|
ATLAS Offline Software
|
Go to the documentation of this file.
12 #ifndef TIDA_EFFICIENCY2D_H
13 #define TIDA_EFFICIENCY2D_H
36 void Fill(
double x,
double y,
double w=1) {
51 if ( slice<0 || slice>=
slicesX() )
return 0;
74 if ( slice<0 || slice>=
slicesY() )
return 0;
95 if ( i<0 || i>=
slicesX() )
return 0;
100 if ( i<0 || i>=
slicesY() )
return 0;
121 for (
int j=1 ; j<=
m_hdenom->GetNbinsY() ; j++ ) {
144 #endif // TIDA_EFFICIENCY2D_H
void finalise(double scale=100)
actually calculate the efficiencies
def TH2F(name, title, nxbins, bins_par2, bins_par3, bins_par4, bins_par5=None, bins_par6=None, path='', **kwargs)
std::ostream & operator<<(std::ostream &s, const Efficiency2D &)
void Fill(double x, double y, double w=1)
fill methods ...
void FillDenom(double x, double y, float w=1)
Efficiency2D(TH2F *hnum, TH2F *hden, const std::string &n, double scale=100)
std::string to_string(const DetectorType &type)
TGraphAsymmErrors * BayesY(int slice, double scale=100)
std::vector< int > m_ibin
virtual void getibinvec(bool force=false)
std::string slicename(const std::string &s, int i) const
Efficiency2D(TH2F *h, const std::string &n="")
TGraphAsymmErrors * BayesX(int slice, double scale=100)
evaluate the uncertainties correctly ...
TGraphAsymmErrors * BayesInternal(TH1 *hn, TH1 *hd, double scale=100) const