ATLAS Offline Software
PixelNtupleMaker.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2025 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 
7 #include "xAODCore/ShallowCopy.h"
12 
13 #include <vector>
14 #include <string>
15 
16 #include "TLorentzVector.h"
17 
19  ATH_CHECK(m_selector.retrieve());
23  return StatusCode::SUCCESS;
24 }
25 
26 
28 
29  SG::ReadHandle<xAOD::TrackParticleContainer> tracks(m_containerKey,ctx);
30  if (!tracks.isValid()) { return StatusCode::SUCCESS; }
31 
32  // Check the event contains tracks
33  SG::WriteHandle<xAOD::TrackParticleContainer> PixelMonitoringTrack(m_monitoringTracks,ctx);
34  if (PixelMonitoringTrack.record(std::make_unique<xAOD::TrackParticleContainer>(),
35  std::make_unique<xAOD::TrackParticleAuxContainer>()).isFailure()) {
36  return StatusCode::SUCCESS;
37  }
38 
39  SG::ReadHandle<xAOD::TrackMeasurementValidationContainer> pixClusters(m_measurementContainerKey,ctx);
40  if (!pixClusters.isValid()) { return StatusCode::SUCCESS; }
41 
42  // monitoring variables.
43  const int nbin_charge = 60;
44  const int nbin_tot = 120;
45  const int nbin_eta = 30;
46  const int nbin_dedx = 300;
47  const int nbin_size = 10;
48  const int nbin_reso = 80;
49  const int nbin_occ = 80;
50 
51  std::vector<std::vector<int>> clusCharge(11,std::vector<int>(nbin_charge,0));
52  std::vector<std::vector<int>> clusToT(11,std::vector<int>(nbin_tot,0));
53  std::vector<std::vector<int>> clusEta(11,std::vector<int>(nbin_eta,0));
54  std::vector<std::vector<int>> clusHitEta(11,std::vector<int>(nbin_eta,0));
55  std::vector<std::vector<int>> clusdEdx(11,std::vector<int>(nbin_dedx,0));
56  std::vector<std::vector<int>> clusSizeX(11,std::vector<int>(nbin_size,0));
57  std::vector<std::vector<int>> clusSizeZ(11,std::vector<int>(nbin_size,0));
58  std::vector<std::vector<int>> clusResidualX(11,std::vector<int>(nbin_reso,0));
59  std::vector<std::vector<int>> clusResidualY(11,std::vector<int>(nbin_reso,0));
60  std::vector<std::vector<int>> clusHole(11,std::vector<int>(nbin_eta,0));
61  std::vector<std::vector<int>> clusOcc(11,std::vector<int>(nbin_occ,0));
62 
63  std::vector<int> trkEta(nbin_eta,0);
64  std::vector<int> trkHole(nbin_eta,0);
65  std::vector<int> trkdEdx(nbin_dedx,0);
66 
67  float maxPt = 0.0;
68  const xAOD::TrackParticle* trk_maxpt = nullptr;
69 
70  std::vector<float> tmpCov(15,0.);
71 
72  // StoreGateSvc+InDetTrackParticles.msosLink
73  static const SG::ConstAccessor<MeasurementsOnTrack> acc_MeasurementsOnTrack("msosLink");
74 
75  for (const xAOD::TrackParticle* trk : *tracks) {
76  uint8_t nPixHits = 0; trk->summaryValue(nPixHits,xAOD::numberOfPixelHits);
77  uint8_t nSCTHits = 0; trk->summaryValue(nSCTHits,xAOD::numberOfSCTHits);
78  if (trk->pt()<1000.0 && nPixHits<4) { continue; }
79  if (trk->pt()<1000.0 && nSCTHits<1) { continue; }
80 
81  std::vector<uint64_t> holeIndex;
82  std::vector<int> clusterLayer;
83  std::vector<int> clusterBEC;
84  std::vector<int> clusterModulePhi;
85  std::vector<int> clusterModuleEta;
86  std::vector<float> clusterCharge;
87  std::vector<int> clusterToT;
88  std::vector<int> clusterL1A;
89  std::vector<int> clusterIsSplit;
90  std::vector<int> clusterSize;
91  std::vector<int> clusterSizePhi;
92  std::vector<int> clusterSizeZ;
93  std::vector<bool> isEdge;
94  std::vector<bool> isOverflow;
95  std::vector<float> trackPhi;
96  std::vector<float> trackTheta;
97  std::vector<float> trackX;
98  std::vector<float> trackY;
99  std::vector<float> localX;
100  std::vector<float> localY;
101  std::vector<float> globalX;
102  std::vector<float> globalY;
103  std::vector<float> globalZ;
104  std::vector<float> unbiasedResidualX;
105  std::vector<float> unbiasedResidualY;
106  std::vector<int> clusterIsolation10x2;
107  std::vector<int> clusterIsolation20x4;
108  std::vector<int> numTotalClustersPerModule;
109  std::vector<int> numTotalPixelsPerModule;
110  std::vector<float> moduleLorentzShift;
111 
112  std::vector<std::vector<int>> rdoToT;
113  std::vector<std::vector<float>> rdoCharge;
114  std::vector<std::vector<int>> rdoPhi;
115  std::vector<std::vector<int>> rdoEta;
116 
117  const MeasurementsOnTrack& measurementsOnTrack = acc_MeasurementsOnTrack(*trk);
118  for (const auto & msos_iter : measurementsOnTrack) {
119  if (!msos_iter.isValid()) { continue; }
120  const xAOD::TrackStateValidation* msos = *msos_iter;
121  if (msos->detType()!=Trk::TrackState::Pixel) { continue; } // its a pixel
122  if (msos->type()==Trk::TrackStateOnSurface::Hole) { // hole
123  holeIndex.push_back(msos->detElementId());
124  continue;
125  }
126  if (!msos->trackMeasurementValidationLink().isValid()) { continue; }
127  if (!(*(msos->trackMeasurementValidationLink()))) { continue; }
128 
130 
131  static const SG::ConstAccessor<float> chargeAcc("charge");
132  static const SG::ConstAccessor<int> layerAcc("layer");
133  static const SG::ConstAccessor<int> becAcc("bec");
134  static const SG::ConstAccessor<int> phi_moduleAcc("phi_module");
135  static const SG::ConstAccessor<int> eta_moduleAcc("eta_module");
136  static const SG::ConstAccessor<int> ToTAcc("ToT");
137  static const SG::ConstAccessor<int> LVL1AAcc("LVL1A");
138  static const SG::ConstAccessor<char> isSplitAcc("isSplit");
139  static const SG::ConstAccessor<int> nRDOAcc("nRDO");
140  static const SG::ConstAccessor<int> sizePhiAcc("sizePhi");
141  static const SG::ConstAccessor<int> sizeZAcc("sizeZ");
142  static const SG::ConstAccessor<float> LorentzShiftAcc("LorentzShift");
143  static const SG::ConstAccessor<std::vector<int> > rdo_totAcc("rdo_tot");
144  static const SG::ConstAccessor<std::vector<float> > rdo_chargeAcc("rdo_charge");
145 
146  for (const auto *clus_itr : *pixClusters) {
147  if (clus_itr->identifier()!=(msosClus)->identifier()) { continue; }
148  if (chargeAcc(*clus_itr)!=chargeAcc(*msosClus)) { continue; }
149 
150  clusterLayer.push_back(layerAcc(*clus_itr));
151  clusterBEC.push_back(becAcc(*clus_itr));
152  clusterModulePhi.push_back(phi_moduleAcc(*clus_itr));
153  clusterModuleEta.push_back(eta_moduleAcc(*clus_itr));
154  clusterCharge.push_back(chargeAcc(*clus_itr));
155  clusterToT.push_back(ToTAcc(*clus_itr));
156  clusterL1A.push_back(LVL1AAcc(*clus_itr));
157  clusterIsSplit.push_back(isSplitAcc(*clus_itr));
158  clusterSize.push_back(nRDOAcc(*clus_itr));
159  clusterSizePhi.push_back(sizePhiAcc(*clus_itr));
160  clusterSizeZ.push_back(sizeZAcc(*clus_itr));
161 
162  trackPhi.push_back(msos->localPhi());
163  trackTheta.push_back(msos->localTheta());
164  trackX.push_back(msos->localX());
165  trackY.push_back(msos->localY());
166  localX.push_back(clus_itr->localX());
167  localY.push_back(clus_itr->localY());
168  globalX.push_back(clus_itr->globalX());
169  globalY.push_back(clus_itr->globalY());
170  globalZ.push_back(clus_itr->globalZ());
171  unbiasedResidualX.push_back(msos->unbiasedResidualX());
172  unbiasedResidualY.push_back(msos->unbiasedResidualY());
173  moduleLorentzShift.push_back(LorentzShiftAcc(*clus_itr));
174 
175  // cluster isolation IBL:50x250um, PIXEL:50x400um
176  // - isolation region 10x2 = 500x500um for IBL, 500x800um for PIXEL
177  int numNeighborCluster10x2 = 0;
178  int numNeighborCluster20x4 = 0;
179  int nTotalClustersPerModule = 0;
180  int nTotalPixelsPerModule = 0;
181  for (const auto *clus_neighbor : *pixClusters) {
182  if (layerAcc(*clus_neighbor)==layerAcc(*clus_itr)
183  && becAcc(*clus_neighbor)==becAcc(*clus_itr)
184  && phi_moduleAcc(*clus_neighbor)==phi_moduleAcc(*clus_itr)
185  && eta_moduleAcc(*clus_neighbor)==eta_moduleAcc(*clus_itr)) {
186  float deltaX = std::abs(clus_neighbor->localX()-clus_itr->localX());
187  float deltaY = std::abs(clus_neighbor->localY()-clus_itr->localY());
188  nTotalClustersPerModule++;
189  nTotalPixelsPerModule += nRDOAcc(*clus_neighbor);
190  if (deltaX>0.0 && deltaY>0.0) {
191  if (layerAcc(*clus_itr)==0 && becAcc(*clus_itr)==0) { // IBL
192  if (deltaX<0.500 && deltaY<0.500) { numNeighborCluster10x2++; }
193  if (deltaX<1.000 && deltaY<1.000) { numNeighborCluster20x4++; }
194  }
195  else {
196  if (deltaX<0.500 && deltaY<0.800) { numNeighborCluster10x2++; }
197  if (deltaX<1.000 && deltaY<1.600) { numNeighborCluster20x4++; }
198  }
199  }
200  }
201  }
202  clusterIsolation10x2.push_back(numNeighborCluster10x2);
203  clusterIsolation20x4.push_back(numNeighborCluster20x4);
204  numTotalClustersPerModule.push_back(nTotalClustersPerModule);
205  numTotalPixelsPerModule.push_back(nTotalPixelsPerModule);
206 
207  // is edge pixel?
