Loading [MathJax]/extensions/tex2jax.js
ATLAS Offline Software
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
PixelNtupleMaker.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 
7 #include "xAODCore/ShallowCopy.h"
12 
13 #include <vector>
14 #include <string>
15 
16 #include "TLorentzVector.h"
17 
18 DerivationFramework::PixelNtupleMaker::PixelNtupleMaker(const std::string& t, const std::string& n, const IInterface* p) :
19  base_class(t,n,p)
20 {
21 }
22 
24 
26  ATH_CHECK(m_selector.retrieve());
27  ATH_CHECK(m_containerKey.initialize());
28  ATH_CHECK(m_measurementContainerKey.initialize());
29  ATH_CHECK(m_monitoringTracks.initialize());
30  return StatusCode::SUCCESS;
31 }
32 
34 {
35  return StatusCode::SUCCESS;
36 }
37 
39  const EventContext& ctx = Gaudi::Hive::currentContext();
40 
41  SG::ReadHandle<xAOD::TrackParticleContainer> tracks(m_containerKey,ctx);
42  if (!tracks.isValid()) { return StatusCode::SUCCESS; }
43 
44  // Check the event contains tracks
45  SG::WriteHandle<xAOD::TrackParticleContainer> PixelMonitoringTrack(m_monitoringTracks,ctx);
46  if (PixelMonitoringTrack.record(std::make_unique<xAOD::TrackParticleContainer>(),
47  std::make_unique<xAOD::TrackParticleAuxContainer>()).isFailure()) {
48  return StatusCode::SUCCESS;
49  }
50 
51  SG::ReadHandle<xAOD::TrackMeasurementValidationContainer> pixClusters(m_measurementContainerKey,ctx);
52  if (!pixClusters.isValid()) { return StatusCode::SUCCESS; }
53 
54  // monitoring variables.
55  const int nbin_charge = 60;
56  const int nbin_tot = 120;
57  const int nbin_eta = 30;
58  const int nbin_dedx = 300;
59  const int nbin_size = 10;
60  const int nbin_reso = 80;
61  const int nbin_occ = 80;
62 
63  std::vector<std::vector<int>> clusCharge(11,std::vector<int>(nbin_charge,0));
64  std::vector<std::vector<int>> clusToT(11,std::vector<int>(nbin_tot,0));
65  std::vector<std::vector<int>> clusEta(11,std::vector<int>(nbin_eta,0));
66  std::vector<std::vector<int>> clusHitEta(11,std::vector<int>(nbin_eta,0));
67  std::vector<std::vector<int>> clusdEdx(11,std::vector<int>(nbin_dedx,0));
68  std::vector<std::vector<int>> clusSizeX(11,std::vector<int>(nbin_size,0));
69  std::vector<std::vector<int>> clusSizeZ(11,std::vector<int>(nbin_size,0));
70  std::vector<std::vector<int>> clusResidualX(11,std::vector<int>(nbin_reso,0));
71  std::vector<std::vector<int>> clusResidualY(11,std::vector<int>(nbin_reso,0));
72  std::vector<std::vector<int>> clusHole(11,std::vector<int>(nbin_eta,0));
73  std::vector<std::vector<int>> clusOcc(11,std::vector<int>(nbin_occ,0));
74 
75  std::vector<int> trkEta(nbin_eta,0);
76  std::vector<int> trkHole(nbin_eta,0);
77  std::vector<int> trkdEdx(nbin_dedx,0);
78 
79  float maxPt = 0.0;
80  const xAOD::TrackParticle* trk_maxpt = nullptr;
81 
82  std::vector<float> tmpCov(15,0.);
83 
84  // StoreGateSvc+InDetTrackParticles.msosLink
85  static const SG::ConstAccessor<MeasurementsOnTrack> acc_MeasurementsOnTrack("msosLink");
86 
87  for (const xAOD::TrackParticle* trk : *tracks) {
88  uint8_t nPixHits = 0; trk->summaryValue(nPixHits,xAOD::numberOfPixelHits);
89  uint8_t nSCTHits = 0; trk->summaryValue(nSCTHits,xAOD::numberOfSCTHits);
90  if (trk->pt()<1000.0 && nPixHits<4) { continue; }
91  if (trk->pt()<1000.0 && nSCTHits<1) { continue; }
92 
93  std::vector<uint64_t> holeIndex;
94  std::vector<int> clusterLayer;
95  std::vector<int> clusterBEC;
96  std::vector<int> clusterModulePhi;
97  std::vector<int> clusterModuleEta;
