen++;
657  continue;
658  }
659  bool overAvg = ( it->value >= 0 );
660  if ( (findBinsOverAvg && overAvg) || (findBinsUnderAvg && !overAvg) ) {
661  if ( fabsDeviation > (gthreshold + significanceBound) ) {
662  if ( fabsDeviation > (rthreshold + significanceBound) ) {
663 
664  binwiseStatus->SetBinContent(bin,dqm_core::Result::Red);
665 
666  //Only publish and count red bins here if they were not grouped in any cluster of bad bins:
667  if( it->test != 10 ) {
668  // Using map machinery to ensure proper ordering: worst bins should have preference in publishing.
669  if (publish || publishRed) {
670  redBins.push_back( *it );
671  }
672  nBinsRed++;
673  }
674  continue;
675  }
676 
677  binwiseStatus->SetBinContent(bin,dqm_core::Result::Yellow);
678  //Similarly exclude clustered yellow bins from publishing and counting:
679  if( it->test != 10 ) {
680  if (publish) {
681  yellowBins.push_back( *it );
682  }
683  nBinsYellow++;
684  }
685  continue;
686  }
687  }
688  binwiseStatus->SetBinContent(bin,dqm_core::Result::Undefined);
689  nBinsUndefined++;
690  }
691 //test_change begin
692 tools::binContainer onebin_my={0,0,0,0,0,0,0};
693 tools::binContainer onebin_my_pre={0,0,0,0,0,0,0};
694 double maxvalue_pre=-1;
695 std::vector<tools::binContainer> topBinEntries;
696 std::vector<tools::binContainer> topDeviations;
697 double emptyRatio_this = emptyBinCounter/(histogram->GetNbinsX()*histogram->GetNbinsY());
698 if (emptyRatio_this > emptyRatio) name_flag=1;
699 if(name_flag==1){
700  int NTopEntries=0;
701  if(AllBinInOneStrip.size()>10 ) NTopEntries=10;
702  else NTopEntries = AllBinInOneStrip.size();
703  int AllBinInOneStrip_size = AllBinInOneStrip.size();
704  bool *bin_entries_status = new bool [AllBinInOneStrip_size];
705  for(int i=0; i< AllBinInOneStrip_size; i++) bin_entries_status[i] = true;
706  for(int i=0;i<NTopEntries;i++){
707  double maxvalue=0;
708  int counter=0;
709  int counter2=0;
710  for(std::vector<tools::binContainer>::const_iterator it =AllBinInOneStrip.begin();it!=AllBinInOneStrip.end();++it){
711  int flag_my = i==0 || ( bin_entries_status[counter] && it->value <= maxvalue_pre);
712  if(std::abs(it->value) >= std::abs(maxvalue) && flag_my) {
713  maxvalue = it->value;
714  onebin_my = *it;
715  counter2 = counter;
716  }
717  counter++;
718  }
719  bin_entries_status[counter2]=0;
720 if (onebin_my.x!= onebin_my_pre.x||onebin_my.y!=onebin_my_pre.y) topBinEntries.push_back(onebin_my);
721  maxvalue_pre = maxvalue;
722  onebin_my_pre = onebin_my;
723  }
724  delete[] bin_entries_status;
725 }
726 else {
727  int NTopdeviation=0;
728  if(deviations.size()>5) NTopdeviation = 5;
729  else NTopdeviation = deviations.size();
730  int deviations_size = deviations.size();
731  bool *bin_dev_status = new bool [ deviations_size];
732  for(int i=0; i< deviations_size ; i++) bin_dev_status[i] = true;
733  for(int i=0;i<NTopdeviation;i++){
734  double maxvalue=0;
735  int counter=0;
736  int counter2=0;
737  if(deviations.size()!=0){