208  // contain overlflow hit?
209  bool checkEdge = false;
210  bool checkOverflow = false;
211 
212  // rdo information
213  std::vector<int> tmpToT;
214  std::vector<float> tmpCharge;
215  std::vector<int> tmpPhi;
216  std::vector<int> tmpEta;
217 
218  static const SG::ConstAccessor<std::vector<int> > rdo_phi_pixel_indexAcc("rdo_phi_pixel_index");
219  int nrdo = rdo_phi_pixel_indexAcc.isAvailable(*clus_itr) ? rdo_phi_pixel_indexAcc(*clus_itr).size() : -1;
220  for (int i=0; i<nrdo; i++) {
221 
222  int phi = rdo_phi_pixel_indexAcc(*clus_itr)[i];
223  if (phi<5) { checkEdge=true; }
224  if (phi>320) { checkEdge=true; }
225 
226  int eta = rdo_phi_pixel_indexAcc(*clus_itr)[i];
227  if (layerAcc(*clus_itr)==0 && becAcc(*clus_itr)==0) { // IBL
228  if (eta_moduleAcc(*clus_itr)>-7 && eta_moduleAcc(*clus_itr)<6) { // IBL Planar
229  if (eta<5) { checkEdge=true; }
230  if (eta>154) { checkEdge=true; }
231  }
232  else { // IBL 3D
233  if (eta<5) { checkEdge=true; }
234  if (eta>74) { checkEdge=true; }
235  }
236  }
237  else {
238  if (eta<5) { checkEdge=true; }
239  if (eta>154) { checkEdge=true; }
240  }
241 
242  int tot = rdo_totAcc(*clus_itr)[i];
243  if (layerAcc(*clus_itr)==0 && becAcc(*clus_itr)==0) { // IBL
244  if (tot==16) { checkOverflow=true; }
245  }
246  else if (layerAcc(*clus_itr)==1 && becAcc(*clus_itr)==0) { // b-layer
247  if (tot==150) { checkOverflow=true; }
248  }
249  else {
250  if (tot==255) { checkOverflow=true; }
251  }
252 
253  float charge = rdo_chargeAcc(*clus_itr)[i];
254  if (trk->pt()>2000.0) {
255  tmpToT.push_back(tot);
256  tmpCharge.push_back(charge);
257  tmpPhi.push_back(phi);
258  tmpEta.push_back(eta);
259  }
260  }
261  isEdge.push_back(checkEdge);
262  isOverflow.push_back(checkOverflow);
263 
264  rdoToT.push_back(tmpToT);
265  rdoCharge.push_back(tmpCharge);
266  rdoPhi.push_back(tmpPhi);
267  rdoEta.push_back(tmpEta);
268  break;
269  }
270  }
271 
272  if (m_storeMode==1) {
273  static const SG::Decorator<float> d0err("d0err");
274  static const SG::Decorator<float> z0err("z0err");
275  static const SG::Decorator<std::vector<uint64_t>> HoleIndex("HoleIndex");
276  static const SG::Decorator<std::vector<int>> ClusterLayer("ClusterLayer");
277  static const SG::Decorator<std::vector<int>> ClusterBEC("ClusterBEC");
278  static const SG::Decorator<std::vector<int>> ClusterModulePhi("ClusterModulePhi");
279  static const SG::Decorator<std::vector<int>> ClusterModuleEta("ClusterModuleEta");
280  static const SG::Decorator<std::vector<float>> ClusterCharge("ClusterCharge");
281  static const SG::Decorator<std::vector<int>> ClusterToT("ClusterToT");
282  static const SG::Decorator<std::vector<int>> ClusterL1A("ClusterL1A");
283  static const SG::Decorator<std::vector<int>> ClusterIsSplit("ClusterIsSplit");
284  static const SG::Decorator<std::vector<int>> ClusterSize("ClusterSize");
285  static const SG::Decorator<std::vector<int>> ClusterSizePhi("ClusterSizePhi");
286  static const SG::Decorator<std::vector<int>> ClusterSizeZ("ClusterSizeZ");
287  static const SG::Decorator<std::vector<bool>> ClusterIsEdge("ClusterIsEdge");
288  static const SG::Decorator<std::vector<bool>> ClusterIsOverflow("ClusterIsOverflow");
289  static const SG::Decorator<std::vector<float>> TrackLocalPhi("TrackLocalPhi");
290  static const SG::Decorator<std::vector<float>> TrackLocalTheta("TrackLocalTheta");
291  static const SG::Decorator<std::vector<float>> TrackLocalX("TrackLocalX");
292  static const SG::Decorator<std::vector<float>> TrackLocalY("TrackLocalY");
293  static const SG::Decorator<std::vector<float>> ClusterLocalX("ClusterLocalX");
294  static const SG::Decorator<std::vector<float>> ClusterLocalY("ClusterLocalY");
295  static const SG::Decorator<std::vector<float>> ClusterGlobalX("ClusterGlobalX");
296  static const SG::Decorator<std::vector<float>> ClusterGlobalY("ClusterGlobalY");
297  static const SG::Decorator<std::vector<float>> ClusterGlobalZ("ClusterGlobalZ");
298  static const SG::Decorator<std::vector<float>> UnbiasedResidualX("UnbiasedResidualX");
299  static const SG::Decorator<std::vector<float>> UnbiasedResidualY("UnbiasedResidualY");
300  static const SG::Decorator<std::vector<int>> ClusterIsolation10x2("ClusterIsolation10x2");
301  static const SG::Decorator<std::vector<int>> ClusterIsolation20x4("ClusterIsolation20x4");
302  static const SG::Decorator<std::vector<int>> NumTotalClustersPerModule("NumTotalClustersPerModule");
303  static const SG::Decorator<std::vector<int>> NumTotalPixelsPerModule("NumTotalPixelsPerModule");
304  static const SG::Decorator<std::vector<float>> ModuleLorentzShift("ModuleLorentzShift");
305  static const SG::Decorator<std::vector<std::vector<int>>> RdoToT("RdoToT");
306  static const SG::Decorator<std::vector<std::vector<float>>> RdoCharge("RdoCharge");
307  static const SG::Decorator<std::vector<std::vector<int>>> RdoPhi("RdoPhi");
308  static const SG::Decorator<std::vector<std::vector<int>>> RdoEta("RdoEta");
309 
310  d0err(*trk) = trk->definingParametersCovMatrixVec().at(0);
311  z0err(*trk) = trk->definingParametersCovMatrixVec().at(2);
312  HoleIndex(*trk) = std::move(holeIndex);
313  ClusterLayer(*trk) = std::move(clusterLayer);
314  ClusterBEC(*trk) = std::move(clusterBEC);
315  ClusterModulePhi(*trk) = std::move(clusterModulePhi);
316  ClusterModuleEta(*trk) = std::move(clusterModuleEta);
317  ClusterCharge(*trk) = std::move(clusterCharge);
318  ClusterToT(*trk) = std::move(clusterToT);
319  ClusterL1A(*trk) = std::move(clusterL1A);
320  ClusterIsSplit(*trk) = std::move(clusterIsSplit);
321  ClusterSize(*trk) = std::move(clusterSize);
322  ClusterSizePhi(*trk) = std::move(clusterSizePhi);
323  ClusterSizeZ(*trk) = std::move(clusterSizeZ);
324  ClusterIsEdge(*trk) = std::move(isEdge);
325  ClusterIsOverflow(*trk) = std::move(isOverflow);
326  TrackLocalPhi(*trk) = std::move(trackPhi);
327  TrackLocalTheta(*trk) = std::move(trackTheta);
328  TrackLocalX(*trk) = std::move(trackX);
329  TrackLocalY(*trk) = std::move(trackY);
330  ClusterLocalX(*trk) = std::move(localX);
331  ClusterLocalY(*trk) = std::move(localY);
332  ClusterGlobalX(*trk) = std::move(globalX);
333  ClusterGlobalY(*trk) = std::move(globalY);
334  ClusterGlobalZ(*trk) = std::move(globalZ);