98  std::vector<float> clusterCharge;
99  std::vector<int> clusterToT;
100  std::vector<int> clusterL1A;
101  std::vector<int> clusterIsSplit;
102  std::vector<int> clusterSize;
103  std::vector<int> clusterSizePhi;
104  std::vector<int> clusterSizeZ;
105  std::vector<bool> isEdge;
106  std::vector<bool> isOverflow;
107  std::vector<float> trackPhi;
108  std::vector<float> trackTheta;
109  std::vector<float> trackX;
110  std::vector<float> trackY;
111  std::vector<float> localX;
112  std::vector<float> localY;
113  std::vector<float> globalX;
114  std::vector<float> globalY;
115  std::vector<float> globalZ;
116  std::vector<float> unbiasedResidualX;
117  std::vector<float> unbiasedResidualY;
118  std::vector<int> clusterIsolation10x2;
119  std::vector<int> clusterIsolation20x4;
120  std::vector<int> numTotalClustersPerModule;
121  std::vector<int> numTotalPixelsPerModule;
122  std::vector<float> moduleLorentzShift;
123 
124  std::vector<std::vector<int>> rdoToT;
125  std::vector<std::vector<float>> rdoCharge;
126  std::vector<std::vector<int>> rdoPhi;
127  std::vector<std::vector<int>> rdoEta;
128 
129  const MeasurementsOnTrack& measurementsOnTrack = acc_MeasurementsOnTrack(*trk);
130  for (const auto & msos_iter : measurementsOnTrack) {
131  if (!msos_iter.isValid()) { continue; }
132  const xAOD::TrackStateValidation* msos = *msos_iter;
133  if (msos->detType()!=Trk::TrackState::Pixel) { continue; } // its a pixel
134  if (msos->type()==Trk::TrackStateOnSurface::Hole) { // hole
135  holeIndex.push_back(msos->detElementId());
136  continue;
137  }
138  if (!msos->trackMeasurementValidationLink().isValid()) { continue; }
139  if (!(*(msos->trackMeasurementValidationLink()))) { continue; }
140 
142 
143  static const SG::ConstAccessor<float> chargeAcc("charge");
144  static const SG::ConstAccessor<int> layerAcc("layer");
145  static const SG::ConstAccessor<int> becAcc("bec");
146  static const SG::ConstAccessor<int> phi_moduleAcc("phi_module");
147  static const SG::ConstAccessor<int> eta_moduleAcc("eta_module");
148  static const SG::ConstAccessor<int> ToTAcc("ToT");
149  static const SG::ConstAccessor<int> LVL1AAcc("LVL1A");
150  static const SG::ConstAccessor<char> isSplitAcc("isSplit");
151  static const SG::ConstAccessor<int> nRDOAcc("nRDO");
152  static const SG::ConstAccessor<int> sizePhiAcc("sizePhi");
153  static const SG::ConstAccessor<int> sizeZAcc("sizeZ");
154  static const SG::ConstAccessor<float> LorentzShiftAcc("LorentzShift");
155  static const SG::ConstAccessor<std::vector<int> > rdo_totAcc("rdo_tot");
156  static const SG::ConstAccessor<std::vector<float> > rdo_chargeAcc("rdo_charge");
157 
158  for (const auto *clus_itr : *pixClusters) {
159  if (clus_itr->identifier()!=(msosClus)->identifier()) { continue; }
160  if (chargeAcc(*clus_itr)!=chargeAcc(*msosClus)) { continue; }
161 
162  clusterLayer.push_back(layerAcc(*clus_itr));
163  clusterBEC.push_back(becAcc(*clus_itr));
164  clusterModulePhi.push_back(phi_moduleAcc(*clus_itr));
165  clusterModuleEta.push_back(eta_moduleAcc(*clus_itr));
166  clusterCharge.push_back(chargeAcc(*clus_itr));
167  clusterToT.push_back(ToTAcc(*clus_itr));
168  clusterL1A.push_back(LVL1AAcc(*clus_itr));
169  clusterIsSplit.push_back(isSplitAcc(*clus_itr));
170  clusterSize.push_back(nRDOAcc(*clus_itr));
171  clusterSizePhi.push_back(sizePhiAcc(*clus_itr));
172  clusterSizeZ.push_back(sizeZAcc(*clus_itr));
173 
174  trackPhi.push_back(msos->localPhi());