738  for (std::vector<tools::binContainer>::const_iterator it = deviations.begin(); it != deviations.end(); ++it){
739  int flag_my = i==0 || ( bin_dev_status[counter] && it->value <= maxvalue_pre);
740  if(std::abs(it->value) >= std::abs(maxvalue) && flag_my) {
741  maxvalue = it->value;
742  onebin_my = *it;
743  counter2 = counter;
744  }
745  counter++;
746  }
747  bin_dev_status[counter2]=0;
748  if (onebin_my.x!= onebin_my_pre.x||onebin_my.y!=onebin_my_pre.y) {
749  topDeviations.push_back(onebin_my);
750  maxvalue_pre = maxvalue;
751  onebin_my_pre = onebin_my;
752  }
753 }
754 
755  }
756  delete[] bin_dev_status;
757  }
758  if ( publish || publishRed) {
759 
760  int objectsPublished = 0;
761  int clustersPublished = 0;
762  // Publish red clusters first:
763  std::sort( redClusters.begin(), redClusters.end(), dqm_algorithms::tools::binCluster::comp );
764  std::vector<tools::binCluster>::const_reverse_iterator rbcrbegin = redClusters.rbegin();
765  std::vector<tools::binCluster>::const_reverse_iterator rbcrend = redClusters.rend();
766  for (std::vector<tools::binCluster>::const_reverse_iterator it = rbcrbegin;
767  it != rbcrend; ++it) {
768 
769  if (objectsPublished < maxPublish) {
770  char ctag[256];
771  sprintf(ctag,"C%.3i-R-%.3iBins@ Eta=(%+.3f_to_%+.3f) Phi=(%+.3f_to_%+.3f) Center=(%+.3f,%+.3f) Radius=%+.3f",clustersPublished,it->n,
772  xBinCenters[it->ixmin],xBinCenters[it->ixmax],yBinCenters[it->iymin],yBinCenters[it->iymax],it->x,it->y,it->radius);
773 
774  std::string tag = ctag;
775  int sizeDiff = 30 - tag.size();
776  if( sizeDiff > 0 ) {
777  tag.append(sizeDiff, '_');
778  }
779 
780  result->tags_[tag] = it->value;
781  clustersPublished++;
782  objectsPublished++;
783  }
784  }
785 
786 
787  // Publish red bins next:
788  int binsPublished = 0;
789  std::sort( redBins.begin(), redBins.end(), dqm_algorithms::tools::binContainer::comp );
790 
791  for ( std::vector<tools::binContainer>::const_reverse_iterator rIter = redBins.rbegin();
792  rIter != redBins.rend();
793  ++rIter) {
794  if (objectsPublished < maxPublish) {
795  char ctag[16];
796  sprintf(ctag,"%.3i-R-",binsPublished);
797  std::string tag = ctag;
798  tools::MakeBinTag(*rIter,tag);
799  result->tags_[tag] = rIter->value;
800  binsPublished++;
801  objectsPublished++;
802  }
803  else {
804  break;
805  }
806  }
807 
808  // Now publish yellow bins:
809  if ( publish ) {
810  std::sort( yellowBins.begin(), yellowBins.end(), dqm_algorithms::tools::binContainer::comp );
811  for ( std::vector<tools::binContainer>::const_reverse_iterator rIter = yellowBins.rbegin();
812  rIter != yellowBins.rend();
813  ++rIter) {
814  if (objectsPublished < maxPublish) {
815  char ctag[16];
816  sprintf(ctag,"%.3i-Y-",binsPublished);
817  std::string tag = ctag;
818  tools::MakeBinTag(*rIter,tag);
819  result->tags_[tag] = rIter->value;
820  binsPublished++;
821  objectsPublished++;
822 
823  }
824  else {
825  break;
826  }
827  }
828  }
829  //Lastly publish yellow clusters: (What are these, anyway?)