335  UnbiasedResidualX(*trk) = std::move(unbiasedResidualX);
336  UnbiasedResidualY(*trk) = std::move(unbiasedResidualY);
337  ClusterIsolation10x2(*trk) = std::move(clusterIsolation10x2);
338  ClusterIsolation20x4(*trk) = std::move(clusterIsolation20x4);
339  NumTotalClustersPerModule(*trk) = std::move(numTotalClustersPerModule);
340  NumTotalPixelsPerModule(*trk) = std::move(numTotalPixelsPerModule);
341  ModuleLorentzShift(*trk) = std::move(moduleLorentzShift);
342  RdoToT(*trk) = std::move(rdoToT);
343  RdoCharge(*trk) = std::move(rdoCharge);
344  RdoPhi(*trk) = std::move(rdoPhi);
345  RdoEta(*trk) = std::move(rdoEta);
346  }
347 
348  // further track selection for slimmed track variables
349  uint8_t nPixelDeadSensor = 0; trk->summaryValue(nPixelDeadSensor,xAOD::numberOfPixelDeadSensors);
353  uint8_t nSCTHoles = 0; trk->summaryValue(nSCTHoles,xAOD::numberOfSCTHoles);
354  uint8_t nPixSharedHits = 0; trk->summaryValue(nPixSharedHits,xAOD::numberOfPixelSharedHits);
356 
357  // loose track selection
358  bool passLooseCut = static_cast<bool>(m_selector->accept(trk));
359  if (!passLooseCut) { continue; }
360 
361  //==================
362  // Efficiency check
363  //==================
364  int checkIBL(0),check3D(0),checkBLY(0),checkLY1(0),checkLY2(0),checkEA1(0),checkEA2(0),checkEA3(0),checkEC1(0),checkEC2(0),checkEC3(0);
365  for (int i=0; i<(int)clusterLayer.size(); i++) {
366  if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==0) {
367  if (clusterModuleEta.at(i)>-7 && clusterModuleEta.at(i)<6) { checkIBL++; }
368  else { check3D++; }
369  }
370  else if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==1) { checkBLY++; }
371  else if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==2) { checkLY1++; }
372  else if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==3) { checkLY2++; }
373  else if (clusterBEC.at(i)== 2 && clusterLayer.at(i)==0) { checkEA1++; }
374  else if (clusterBEC.at(i)== 2 && clusterLayer.at(i)==1) { checkEA2++; }
375  else if (clusterBEC.at(i)== 2 && clusterLayer.at(i)==2) { checkEA3++; }
376  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==0) { checkEC1++; }
377  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==1) { checkEC2++; }
378  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==2) { checkEC3++; }
379  }
380 
381  if (trk->pt()>2000.0 && nPixelDeadSensor==0) {
382  int ietabin = trunc((trk->eta()+3.0)/0.2);
383 
384  std::for_each((trkEta.begin()+ietabin),(trkEta.begin()+ietabin+1),[](int &n){ n++; });
385  if (numberOfPixelHoles>0) { std::for_each((trkHole.begin()+ietabin),(trkHole.begin()+ietabin+1),[](int &n){ n++; }); }
386 
387  if (checkBLY>0 && checkLY1>0 && checkLY2>0) { std::for_each((clusEta[0].begin()+ietabin),(clusEta[0].begin()+ietabin+1),[](int &n){ n++; }); if (checkIBL>0) { std::for_each((clusHitEta[0].begin()+ietabin),(clusHitEta[0].begin()+ietabin+1),[](int &n){ n++; }); }}
388  if (checkBLY>0 && checkEC2>0 && checkEC3>0) { std::for_each((clusEta[1].begin()+ietabin),(clusEta[1].begin()+ietabin+1),[](int &n){ n++; }); if (check3D>0) { std::for_each((clusHitEta[1].begin()+ietabin),(clusHitEta[1].begin()+ietabin+1),[](int &n){ n++; }); }}
389  if (checkIBL>0 && checkLY1>0 && checkLY2>0) { std::for_each((clusEta[2].begin()+ietabin),(clusEta[2].begin()+ietabin+1),[](int &n){ n++; }); if (checkBLY>0) { std::for_each((clusHitEta[2].begin()+ietabin),(clusHitEta[2].begin()+ietabin+1),[](int &n){ n++; }); }}
390  if (checkIBL>0 && checkBLY>0 && checkLY2>0) { std::for_each((clusEta[3].begin()+ietabin),(clusEta[3].begin()+ietabin+1),[](int &n){ n++; }); if (checkLY1>0) { std::for_each((clusHitEta[3].begin()+ietabin),(clusHitEta[3].begin()+ietabin+1),[](int &n){ n++; }); }}
391  if (checkIBL>0 && checkBLY>0 && checkLY1>0) { std::for_each((clusEta[4].begin()+ietabin),(clusEta[4].begin()+ietabin+1),[](int &n){ n++; }); if (checkLY2>0) { std::for_each((clusHitEta[4].begin()+ietabin),(clusHitEta[4].begin()+ietabin+1),[](int &n){ n++; }); }}
392  if (checkIBL>0 && checkEA2>0 && checkEA3>0) { std::for_each((clusEta[5].begin()+ietabin),(clusEta[5].begin()+ietabin+1),[](int &n){ n++; }); if (checkEA1>0) { std::for_each((clusHitEta[5].begin()+ietabin),(clusHitEta[5].begin()+ietabin+1),[](int &n){ n++; }); }}
393  if (checkIBL>0 && checkEA1>0 && checkEA3>0) { std::for_each((clusEta[6].begin()+ietabin),(clusEta[6].begin()+ietabin+1),[](int &n){ n++; }); if (checkEA2>0) { std::for_each((clusHitEta[6].begin()+ietabin),(clusHitEta[6].begin()+ietabin+1),[](int &n){ n++; }); }}
394  if (checkIBL>0 && checkEA1>0 && checkEA2>0) { std::for_each((clusEta[7].begin()+ietabin),(clusEta[7].begin()+ietabin+1),[](int &n){ n++; }); if (checkEA3>0) { std::for_each((clusHitEta[7].begin()+ietabin),(clusHitEta[7].begin()+ietabin+1),[](int &n){ n++; }); }}
395  if (checkIBL>0 && checkEC2>0 && checkEC3>0) { std::for_each((clusEta[8].begin()+ietabin),(clusEta[8].begin()+ietabin+1),[](int &n){ n++; }); if (checkEC1>0) { std::for_each((clusHitEta[8].begin()+ietabin),(clusHitEta[8].begin()+ietabin+1),[](int &n){ n++; }); }}
396  if (checkIBL>0 && checkEC1>0 && checkEC3>0) { std::for_each((clusEta[9].begin()+ietabin),(clusEta[9].begin()+ietabin+1),[](int &n){ n++; }); if (checkEC2>0) { std::for_each((clusHitEta[9].begin()+ietabin),(clusHitEta[9].begin()+ietabin+1),[](int &n){ n++; }); }}
397  if (checkIBL>0 && checkEC1>0 && checkEC2>0) { std::for_each((clusEta[10].begin()+ietabin),(clusEta[10].begin()+ietabin+1),[](int &n){ n++; }); if (checkEC3>0) { std::for_each((clusHitEta[10].begin()+ietabin),(clusHitEta[10].begin()+ietabin+1),[](int &n){ n++; }); }}
398 
399  for (int i=0; i<(int)holeIndex.size(); i++) {
400  int becH, layerH, etaH, phiH;
401  GetLayerEtaPhiFromId(holeIndex.at(i),&becH,&layerH,&etaH,&phiH);
402  if (becH== 0 && layerH==0) {
403  if (etaH>-7 && etaH<6) { std::for_each((clusHole[0].begin()+ietabin),(clusHole[0].begin()+ietabin+1),[](int &n){ n++; }); }
404  else { std::for_each((clusHole[1].begin()+ietabin),(clusHole[1].begin()+ietabin+1),[](int &n){ n++; }); }
405  }
406  if (becH== 0 && layerH==1) { std::for_each((clusHole[2].begin()+ietabin),(clusHole[2].begin()+ietabin+1),[](int &n){ n++; }); }