175  trackTheta.push_back(msos->localTheta());
176  trackX.push_back(msos->localX());
177  trackY.push_back(msos->localY());
178  localX.push_back(clus_itr->localX());
179  localY.push_back(clus_itr->localY());
180  globalX.push_back(clus_itr->globalX());
181  globalY.push_back(clus_itr->globalY());
182  globalZ.push_back(clus_itr->globalZ());
183  unbiasedResidualX.push_back(msos->unbiasedResidualX());
184  unbiasedResidualY.push_back(msos->unbiasedResidualY());
185  moduleLorentzShift.push_back(LorentzShiftAcc(*clus_itr));
186 
187  // cluster isolation IBL:50x250um, PIXEL:50x400um
188  // - isolation region 10x2 = 500x500um for IBL, 500x800um for PIXEL
189  int numNeighborCluster10x2 = 0;
190  int numNeighborCluster20x4 = 0;
191  int nTotalClustersPerModule = 0;
192  int nTotalPixelsPerModule = 0;
193  for (const auto *clus_neighbor : *pixClusters) {
194  if (layerAcc(*clus_neighbor)==layerAcc(*clus_itr)
195  && becAcc(*clus_neighbor)==becAcc(*clus_itr)
196  && phi_moduleAcc(*clus_neighbor)==phi_moduleAcc(*clus_itr)
197  && eta_moduleAcc(*clus_neighbor)==eta_moduleAcc(*clus_itr)) {
198  float deltaX = std::abs(clus_neighbor->localX()-clus_itr->localX());
199  float deltaY = std::abs(clus_neighbor->localY()-clus_itr->localY());
200  nTotalClustersPerModule++;
201  nTotalPixelsPerModule += nRDOAcc(*clus_neighbor);
202  if (deltaX>0.0 && deltaY>0.0) {
203  if (layerAcc(*clus_itr)==0 && becAcc(*clus_itr)==0) { // IBL
204  if (deltaX<0.500 && deltaY<0.500) { numNeighborCluster10x2++; }
205  if (deltaX<1.000 && deltaY<1.000) { numNeighborCluster20x4++; }
206  }
207  else {
208  if (deltaX<0.500 && deltaY<0.800) { numNeighborCluster10x2++; }
209  if (deltaX<1.000 && deltaY<1.600) { numNeighborCluster20x4++; }
210  }
211  }
212  }
213  }
214  clusterIsolation10x2.push_back(numNeighborCluster10x2);
215  clusterIsolation20x4.push_back(numNeighborCluster20x4);
216  numTotalClustersPerModule.push_back(nTotalClustersPerModule);
217  numTotalPixelsPerModule.push_back(nTotalPixelsPerModule);
218 
219  // is edge pixel?
220  // contain overlflow hit?
221  bool checkEdge = false;
222  bool checkOverflow = false;
223 
224  // rdo information
225  std::vector<int> tmpToT;
226  std::vector<float> tmpCharge;
227  std::vector<int> tmpPhi;
228  std::vector<int> tmpEta;
229 
230  static const SG::ConstAccessor<std::vector<int> > rdo_phi_pixel_indexAcc("rdo_phi_pixel_index");
231  int nrdo = rdo_phi_pixel_indexAcc.isAvailable(*clus_itr) ? rdo_phi_pixel_indexAcc(*clus_itr).size() : -1;
232  for (int i=0; i<nrdo; i++) {
233 
234  int phi = rdo_phi_pixel_indexAcc(*clus_itr)[i];
235  if (phi<5) { checkEdge=true; }
236  if (phi>320) { checkEdge=true; }
237 
238  int eta = rdo_phi_pixel_indexAcc(*clus_itr)[i];
239  if (layerAcc(*clus_itr)==0 && becAcc(*clus_itr)==0) { // IBL
240  if (eta_moduleAcc(*clus_itr)>-7 && eta_moduleAcc(*clus_itr)<6) { // IBL Planar
241  if (eta<5) { checkEdge=true; }
242  if (eta>154) { checkEdge=true; }
243  }
244  else { // IBL 3D
245  if (eta<5) { checkEdge=true; }
246  if (eta>74) { checkEdge=true; }
247  }
248  }
249  else {
250  if (eta<5) { checkEdge=true; }
251  if (eta>154) { checkEdge=true; }
252  }
253 
254  int tot = rdo_totAcc(*clus_itr)[i];
255  if (layerAcc(*clus_itr)==0 && becAcc(*clus_itr)==0) { // IBL
256  if (tot==16) { checkOverflow=true; }
257  }
258  else if (layerAcc(*clus_itr)==1 && becAcc(*clus_itr)==0) { // b-layer
259  if (tot==150) { checkOverflow=true; }
260  }
261  else {