830  if ( publish ) {
831  std::sort( yellowClusters.begin(), yellowClusters.end(), dqm_algorithms::tools::binCluster::comp );
832  for (std::vector<tools::binCluster>::const_reverse_iterator it = yellowClusters.rbegin();
833  it != yellowClusters.rend(); ++it) {
834  if (objectsPublished < maxPublish) {
835  char ctag[256];
836  sprintf(ctag,"C%.3i-Y-%.3iBins@ Eta=(%+.3f_to_%+.3f) Phi=(%+.3f_to_%+.3f) Center=(%+.3f,%+.3f) Radius=%+.3f",clustersPublished,it->n,
837  xBinCenters[it->ixmin],xBinCenters[it->ixmax],yBinCenters[it->iymin],yBinCenters[it->iymax],it->x,it->y,it->radius);
838  std::string tag = ctag;
839  int sizeDiff = 30 - tag.size();
840  if( sizeDiff > 0 ) {
841  tag.append(sizeDiff, '_');
842  }
843  result->tags_[tag] = it->value;
844  clustersPublished++;
845  objectsPublished++;
846  }
847  }
848  }
849 
850  }
851  result->tags_["NBins_RED"] = nBinsRed;
852  result->tags_["NBins_YELLOW"] = nBinsYellow;
853 
854 //test_change begin
855 if(name_flag!=1){
856  for(unsigned int i=0;i<topDeviations.size();i++){
857  if(topDeviations[i].error !=-999.9 ) {
858  char tmp[100];
859  sprintf(tmp,"MaxDeviation%u-",i);
860  std::string myString = tmp;
861  tools::MakeBinTag(topDeviations[i], myString);
862  result->tags_[myString] = topDeviations[i].value;
863  }
864  }
865 }
866 if(name_flag==1) {
867  if( maxDevBin.error != -999.9 ) {
868  std::string devString = "MaxDeviation-";
869  tools::MakeBinTag(maxDevBin,devString);
870  result->tags_[devString] = maxDeviation;
871  }
872  for(unsigned int i=0;i<topBinEntries.size();i++){
873  char tmp[100];
874  sprintf(tmp,"LeadingBinContents%u-",i);
875  std::string myString = tmp;
876  tools::MakeBinTag(topBinEntries[i], myString);
877  result->tags_[myString] = topBinEntries[i].value;
878  }
879 }
880 //test_change end
881 
882  result->tags_["Algorithm--BinsDiffByStrips"] = 5; //Provide algorithm name and number of results histograms in TObjArray, for convenience of summary maker:
883 
884  //Determine if the configuration wants this to be part of an AndGroup, used by BinwiseSummary to require reds from the
885  // same bin in multiple plots for red to be propogated.
886  const double andGroup = dqm_algorithms::tools::GetFirstFromMap("AndGroup", config.getParameters(), -99999);
887  if( andGroup != -99999 ) {
888  result->tags_["AndGroup"] = andGroup;
889  }
890 
891 
892  TObjArray * resultList = new TObjArray(5,0);
893 
894  //This order is important! Add new histograms at the end of the list only to avoid breaking summarymakers and be sure to increase
895  // the alocated capacity of the TObjArray set in the constructor above.
896  resultList->Add(binwiseStatus);
897  resultList->Add(inputBins);
898  resultList->Add(binDeviations);
899  resultList->Add(stripAverages);
900  resultList->Add(stripVariances);
901 
902  resultList->SetOwner(true);
903 
904  result->object_ = (boost::shared_ptr<TObject>)(TObject*)(resultList);
905 
906 
907  if( doChiSquaredTest ) {
908 
909  std::pair<double,double> chiSquareResult = dqm_algorithms::tools::CalcBinsProbChisq(inputValues,inputErrors,stripAveragesVector,stripErrors);
910  result->tags_["SigmaChiSq"] = chiSquareResult.second;
911 
912  if ( testConsistencyWithErrors ) {
913  //Determine status based on quality of chi squared fit:
914  if ( chiSquareResult.second <= gthreshold ) {
915  result->status_ = dqm_core::Result::Green;
916  } else if ( chiSquareResult.second < rthreshold ) {
917  result->status_ = dqm_core::Result::Yellow;
918  } else {
919  result->status_ = dqm_core::Result::Red;
920  }
921 
922  return result;
923  }
924  }
925 
926  // Determine status based on the number of red, yellow, green, and other bins:
927  int nActiveBins = nBinsGreen + nBinsRed + nBinsYellow + nBinsUndefined;
928  if( nActiveBins != 0 ) {
929  if ( (nBinsRed >= nRedBinsToRedStatus) || ((nBinsRed * 1.0 / nActiveBins) > redFracToRedStatus) ) {