407  if (becH== 0 && layerH==2) { std::for_each((clusHole[3].begin()+ietabin),(clusHole[3].begin()+ietabin+1),[](int &n){ n++; }); }
408  if (becH== 0 && layerH==3) { std::for_each((clusHole[4].begin()+ietabin),(clusHole[4].begin()+ietabin+1),[](int &n){ n++; }); }
409  if (becH== 2 && layerH==0) { std::for_each((clusHole[5].begin()+ietabin),(clusHole[5].begin()+ietabin+1),[](int &n){ n++; }); }
410  if (becH== 2 && layerH==1) { std::for_each((clusHole[6].begin()+ietabin),(clusHole[6].begin()+ietabin+1),[](int &n){ n++; }); }
411  if (becH== 2 && layerH==2) { std::for_each((clusHole[7].begin()+ietabin),(clusHole[7].begin()+ietabin+1),[](int &n){ n++; }); }
412  if (becH==-2 && layerH==0) { std::for_each((clusHole[8].begin()+ietabin),(clusHole[8].begin()+ietabin+1),[](int &n){ n++; }); }
413  if (becH==-2 && layerH==1) { std::for_each((clusHole[9].begin()+ietabin),(clusHole[9].begin()+ietabin+1),[](int &n){ n++; }); }
414  if (becH==-2 && layerH==2) { std::for_each((clusHole[10].begin()+ietabin),(clusHole[10].begin()+ietabin+1),[](int &n){ n++; }); }
415  }
416  }
417 
418  // Cluster should not contain edge pixels
419  int clusterEdge = 0;
420  for (int i=0; i<(int)clusterLayer.size(); i++) { clusterEdge+=isEdge.at(i); }
421 
422  // Cluster should not contain overflow pixels
423  int clusterOverflow = 0;
424  for (int i=0; i<(int)clusterLayer.size(); i++) { clusterOverflow+=isOverflow.at(i); }
425 
426  // Cluster should not contain split state
427  int isSplit = 0;
428  for (int i=0; i<(int)clusterLayer.size(); i++) { isSplit+=clusterIsSplit.at(i); }
429 
430  // Strong isolation
431  int iso20x4 = 0;
432  for (int i=0; i<(int)clusterLayer.size(); i++) { iso20x4+=clusterIsolation20x4.at(i); }
433 
434  // Good tracks must be required for the dE/dx and Lorentz angle measurements
435  bool passCut = false;
436  if (numberOfPixelHits>3 && numberOfPixelHoles==0 && nPixelDeadSensor==0 && numberOfPixelOutliers==0 && clusterEdge==0 && clusterOverflow==0 && isSplit==0 && iso20x4==0) {
437  if (checkIBL>0 && checkBLY>0 && checkLY1>0 && checkLY2>0) { // Barrel
438  passCut = true;
439  }
440  else if (checkIBL>0 && checkEA1>0 && checkEA2>0 && checkEA3>0) { // Endcap
441  passCut = true;
442  }
443  else if (checkIBL>0 && checkEC1>0 && checkEC2>0 && checkEC3>0) { // Endcap
444  passCut = true;
445  }
446  else if (check3D>0 && checkEC2>0 && checkEC3>0) { // 3D
447  passCut = true;
448  }
449  }
450  if (!passCut) { continue; }
451 
452  // Cut on angle alpha
453  bool isAlphaCut = false;
454  for (int i=0; i<(int)clusterLayer.size(); i++) {
455  float alpha = std::atan(std::hypot(std::tan(trackTheta[i]),std::tan(trackPhi[i])));
456  if (std::cos(alpha)<0.16) { isAlphaCut=true; break; }
457  }
458  if (isAlphaCut) { continue; }
459 
460  if (trk->pt()>maxPt) {
461  maxPt = trk->pt();
462  trk_maxpt = trk;
463  }
464 
465  // Cluster study
466  float energyPair = 3.62e-6; // Electron-hole pair creation energy e-h/[MeV]
467  float siDensity = 2.329; // Silicon density [g/cm^3]
468  float thicknessIBL = 0.0200; // thickness for IBL planar [cm]
469  float thickness3D = 0.0230; // thickness for IBL 3D [cm]
470  float thicknessPIX = 0.0250; // thickness for PIXEL [cm]
471  float sumE = 0.0;
472  float sumX = 0.0;
473  for (int i=0; i<(int)clusterLayer.size(); i++) {
474 
475  float alpha = std::atan(std::hypot(std::tan(trackTheta[i]),std::tan(trackPhi[i])));
476  float thickness = thicknessPIX;
477  if (clusterBEC.at(i)==0 && clusterLayer.at(i)==0) {
478  thickness = (clusterModuleEta[i]<6 && clusterModuleEta[i]>-7) ? thicknessIBL : thickness3D;
479  }
480  float recodEdx = clusterCharge[i]*energyPair/thickness/siDensity*std::cos(alpha);
481  sumE += clusterCharge[i]*energyPair;
482  sumX += thickness*siDensity/std::cos(alpha);
483 
484  int ibc = (clusterCharge[i]>0.0 && clusterCharge[i]<120000.0) ? trunc(clusterCharge[i]/2000.0) : nbin_charge-1;
485  int ibt = (clusterToT[i]>0 && clusterToT[i]<120) ? trunc(clusterToT[i]) : nbin_tot-1;
486  int ibe = (recodEdx>0.0 && recodEdx<3.0) ? trunc(recodEdx*100) : nbin_dedx-1;
487  int ibx = (clusterSizePhi[i]>-0.5 && clusterSizePhi[i]<9.5) ? trunc(clusterSizePhi[i]) : nbin_size-1;
488  int ibz = (clusterSizeZ[i]>-0.5 && clusterSizeZ[i]<9.5) ? trunc(clusterSizeZ[i]) : nbin_size-1;
489  int irx = (unbiasedResidualX[i]>-0.4 && unbiasedResidualX[i]<0.4) ? trunc((unbiasedResidualX[i]+0.4)/0.01) : nbin_reso-1;
490  int iry = (unbiasedResidualY[i]>-0.4 && unbiasedResidualY[i]<0.4) ? trunc((unbiasedResidualY[i]+0.4)/0.01) : nbin_reso-1;
491  int ibo = (numTotalPixelsPerModule[i]>-0.1 && numTotalPixelsPerModule[i]<160) ? trunc(numTotalPixelsPerModule[i]/2.0) : nbin_occ-1;
492 
493  int idx = 0;
494  if (clusterBEC.at(i)==0 && clusterLayer.at(i)==0) {
495  if (clusterModuleEta[i]<6 && clusterModuleEta[i]>-7) { idx=0; } // IBL-planar
496  else { idx=1; } // 3D sensor
497  }
498  else if (clusterBEC.at(i)==0 && clusterLayer.at(i)==1) { idx=2; } // B-layer
499  else if (clusterBEC.at(i)==0 && clusterLayer.at(i)==2) { idx=3; } // Layer-1
500  else if (clusterBEC.at(i)==0 && clusterLayer.at(i)==3) { idx=4; } // Layer-2
501  else if (clusterBEC.at(i)==2 && clusterLayer.at(i)==0) { idx=5; } // Endcap-A1
502  else if (clusterBEC.at(i)==2 && clusterLayer.at(i)==1) { idx=6; } // Endcap-A2
503  else if (clusterBEC.at(i)==2 && clusterLayer.at(i)==2) { idx=7; } // Endcap-A3
504  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==0) { idx=8; } // Endcap-C1
505  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==1) { idx=9; } // Endcap-C2
506  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==2) { idx=10; } // Endcap-C3
507 
508  std::for_each((clusCharge[idx].begin()+ibc),(clusCharge[idx].begin()+ibc+1),[](int &n){ n++; });
509  std::for_each((clusToT[idx].begin()+ibt),(clusToT[idx].begin()+ibt+1),[](int &n){ n++; });
510  std::for_each((clusdEdx[idx].begin()+ibe),(clusdEdx[idx].begin()+ibe+1),[](int &n){ n++; });
511  std::for_each((clusSizeX[idx].begin()+ibx),(clusSizeX[idx].begin()+ibx+1),[](int &n){ n++; });
512  std::for_each((clusSizeZ[idx].begin()+ibz),(clusSizeZ[idx].begin()+ibz+1),[](int &n){ n++; });
513  std::for_each((clusResidualX[idx].begin()+irx),(clusResidualX[idx].begin()+irx+1),[](int &n){ n++; });
514  std::for_each((clusResidualY[idx].begin()+iry),(clusResidualY[idx].begin()+iry+1),[](int &n){ n++; });
515  std::for_each((clusOcc[idx].begin()+ibo),(clusOcc[idx].begin()+ibo+1),[](int &n){ n++; });
516  }
517 
518  if (sumX>0.0) {
519  int iby = (sumE/sumX>0.0 && sumE/sumX<3.0) ? trunc(sumE/sumX*100) : 299;
520  std::for_each((trkdEdx.begin()+iby),(trkdEdx.begin()+iby+1),[](int &n){ n++; });
521  }
522  }
523 
524  if (m_storeMode==2) {
525  if (maxPt>0.0) {
527  tp->makePrivateStore(*trk_maxpt);
528  tp->setDefiningParametersCovMatrixVec(tmpCov);
529 
530  static const SG::Decorator<std::vector<int>> TrackEtaIBL("TrackEtaIBL");
531  static const SG::Decorator<std::vector<int>> TrackEta3D("TrackEta3D");
532  static const SG::Decorator<std::vector<int>> TrackEtaBL("TrackEtaBL");
533  static const SG::Decorator<std::vector<int>> TrackEtaL1("TrackEtaL1");
534  static const SG::Decorator<std::vector<int>> TrackEtaL2("TrackEtaL2");
535  static const SG::Decorator<std::vector<int>> TrackEtaEA1("TrackEtaEA1");
536  static const SG::Decorator<std::vector<int>> TrackEtaEA2("TrackEtaEA2");
537  static const SG::Decorator<std::vector<int>> TrackEtaEA3("TrackEtaEA3");
538  static const SG::Decorator<std::vector<int>> TrackEtaEC1("TrackEtaEC1");
539  static const SG::Decorator<std::vector<int>> TrackEtaEC2("TrackEtaEC2");
540  static const SG::Decorator<std::vector<int>> TrackEtaEC3("TrackEtaEC3");
541  static const SG::Decorator<std::vector<int>> TrackHitEtaIBL("TrackHitEtaIBL");
542  static const SG::Decorator<std::vector<int>> TrackHitEta3D("TrackHitEta3D");
543  static const SG::Decorator<std::vector<int>> TrackHitEtaBL("TrackHitEtaBL");
544  static const SG::Decorator<std::vector<int>> TrackHitEtaL1("TrackHitEtaL1");
545  static const SG::Decorator<std::vector<int>> TrackHitEtaL2("TrackHitEtaL2");
546  static const SG::Decorator<std::vector<int>> TrackHitEtaEA1("TrackHitEtaEA1");
547  static const SG::Decorator<std::vector<int>> TrackHitEtaEA2("TrackHitEtaEA2");
548  static const SG::Decorator<std::vector<int>> TrackHitEtaEA3("TrackHitEtaEA3");
549  static const SG::Decorator<std::vector<int>> TrackHitEtaEC1("TrackHitEtaEC1");
550  static const SG::Decorator<std::vector<int>> TrackHitEtaEC2("TrackHitEtaEC2");
551  static const SG::Decorator<std::vector<int>> TrackHitEtaEC3("TrackHitEtaEC3");
552  static const SG::Decorator<std::vector<int>> ClusterChargeIBL("ClusterChargeIBL");
553  static const SG::Decorator<std::vector<int>> ClusterCharge3D("ClusterCharge3D");
554  static const SG::Decorator<std::vector<int>> ClusterChargeBL("ClusterChargeBL");
555  static const SG::Decorator<std::vector<int>> ClusterChargeL1("ClusterChargeL1");
556  static const SG::Decorator<std::vector<int>> ClusterChargeL2("ClusterChargeL2");
557  static const SG::Decorator<std::vector<int>> ClusterChargeEA1("ClusterChargeEA1");
558  static const SG::Decorator<std::vector<int>> ClusterChargeEA2("ClusterChargeEA2");
559  static const SG::Decorator<std::vector<int>> ClusterChargeEA3("ClusterChargeEA3");
560  static const SG::Decorator<std::vector<int>> ClusterChargeEC1("ClusterChargeEC1");
561  static const SG::Decorator<std::vector<int>> ClusterChargeEC2("ClusterChargeEC2");
562  static const SG::Decorator<std::vector<int>> ClusterChargeEC3("ClusterChargeEC3");
563  static const SG::Decorator<std::vector<int>> ClusterToTIBL("ClusterToTIBL");
564  static const SG::Decorator<std::vector<int>> ClusterToT3D("ClusterToT3D");
565  static const SG::Decorator<std::vector<int>> ClusterToTBL("ClusterToTBL");
566  static const SG::Decorator<std::vector<int>> ClusterToTL1("ClusterToTL1");
567  static const SG::Decorator<std::vector<int>> ClusterToTL2("ClusterToTL2");
568  static const SG::Decorator<std::vector<int>> ClusterToTEA1("ClusterToTEA1");
569  static const SG::Decorator<std::vector<int>> ClusterToTEA2("ClusterToTEA2");
570  static const SG::Decorator<std::vector<int>> ClusterToTEA3("ClusterToTEA3");
571  static const SG::Decorator<std::vector<int>> ClusterToTEC1("ClusterToTEC1");
572  static const SG::Decorator<std::vector<int>> ClusterToTEC2("ClusterToTEC2");
573  static const SG::Decorator<std::vector<int>> ClusterToTEC3("ClusterToTEC3");
574  static const SG::Decorator<std::vector<int>> ClusterdEdxIBL("ClusterdEdxIBL");
575  static const SG::Decorator<std::vector<int>> ClusterdEdx3D("ClusterdEdx3D");
576  static const SG::Decorator<std::vector<int>> ClusterdEdxBL("ClusterdEdxBL");
577  static const SG::Decorator<std::vector<int>> ClusterdEdxL1("ClusterdEdxL1");
578  static const SG::Decorator<std::vector<int>> ClusterdEdxL2("ClusterdEdxL2");
579  static const SG::Decorator<std::vector<int>> ClusterdEdxEA1("ClusterdEdxEA1");
580  static const SG::Decorator<std::vector<int>> ClusterdEdxEA2("ClusterdEdxEA2");
581  static const SG::Decorator<std::vector<int>> ClusterdEdxEA3("ClusterdEdxEA3");
582  static const SG::Decorator<std::vector<int>> ClusterdEdxEC1("ClusterdEdxEC1");
583  static const SG::Decorator<std::vector<int>> ClusterdEdxEC2("ClusterdEdxEC2");
584  static const SG::Decorator<std::vector<int>> ClusterdEdxEC3("ClusterdEdxEC3");
585  static const SG::Decorator<std::vector<int>> ClusterSizeXIBL("ClusterSizeXIBL");
586  static const SG::Decorator<std::vector<int>> ClusterSizeX3D("ClusterSizeX3D");
587  static const SG::Decorator<std::vector<int>> ClusterSizeXBL("ClusterSizeXBL");
588  static const SG::Decorator<std::vector<int>> ClusterSizeXL1("ClusterSizeXL1");
589  static const SG::Decorator<std::vector<int>> ClusterSizeXL2("ClusterSizeXL2");
590  static const SG::Decorator<std::vector<int>> ClusterSizeXEA1("ClusterSizeXEA1");
591  static const SG::Decorator<std::vector<int>> ClusterSizeXEA2("ClusterSizeXEA2");
592  static const SG::Decorator<std::vector<int>> ClusterSizeXEA3("ClusterSizeXEA3");
593  static const SG::Decorator<std::vector<int>> ClusterSizeXEC1("ClusterSizeXEC1");
594  static const SG::Decorator<std::vector<int>> ClusterSizeXEC2("ClusterSizeXEC2");
595  static const SG::Decorator<std::vector<int>> ClusterSizeXEC3("ClusterSizeXEC3");
596  static const SG::Decorator<std::vector<int>> ClusterSizeZIBL("ClusterSizeZIBL");
597  static const SG::Decorator<std::vector<int>> ClusterSizeZ3D("ClusterSizeZ3D");
598  static const SG::Decorator<std::vector<int>> ClusterSizeZBL("ClusterSizeZBL");