930  result->status_ = dqm_core::Result::Red;
931  }
932  else if ( ((nBinsRed + nBinsYellow) >= nYellowBinsToYellowStatus)
933  || (((nBinsRed + nBinsYellow) / nActiveBins) > yellowFracToYellowStatus) ) {
934  result->status_ = dqm_core::Result::Yellow;
935  }
936  else if ( (nBinsGreen * 1.0 / nActiveBins ) >= greenFracToGreenStatus ) {
937  result->status_ = dqm_core::Result::Green;
938  }
939  else {
941  }
942  }
943  else {
944  result->status_ = dqm_core::Result::Disabled;
945  }
946  return result;
947 }
948 
949 
950 void
952 {
953 
954  out<<"BinsDiffByStrips: Calculates Average bin value and variance for each strip of constant x and finds bins in that strip that our outliers from the mean\n"<<std::endl;
955  out<<"Mandatory Green/Red Threshold: MaxDeviation: size of deviation from mean, in multiples of variance, for bin to be considered Green/Red. Overall result is result for worst bin"<<std::endl;
956  out<<"Optional Parameter: MinStat: Minimum histogram statistics needed to return defined result"<<std::endl;
957  out<<"Optional Parameter: ignoreval: value to be ignored for calculating average, variance, and identifying bad bins. Ignored bins are flagged as Disabled"<<std::endl;
958  out<<"Optional Parameter: useStripsOfConstantY: compare bins in strips of constant Y rather than constant X, as is the defualt (set to 1 for true). Default = false"<<std::endl;
959 
960  out<<"Optional Parameter: xmin: minimum x range"<<std::endl;
961  out<<"Optional Parameter: xmax: maximum x range"<<std::endl;
962  out<<"Optional Parameter: ymin: minimum y range"<<std::endl;
963  out<<"Optional Parameter: ymax: maximum y range"<<std::endl;
964  out<<"Optional Parameter: GreaterThan: check for bins which are GreaterThan average (set to 1 for true). Default = true"<<std::endl;
965  out<<"Optional Parameter: LessThan: check for bins which are LessThan average (set to 1 for true). Default = true"<<std::endl;
966  out<<"Optional Parameter: PublishBins: Save all bin quality decisions in output histogram and save Red and Yellow bins in tag output (set to 1 for true). Default = false"<<std::endl;
967  out<<"Optional Parameter: PublishRedBins: Save bins identified as Red in tag output(set to 1 for true). Default = false"<<std::endl;
968  out<<"Optional Parameter: MaxPublish: Max number of bins to save in tag output. Default = 20"<<std::endl;
969  out<<"Optional Parameter: MinBinsAfterSkimming : Minimum number of bins remaining after skimming for any bins to be flagged as Red/Yellow/Green. If threshold is not met, another attempt will be made at the iteration process with these few bin excluded in the first pass. Failing success, the entire strip will be flagged as Undefined. Default = 5"<<std::endl;
970  out<<"Optional Parameter: MinAbsDiffFromAvg : Bins whose absolute difference from the mean is less than this amount, in a statistically significant fashion, will always be flagged as green."
971  <<"Bin will be flagged as either Green or Undefined, depending on significance by which it passes this cut."<<std::endl;
972  out<<"Optional Parameter: nIterations : Number of iterations to be used in calculating mean and variance while skimming outliers. Default = 10" <<std::endl;
973  out<<"Optional Parameter: MaxNRetryIteration : Maxiumum number of times the iteration should be restarted should it fail (by leaving fewer than MinBinsAfterSkimming), reseeding with those cells that pass the iteration removed in the first pass. If MaxNRetryIteration = 0, will never retry. Default = 5. " <<std::endl;
974  out<<"Optional Parameter: IterVariationExponent: exponent k used in calculating the generalized variance, iVar, where iVar = (sum[ (abs[ x - xbar ])^k ])^(1/k). If k = 2, for instance, iVar is equivalent to the standard variance. (If nIterations = 1, this parameter has no effect.) Default = -1.4235"<<std::endl;