599  static const SG::Decorator<std::vector<int>> ClusterSizeZL1("ClusterSizeZL1");
600  static const SG::Decorator<std::vector<int>> ClusterSizeZL2("ClusterSizeZL2");
601  static const SG::Decorator<std::vector<int>> ClusterSizeZEA1("ClusterSizeZEA1");
602  static const SG::Decorator<std::vector<int>> ClusterSizeZEA2("ClusterSizeZEA2");
603  static const SG::Decorator<std::vector<int>> ClusterSizeZEA3("ClusterSizeZEA3");
604  static const SG::Decorator<std::vector<int>> ClusterSizeZEC1("ClusterSizeZEC1");
605  static const SG::Decorator<std::vector<int>> ClusterSizeZEC2("ClusterSizeZEC2");
606  static const SG::Decorator<std::vector<int>> ClusterSizeZEC3("ClusterSizeZEC3");
607  static const SG::Decorator<std::vector<int>> ClusterResidualXIBL("ClusterResidualXIBL");
608  static const SG::Decorator<std::vector<int>> ClusterResidualX3D("ClusterResidualX3D");
609  static const SG::Decorator<std::vector<int>> ClusterResidualXBL("ClusterResidualXBL");
610  static const SG::Decorator<std::vector<int>> ClusterResidualXL1("ClusterResidualXL1");
611  static const SG::Decorator<std::vector<int>> ClusterResidualXL2("ClusterResidualXL2");
612  static const SG::Decorator<std::vector<int>> ClusterResidualXEA1("ClusterResidualXEA1");
613  static const SG::Decorator<std::vector<int>> ClusterResidualXEA2("ClusterResidualXEA2");
614  static const SG::Decorator<std::vector<int>> ClusterResidualXEA3("ClusterResidualXEA3");
615  static const SG::Decorator<std::vector<int>> ClusterResidualXEC1("ClusterResidualXEC1");
616  static const SG::Decorator<std::vector<int>> ClusterResidualXEC2("ClusterResidualXEC2");
617  static const SG::Decorator<std::vector<int>> ClusterResidualXEC3("ClusterResidualXEC3");
618  static const SG::Decorator<std::vector<int>> ClusterResidualYIBL("ClusterResidualYIBL");
619  static const SG::Decorator<std::vector<int>> ClusterResidualY3D("ClusterResidualY3D");
620  static const SG::Decorator<std::vector<int>> ClusterResidualYBL("ClusterResidualYBL");
621  static const SG::Decorator<std::vector<int>> ClusterResidualYL1("ClusterResidualYL1");
622  static const SG::Decorator<std::vector<int>> ClusterResidualYL2("ClusterResidualYL2");
623  static const SG::Decorator<std::vector<int>> ClusterResidualYEA1("ClusterResidualYEA1");
624  static const SG::Decorator<std::vector<int>> ClusterResidualYEA2("ClusterResidualYEA2");
625  static const SG::Decorator<std::vector<int>> ClusterResidualYEA3("ClusterResidualYEA3");
626  static const SG::Decorator<std::vector<int>> ClusterResidualYEC1("ClusterResidualYEC1");
627  static const SG::Decorator<std::vector<int>> ClusterResidualYEC2("ClusterResidualYEC2");
628  static const SG::Decorator<std::vector<int>> ClusterResidualYEC3("ClusterResidualYEC3");
629  static const SG::Decorator<std::vector<int>> ClusterHoleIBL("ClusterHoleIBL");
630  static const SG::Decorator<std::vector<int>> ClusterHole3D("ClusterHole3D");
631  static const SG::Decorator<std::vector<int>> ClusterHoleBL("ClusterHoleBL");
632  static const SG::Decorator<std::vector<int>> ClusterHoleL1("ClusterHoleL1");
633  static const SG::Decorator<std::vector<int>> ClusterHoleL2("ClusterHoleL2");
634  static const SG::Decorator<std::vector<int>> ClusterHoleEA1("ClusterHoleEA1");
635  static const SG::Decorator<std::vector<int>> ClusterHoleEA2("ClusterHoleEA2");
636  static const SG::Decorator<std::vector<int>> ClusterHoleEA3("ClusterHoleEA3");
637  static const SG::Decorator<std::vector<int>> ClusterHoleEC1("ClusterHoleEC1");
638  static const SG::Decorator<std::vector<int>> ClusterHoleEC2("ClusterHoleEC2");
639  static const SG::Decorator<std::vector<int>> ClusterHoleEC3("ClusterHoleEC3");
640  static const SG::Decorator<std::vector<int>> ClusterOccIBL("ClusterOccIBL");
641  static const SG::Decorator<std::vector<int>> ClusterOcc3D("ClusterOcc3D");
642  static const SG::Decorator<std::vector<int>> ClusterOccBL("ClusterOccBL");
643  static const SG::Decorator<std::vector<int>> ClusterOccL1("ClusterOccL1");
644  static const SG::Decorator<std::vector<int>> ClusterOccL2("ClusterOccL2");
645  static const SG::Decorator<std::vector<int>> ClusterOccEA1("ClusterOccEA1");
646  static const SG::Decorator<std::vector<int>> ClusterOccEA2("ClusterOccEA2");
647  static const SG::Decorator<std::vector<int>> ClusterOccEA3("ClusterOccEA3");
648  static const SG::Decorator<std::vector<int>> ClusterOccEC1("ClusterOccEC1");
649  static const SG::Decorator<std::vector<int>> ClusterOccEC2("ClusterOccEC2");
650  static const SG::Decorator<std::vector<int>> ClusterOccEC3("ClusterOccEC3");
651  static const SG::Decorator<std::vector<int>> TrackALL("TrackALL");
652  static const SG::Decorator<std::vector<int>> TrackHOLE("TrackHOLE");
653  static const SG::Decorator<std::vector<int>> TrackdEdx("TrackdEdx");
654 
655  TrackEtaIBL(*tp) = std::move(clusEta[0]);
656  TrackEta3D(*tp) = std::move(clusEta[1]);
657  TrackEtaBL(*tp) = std::move(clusEta[2]);
658  TrackEtaL1(*tp) = std::move(clusEta[3]);
659  TrackEtaL2(*tp) = std::move(clusEta[4]);
660  TrackEtaEA1(*tp) = std::move(clusEta[5]);
661  TrackEtaEA2(*tp) = std::move(clusEta[6]);
662  TrackEtaEA3(*tp) = std::move(clusEta[7]);
663  TrackEtaEC1(*tp) = std::move(clusEta[8]);
664  TrackEtaEC2(*tp) = std::move(clusEta[9]);
665  TrackEtaEC3(*tp) = std::move(clusEta[10]);
666  TrackHitEtaIBL(*tp) = std::move(clusHitEta[0]);
667  TrackHitEta3D(*tp) = std::move(clusHitEta[1]);
668  TrackHitEtaBL(*tp) = std::move(clusHitEta[2]);
669  TrackHitEtaL1(*tp) = std::move(clusHitEta[3]);
670  TrackHitEtaL2(*tp) = std::move(clusHitEta[4]);
671  TrackHitEtaEA1(*tp) = std::move(clusHitEta[5]);
672  TrackHitEtaEA2(*tp) = std::move(clusHitEta[6]);
673  TrackHitEtaEA3(*tp) = std::move(clusHitEta[7]);
674  TrackHitEtaEC1(*tp) = std::move(clusHitEta[8]);
675  TrackHitEtaEC2(*tp) = std::move(clusHitEta[9]);
676  TrackHitEtaEC3(*tp) = std::move(clusHitEta[10]);
677  ClusterChargeIBL(*tp) = std::move(clusCharge[0]);
678  ClusterCharge3D(*tp) = std::move(clusCharge[1]);
679  ClusterChargeBL(*tp) = std::move(clusCharge[2]);
680  ClusterChargeL1(*tp) = std::move(clusCharge[3]);
681  ClusterChargeL2(*tp) = std::move(clusCharge[4]);
682  ClusterChargeEA1(*tp) = std::move(clusCharge[5]);
683  ClusterChargeEA2(*tp) = std::move(clusCharge[6]);
684  ClusterChargeEA3(*tp) = std::move(clusCharge[7]);
685  ClusterChargeEC1(*tp) = std::move(clusCharge[8]);
686  ClusterChargeEC2(*tp) = std::move(clusCharge[9]);
687  ClusterChargeEC3(*tp) = std::move(clusCharge[10]);
688  ClusterToTIBL(*tp) = std::move(clusToT[0]);
689  ClusterToT3D(*tp) = std::move(clusToT[1]);
690  ClusterToTBL(*tp) = std::move(clusToT[2]);
691  ClusterToTL1(*tp) = std::move(clusToT[3]);
692  ClusterToTL2(*tp) = std::move(clusToT[4]);
693  ClusterToTEA1(*tp) = std::move(clusToT[5]);
694  ClusterToTEA2(*tp) = std::move(clusToT[6]);
695  ClusterToTEA3(*tp) = std::move(clusToT[7]);
696  ClusterToTEC1(*tp) = std::move(clusToT[8]);
697  ClusterToTEC2(*tp) = std::move(clusToT[9]);
698  ClusterToTEC3(*tp) = std::move(clusToT[10]);
699  ClusterdEdxIBL(*tp) = std::move(clusdEdx[0]);
700  ClusterdEdx3D(*tp) = std::move(clusdEdx[1]);
701  ClusterdEdxBL(*tp) = std::move(clusdEdx[2]);
702  ClusterdEdxL1(*tp) = std::move(clusdEdx[3]);
703  ClusterdEdxL2(*tp) = std::move(clusdEdx[4]);
704  ClusterdEdxEA1(*tp) = std::move(clusdEdx[5]);
705  ClusterdEdxEA2(*tp) = std::move(clusdEdx[6]);
706  ClusterdEdxEA3(*tp) = std::move(clusdEdx[7]);
707  ClusterdEdxEC1(*tp) = std::move(clusdEdx[8]);
708  ClusterdEdxEC2(*tp) = std::move(clusdEdx[9]);
709  ClusterdEdxEC3(*tp) = std::move(clusdEdx[10]);
710  ClusterSizeXIBL(*tp) = std::move(clusSizeX[0]);
711  ClusterSizeX3D(*tp) = std::move(clusSizeX[1]);
712  ClusterSizeXBL(*tp) = std::move(clusSizeX[2]);
713  ClusterSizeXL1(*tp) = std::move(clusSizeX[3]);
714  ClusterSizeXL2(*tp) = std::move(clusSizeX[4]);
715  ClusterSizeXEA1(*tp) = std::move(clusSizeX[5]);
716  ClusterSizeXEA2(*tp) = std::move(clusSizeX[6]);
717  ClusterSizeXEA3(*tp) = std::move(clusSizeX[7]);
718  ClusterSizeXEC1(*tp) = std::move(clusSizeX[8]);
719  ClusterSizeXEC2(*tp) = std::move(clusSizeX[9]);
720  ClusterSizeXEC3(*tp) = std::move(clusSizeX[10]);
721  ClusterSizeZIBL(*tp) = std::move(clusSizeZ[0]);
722  ClusterSizeZ3D(*tp) = std::move(clusSizeZ[1]);
723  ClusterSizeZBL(*tp) = std::move(clusSizeZ[2]);
724  ClusterSizeZL1(*tp) = std::move(clusSizeZ[3]);
725  ClusterSizeZL2(*tp) = std::move(clusSizeZ[4]);
726  ClusterSizeZEA1(*tp) = std::move(clusSizeZ[5]);
727  ClusterSizeZEA2(*tp) = std::move(clusSizeZ[6]);
728  ClusterSizeZEA3(*tp) = std::move(clusSizeZ[7]);
729  ClusterSizeZEC1(*tp) = std::move(clusSizeZ[8]);
730  ClusterSizeZEC2(*tp) = std::move(clusSizeZ[9]);
731  ClusterSizeZEC3(*tp) = std::move(clusSizeZ[10]);
732  ClusterResidualXIBL(*tp) = std::move(clusResidualX[0]);
733  ClusterResidualX3D(*tp) = std::move(clusResidualX[1]);
734  ClusterResidualXBL(*tp) = std::move(clusResidualX[2]);
735  ClusterResidualXL1(*tp) = std::move(clusResidualX[3]);
736  ClusterResidualXL2(*tp) = std::move(clusResidualX[4]);
737  ClusterResidualXEA1(*tp) = std::move(clusResidualX[5]);
738  ClusterResidualXEA2(*tp) = std::move(clusResidualX[6]);
739  ClusterResidualXEA3(*tp) = std::move(clusResidualX[7]);
740  ClusterResidualXEC1(*tp) = std::move(clusResidualX[8]);
741  ClusterResidualXEC2(*tp) = std::move(clusResidualX[9]);
742  ClusterResidualXEC3(*tp) = std::move(clusResidualX[10]);
743  ClusterResidualYIBL(*tp) = std::move(clusResidualY[0]);
744  ClusterResidualY3D(*tp) = std::move(clusResidualY[1]);
745  ClusterResidualYBL(*tp) = std::move(clusResidualY[2]);
746  ClusterResidualYL1(*tp) = std::move(clusResidualY[3]);
747  ClusterResidualYL2(*tp) = std::move(clusResidualY[4]);
748  ClusterResidualYEA1(*tp) = std::move(clusResidualY[5]);
749  ClusterResidualYEA2(*tp) = std::move(clusResidualY[6]);
750  ClusterResidualYEA3(*tp) = std::move(clusResidualY[7]);
751  ClusterResidualYEC1(*tp) = std::move(clusResidualY[8]);
752  ClusterResidualYEC2(*tp) = std::move(clusResidualY[9]);
753  ClusterResidualYEC3(*tp) = std::move(clusResidualY[10]);
754  ClusterHoleIBL(*tp) = std::move(clusHole[0]);
755  ClusterHole3D(*tp) = std::move(clusHole[1]);
756  ClusterHoleBL(*tp) = std::move(clusHole[2]);
757  ClusterHoleL1(*tp) = std::move(clusHole[3]);
758  ClusterHoleL2(*tp) = std::move(clusHole[4]);
759  ClusterHoleEA1(*tp) = std::move(clusHole[5]);
760  ClusterHoleEA2(*tp) = std::move(clusHole[6]);
761  ClusterHoleEA3(*tp) = std::move(clusHole[7]);
762  ClusterHoleEC1(*tp) = std::move(clusHole[8]);
763  ClusterHoleEC2(*tp) = std::move(clusHole[9]);
764  ClusterHoleEC3(*tp) = std::move(clusHole[10]);
765  ClusterOccIBL(*tp) = std::move(clusOcc[0]);
766  ClusterOcc3D(*tp) = std::move(clusOcc[1]);
767  ClusterOccBL(*tp) = std::move(clusOcc[2]);
768  ClusterOccL1(*tp) = std::move(clusOcc[3]);
769  ClusterOccL2(*tp) = std::move(clusOcc[4]);
770  ClusterOccEA1(*tp) = std::move(clusOcc[5]);
771  ClusterOccEA2(*tp) = std::move(clusOcc[6]);
772  ClusterOccEA3(*tp) = std::move(clusOcc[7]);
773  ClusterOccEC1(*tp) = std::move(clusOcc[8]);
774  ClusterOccEC2(*tp) = std::move(clusOcc[9]);
775  ClusterOccEC3(*tp) = std::move(clusOcc[10]);
776  TrackALL(*tp) = std::move(trkEta);
777  TrackHOLE(*tp) = std::move(trkHole);
778  TrackdEdx(*tp) = std::move(trkdEdx);
779 
780  PixelMonitoringTrack->push_back(tp);
781  }
782  }
783  return StatusCode::SUCCESS;
784 }
785 
787  *eta =(id>>43) % 0x20 - 10;
788  *phi =(id>>43) % 0x800 / 0x20;
789  int layer_index = ((id>>43) / 0x800) & 0xF;
790 
791  //A possibility is to use a bit by bit AND: layer_index & 0xF
792  switch (layer_index) {
793  case 4:
794  *barrelEC=-2;
795  *layer = 0;
796  break;
797  case 5:
798  *barrelEC=-2;
799  *layer = 1;
800  break;
801  case 6:
802  *barrelEC=-2;
803  *layer = 2;
804  break;
805  case 8:
806  *barrelEC=0;
807  *layer=0;
808  break;
809  case 9:
810  *layer=1;
811  *barrelEC=0;
812  break;
813  case 10:
814  *layer=2;
815  *barrelEC=0;
816  break;
817  case 11:
818  *barrelEC=0;
819  *layer =3;
820  break;
821  case 12:
822  *barrelEC=2;
823  *layer=0;
824  break;
825  case 13:
826  *layer =1;
827  *barrelEC=2;
828  break;
829  case 14:
830  *layer=2;
831  *barrelEC=2;
832  break;
833  }
834 }
835 
TauTrackVars::trackPhi
bool trackPhi(const xAOD::TauJet &, const xAOD::TauTrack &track, float &out)
Definition: ConstituentLoaderTauTrack.cxx:123
ShallowCopy.h
xAOD::numberOfPixelHoles
@ numberOfPixelHoles
number of pixel layers on track with absence of hits [unit8_t].