975  out<<"Optional Parameter: IterDeviationThresh : size of deviation from mean, in multiples of the generalized variance, for bin to be excluded during iterative calculation of mean and variance. (If nIterations = 1, this parameter has no effect.) Default = 1.3"<<std::endl;
976 
977  out<<"Optional Parameter: SigmaThresh : Minimum significance (distance from threshold in multiples of the error) for quality statement to be made about a bin). Default = 5"<<std::endl;
978  out<<"Optional Parameter: FindOutliersUsingErrors : Switch to use outlier finding based on the pull of the mean of each bin given its error as compared to the error on the mean, rather than the default error independent aproach."<<std::endl;
979  out<<"Optional Parameter: UseMeanErrorForScale : Use the average error of the non-outliers, rather than their estimated variance, as the scale against which deviations are measured."<<std::endl;
980  out<<"Optional Parameter: DoChiSquaredTest : Calculate the Chi_Squared value for the distribution of all the bin values given the scale (estimated variance or, if UseMeanErrorForScale is used, mean error."<<std::endl;
981  out<<"Optional Parameter: TestConsistencyWithErrors : Switch on FindOutliersUsingErrors, UseMeanErrorForScale, and DoChiSquaredTest and base the DQ decision on the Chi-Squared result"<<std::endl;
982 }
983 void
984 dqm_algorithms::BinsDiffByStrips::find_n(const std::string& name_tmp,int& name_flag){
985  int where = name_tmp.find_last_of("_");
986  std::string name;
987  name = name_tmp.substr(where+1);
988  if(name.compare("5Sigma")==0 || name_tmp.compare("m_EtavsPhi3")==0 || name_tmp.compare("m_EtavsPhi4")==0 ) name_flag=1;
989  else name_flag = 0;
990 }
991 
992 
xAOD::iterator
JetConstituentVector::iterator iterator
Definition: JetConstituentVector.cxx:68
dqm_algorithms::tools::GetBinRange
std::vector< int > GetBinRange(const TH1 *histogram, const std::map< std::string, double > &params)
Definition: AlgorithmHelper.cxx:380
dqm_algorithms::BinsDiffByStrips::find_n
void find_n(const std::string &, int &)
Definition: BinsDiffByStrips.cxx:984
Undefined
@ Undefined
Definition: MaterialTypes.h:8
dqm_algorithms::tools::binContainer::comp
static bool comp(const binContainer &lhs, const binContainer &rhs)
Definition: AlgorithmHelper.h:53
dqm_algorithms::tools::findOutliers
void findOutliers(std::vector< binContainer > &input, double &mean, double &scale, int &nIn, int nIterations, double exponent, double threshold, double SBCF=1., double nStop=8.)
Definition: AlgorithmHelper.cxx:888
get_generator_info.result
result
Definition: get_generator_info.py:21
IsA
#define IsA
Declare the TObject style functions.
Definition: xAODTEventBranch.h:59
dqm_algorithms::BinsDiffByStrips::~BinsDiffByStrips
~BinsDiffByStrips()
Definition: BinsDiffByStrips.cxx:36
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
max
constexpr double max()
Definition: ap_fixedTest.cxx:33
min
constexpr double min()
Definition: ap_fixedTest.cxx:26
dqm_algorithms::tools::makeBinMap
std::vector< std::vector< binContainer * > > makeBinMap(std::vector< dqm_algorithms::tools::binContainer > &bins, int ixmax, int iymax, int topology=CylinderX)
Definition: AlgorithmHelper.cxx:1214
dqm_algorithms::BinsDiffByStrips::printDescription
void printDescription(std::ostream &out)
Definition: BinsDiffByStrips.cxx:951
dqm_algorithms::tools::CalcBinsProbChisq
std::pair< double, double > CalcBinsProbChisq(const std::vector< double > &inputval, const std::vector< double > &inputerr, double x0, double x0_err)
Definition: AlgorithmHelper.cxx:1411
skel.it
it
Definition: skel.GENtoEVGEN.py:396
python.AthDsoLogger.out
out
Definition: AthDsoLogger.py:71
M_PI
#define M_PI
Definition: ActiveFraction.h:11
bin
Definition: BinsDiffFromStripMedian.h:43
athena.value
value
Definition: athena.py:124
drawFromPickle.exp
exp
Definition: drawFromPickle.py:36
python.TrigEgammaMonitorHelper.TH2F
def TH2F(name, title, nxbins, bins_par2, bins_par3, bins_par4, bins_par5=None, bins_par6=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:45