Definition: TrackingPrimitives.h:262
Trk::TrackState::Pixel
@ Pixel
Definition: TrackStateDefs.h:28
add-xsec-uncert-quadrature-N.alpha
alpha
Definition: add-xsec-uncert-quadrature-N.py:110
xAOD::numberOfSCTSharedHits
@ numberOfSCTSharedHits
number of SCT hits shared by several tracks [unit8_t].
Definition: TrackingPrimitives.h:273
phi
Scalar phi() const
phi method
Definition: AmgMatrixBasePlugin.h:67
xAOD::uint8_t
uint8_t
Definition: Muon_v1.cxx:553
xAOD::TrackStateValidation_v1::detType
char detType() const
Returns the detector type.
makeComparison.deltaY
int deltaY
Definition: makeComparison.py:44
eta
Scalar eta() const
pseudorapidity method
Definition: AmgMatrixBasePlugin.h:83
TrackStateDefs.h
SG::ReadHandle
Definition: StoreGate/StoreGate/ReadHandle.h:67
ReadBchFromCrest.begin
begin
Definition: ReadBchFromCrest.py:80
TRT::Hit::globalZ
@ globalZ
Definition: HitInfo.h:39
ParticleTest.tp
tp
Definition: ParticleTest.py:25
xAOD::TrackStateValidation_v1
Class describing a TrackStateValidation.
Definition: TrackStateValidation_v1.h:28
xAOD::TrackStateValidation_v1::detElementId
uint64_t detElementId() const
Returns the detector element identifier.
xAOD::numberOfPixelHits
@ numberOfPixelHits
these are the pixel hits, including the b-layer [unit8_t].
Definition: TrackingPrimitives.h:260
xAOD::TrackStateValidation_v1::trackMeasurementValidationLink
ElementLink< xAOD::TrackMeasurementValidationContainer > trackMeasurementValidationLink() const
SG::ConstAccessor
Helper class to provide constant type-safe access to aux data.
Definition: ConstAccessor.h:55
InDetSecVtxTruthMatchUtils::isSplit
bool isSplit(int matchInfo)
Definition: InDetSecVtxTruthMatchTool.h:83
drawFromPickle.cos
cos
Definition: drawFromPickle.py:36
DerivationFramework::PixelNtupleMaker::m_selector
ToolHandle< InDet::IInDetTrackSelectionTool > m_selector
Definition: PixelNtupleMaker.h:43
xAOD::TrackStateValidation_v1::localX
float localX() const
drawFromPickle.atan
atan
Definition: drawFromPickle.py:36
DerivationFramework::PixelNtupleMaker::addBranches
virtual StatusCode addBranches(const EventContext &ctx) const override final
Definition: PixelNtupleMaker.cxx:27
IDTPM::nSCTSharedHits
float nSCTSharedHits(const U &p)
Definition: TrackParametersHelper.h:413
xAOD::TrackParticle
TrackParticle_v1 TrackParticle
Reference the current persistent version:
Definition: Event/xAOD/xAODTracking/xAODTracking/TrackParticle.h:13
xAOD::TrackStateValidation_v1::unbiasedResidualY
float unbiasedResidualY() const
Returns the unbiased x residual.
xAOD::TrackMeasurementValidation_v1
Class describing a TrackMeasurementValidation.
Definition: TrackMeasurementValidation_v1.h:27
xAOD::numberOfPixelSharedHits
@ numberOfPixelSharedHits
number of Pixel all-layer hits shared by several tracks [unit8_t].
Definition: TrackingPrimitives.h:263
SG::Decorator< float >
Trk::TrackStateOnSurface::Hole
@ Hole
A hole on the track - this is defined in the following way.
Definition: TrackStateOnSurface.h:128
lumiFormat.i
int i
Definition: lumiFormat.py:85
IDTPM::nSCTHits
float nSCTHits(const U &p)
Definition: TrackParametersHelper.h:393
beamspotman.n
n
Definition: beamspotman.py:727
EL::StatusCode
::StatusCode StatusCode
StatusCode definition for legacy code.
Definition: PhysicsAnalysis/D3PDTools/EventLoop/EventLoop/StatusCode.h:22
TRT::Hit::layer
@ layer
Definition: HitInfo.h:79
DerivationFramework::PixelNtupleMaker::MeasurementsOnTrack
std::vector< ElementLink< xAOD::TrackStateValidationContainer > > MeasurementsOnTrack
Definition: PixelNtupleMaker.h:53
xAOD::uint64_t
uint64_t
Definition: EventInfo_v1.cxx:123
xAOD::numberOfPixelOutliers
@ numberOfPixelOutliers
these are the pixel outliers, including the b-layer [unit8_t].
Definition: TrackingPrimitives.h:261
ATH_CHECK
#define ATH_CHECK
Definition: AthCheckMacros.h:40
drawFromPickle.tan
tan
Definition: drawFromPickle.py:36
SG::VarHandleKey::initialize
StatusCode initialize(bool used=true)
If this object is used as a property, then this should be called during the initialize phase.
Definition: AthToolSupport/AsgDataHandles/Root/VarHandleKey.cxx:103
xAOD::numberOfSCTHoles
@ numberOfSCTHoles
number of SCT holes [unit8_t].
Definition: TrackingPrimitives.h:271
IDTPM::nSCTHoles
float nSCTHoles(const U &p)
Definition: TrackParametersHelper.h:403
compareGeometries.deltaX
float deltaX
Definition: compareGeometries.py:32
xAOD::TrackStateValidation_v1::localY
float localY() const
Returns the y position.
SG::ReadHandle::isValid
virtual bool isValid() override final
Can the handle be successfully dereferenced?
DerivationFramework::PixelNtupleMaker::m_containerKey
SG::ReadHandleKey< xAOD::TrackParticleContainer > m_containerKey
Definition: PixelNtupleMaker.h:46
DerivationFramework::PixelNtupleMaker::initialize
virtual StatusCode initialize() override final
Definition: PixelNtupleMaker.cxx:18
PixelCalibrationConfig.tot
tot
Definition: PixelCalibrationConfig.py:28
charge
double charge(const T &p)
Definition: AtlasPID.h:997
DataVector::push_back
value_type push_back(value_type pElem)
Add an element to the end of the collection.
xAOD::TrackParticle_v1::e
virtual double e() const override final
The total energy of the particle.
Definition: TrackParticle_v1.cxx:111
TrackParticle.h
SG::WriteHandle
Definition: StoreGate/StoreGate/WriteHandle.h:73
xAOD::TrackStateValidation_v1::localPhi
float localPhi() const
Returns the phi position.
python.CaloAddPedShiftConfig.int
int
Definition: CaloAddPedShiftConfig.py:45
PixelNtupleMaker.h
SG::WriteHandle::record
StatusCode record(std::unique_ptr< T > data)
Record a const object to the store.
xAOD::TrackStateValidation_v1::unbiasedResidualX
float unbiasedResidualX() const
Returns the unbiased x residual.
DerivationFramework::PixelNtupleMaker::m_monitoringTracks
SG::WriteHandleKey< xAOD::TrackParticleContainer > m_monitoringTracks
Definition: PixelNtupleMaker.h:51
DerivationFramework::PixelNtupleMaker::m_measurementContainerKey
SG::ReadHandleKey< xAOD::TrackMeasurementValidationContainer > m_measurementContainerKey
Definition: PixelNtupleMaker.h:48
LArNewCalib_DelayDump_OFC_Cali.idx
idx
Definition: LArNewCalib_DelayDump_OFC_Cali.py:69
xAOD::numberOfSCTHits
@ numberOfSCTHits
number of hits in SCT [unit8_t].
Definition: TrackingPrimitives.h:269
SG::ConstAccessor::isAvailable
bool isAvailable(const ELT &e) const
Test to see if this variable exists in the store.
xAOD::numberOfPixelDeadSensors
@ numberOfPixelDeadSensors
number of dead pixel sensors crossed [unit8_t].
Definition: TrackingPrimitives.h:267
xAOD::TrackParticle_v1
Class describing a TrackParticle.
Definition: TrackParticle_v1.h:44
DerivationFramework::PixelNtupleMaker::GetLayerEtaPhiFromId
static void GetLayerEtaPhiFromId(uint64_t id, int *barrelEC, int *layer, int *eta, int *phi)
Definition: PixelNtupleMaker.cxx:786
ConstAccessor.h
Helper class to provide constant type-safe access to aux data.
xAOD::TrackStateValidation_v1::type
int type() const
xAOD::TrackStateValidation_v1::localTheta
float localTheta() const
Returns the theta position.
TrackStateOnSurface.h