postInclude.inputs
inputs
Definition: postInclude.SortInput.py:15
config
Definition: PhysicsAnalysis/AnalysisCommon/AssociationUtils/python/config.py:1
dqm_algorithms::tools::binContainer::x
double x
Definition: AlgorithmHelper.h:50
dqm_algorithms::tools::buildCluster
binCluster buildCluster(binContainer &seed, const std::vector< std::vector< binContainer * > > &binMap, const std::vector< double > &xValues, const std::vector< double > &yValues, double threhold, int topology=CylinderX)
Definition: AlgorithmHelper.cxx:1025
dqm_algorithms::tools::binContainer::y
double y
Definition: AlgorithmHelper.h:51
dqm_algorithms::tools::binCluster::n
int n
Definition: AlgorithmHelper.h:62
instance
std::map< std::string, double > instance
Definition: Run_To_Get_Tags.h:8
dqm_algorithms::tools::MergePastMinStat
void MergePastMinStat(std::vector< std::vector< tools::binContainer > > &strips, int minStat)
Definition: AlgorithmHelper.cxx:1431
dqm_algorithms::tools::CylinderX
@ CylinderX
Definition: AlgorithmHelper.h:41
dqm_algorithms::tools::binCluster
Definition: AlgorithmHelper.h:56
lumiFormat.i
int i
Definition: lumiFormat.py:85
dqm_algorithms::tools::binContainer::error
double error
Definition: AlgorithmHelper.h:46
dqm_algorithms::BinsDiffByStrips::BinsDiffByStrips
BinsDiffByStrips()
Definition: BinsDiffByStrips.cxx:30
BinsDiffByStrips.h
Result
ICscStripFitter::Result Result
Definition: CalibCscStripFitter.cxx:13
dqm_algorithms::BinsDiffByStrips
Definition: BinsDiffByStrips.h:19
plotBeamSpotVxVal.range
range
Definition: plotBeamSpotVxVal.py:195
python.Utils.unixtools.where
def where(filename, prepath=[])
"which" for python files -------------------------------------------------—
Definition: unixtools.py:53
python.handimod.Green
int Green
Definition: handimod.py:524
DeMoUpdate.tmp
string tmp
Definition: DeMoUpdate.py:1167
dqm_algorithms::tools::binCluster::comp
static bool comp(const binCluster &lhs, const binCluster &rhs)
Definition: AlgorithmHelper.h:67
python.handimod.Red
Red
Definition: handimod.py:551
dqm_algorithms::BinsDiffByStrips::execute
dqm_core::Result * execute(const std::string &, const TObject &, const dqm_core::AlgorithmConfig &)
Definition: BinsDiffByStrips.cxx:49
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
dqm_algorithms::BinsDiffByStrips::clone
BinsDiffByStrips * clone()
Definition: BinsDiffByStrips.cxx:41
dqm_algorithms::tools::binContainer
Definition: AlgorithmHelper.h:44
RunTileMonitoring.clusters
clusters
Definition: RunTileMonitoring.py:133
S2
struct TBPatternUnitContext S2
AlgorithmHelper.h
dqm_algorithms::tools::GetFromMap
const T & GetFromMap(const std::string &pname, const std::map< std::string, T > &params)
Definition: AlgorithmHelper.h:114
pickleTool.object
object
Definition: pickleTool.py:30
python.TrigEgammaMonitorHelper.TH1F
def TH1F(name, title, nxbins, bins_par2, bins_par3=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:24
CaloCondBlobAlgs_fillNoiseFromASCII.tag
string tag
Definition: CaloCondBlobAlgs_fillNoiseFromASCII.py:24
get_generator_info.error
error
Definition: get_generator_info.py:40
test_pyathena.counter
counter
Definition: test_pyathena.py:15
dqm_algorithms::tools::GetFirstFromMap
double GetFirstFromMap(const std::string &paramName, const std::map< std::string, double > &params)
Definition: AlgorithmHelper.cxx:339
pow
constexpr int pow(int base, int exp) noexcept
Definition: ap_fixedTest.cxx:15
error
Definition: IImpactPoint3dEstimator.h:70
dqm_algorithms::tools::MakeBinTag
void MakeBinTag(const binContainer &bin, std::string &tag)
Definition: AlgorithmHelper.cxx:1514
histogram
std::string histogram
Definition: chains.cxx:52
dqm_algorithms::tools::findOutliersUsingErrors
void findOutliersUsingErrors(std::vector< binContainer > &input, double &mean, double &meanError, int &nIn, double mindiff=0, int minNin=4)
Definition: AlgorithmHelper.cxx:951