262  if (tot==255) { checkOverflow=true; }
263  }
264 
265  float charge = rdo_chargeAcc(*clus_itr)[i];
266  if (trk->pt()>2000.0) {
267  tmpToT.push_back(tot);
268  tmpCharge.push_back(charge);
269  tmpPhi.push_back(phi);
270  tmpEta.push_back(eta);
271  }
272  }
273  isEdge.push_back(checkEdge);
274  isOverflow.push_back(checkOverflow);
275 
276  rdoToT.push_back(tmpToT);
277  rdoCharge.push_back(tmpCharge);
278  rdoPhi.push_back(tmpPhi);
279  rdoEta.push_back(tmpEta);
280  break;
281  }
282  }
283 
284  if (m_storeMode==1) {
285  static const SG::Decorator<float> d0err("d0err");
286  static const SG::Decorator<float> z0err("z0err");
287  static const SG::Decorator<std::vector<uint64_t>> HoleIndex("HoleIndex");
288  static const SG::Decorator<std::vector<int>> ClusterLayer("ClusterLayer");
289  static const SG::Decorator<std::vector<int>> ClusterBEC("ClusterBEC");
290  static const SG::Decorator<std::vector<int>> ClusterModulePhi("ClusterModulePhi");
291  static const SG::Decorator<std::vector<int>> ClusterModuleEta("ClusterModuleEta");
292  static const SG::Decorator<std::vector<float>> ClusterCharge("ClusterCharge");
293  static const SG::Decorator<std::vector<int>> ClusterToT("ClusterToT");
294  static const SG::Decorator<std::vector<int>> ClusterL1A("ClusterL1A");
295  static const SG::Decorator<std::vector<int>> ClusterIsSplit("ClusterIsSplit");
296  static const SG::Decorator<std::vector<int>> ClusterSize("ClusterSize");
297  static const SG::Decorator<std::vector<int>> ClusterSizePhi("ClusterSizePhi");
298  static const SG::Decorator<std::vector<int>> ClusterSizeZ("ClusterSizeZ");
299  static const SG::Decorator<std::vector<bool>> ClusterIsEdge("ClusterIsEdge");
300  static const SG::Decorator<std::vector<bool>> ClusterIsOverflow("ClusterIsOverflow");
301  static const SG::Decorator<std::vector<float>> TrackLocalPhi("TrackLocalPhi");
302  static const SG::Decorator<std::vector<float>> TrackLocalTheta("TrackLocalTheta");
303  static const SG::Decorator<std::vector<float>> TrackLocalX("TrackLocalX");
304  static const SG::Decorator<std::vector<float>> TrackLocalY("TrackLocalY");
305  static const SG::Decorator<std::vector<float>> ClusterLocalX("ClusterLocalX");
306  static const SG::Decorator<std::vector<float>> ClusterLocalY("ClusterLocalY");
307  static const SG::Decorator<std::vector<float>> ClusterGlobalX("ClusterGlobalX");
308  static const SG::Decorator<std::vector<float>> ClusterGlobalY("ClusterGlobalY");
309  static const SG::Decorator<std::vector<float>> ClusterGlobalZ("ClusterGlobalZ");
310  static const SG::Decorator<std::vector<float>> UnbiasedResidualX("UnbiasedResidualX");
311  static const SG::Decorator<std::vector<float>> UnbiasedResidualY("UnbiasedResidualY");
312  static const SG::Decorator<std::vector<int>> ClusterIsolation10x2("ClusterIsolation10x2");
313  static const SG::Decorator<std::vector<int>> ClusterIsolation20x4("ClusterIsolation20x4");
314  static const SG::Decorator<std::vector<int>> NumTotalClustersPerModule("NumTotalClustersPerModule");
315  static const SG::Decorator<std::vector<int>> NumTotalPixelsPerModule("NumTotalPixelsPerModule");
316  static const SG::Decorator<std::vector<float>> ModuleLorentzShift("ModuleLorentzShift");
317  static const SG::Decorator<std::vector<std::vector<int>>> RdoToT("RdoToT");
318  static const SG::Decorator<std::vector<std::vector<float>>> RdoCharge("RdoCharge");
319  static const SG::Decorator<std::vector<std::vector<int>>> RdoPhi("RdoPhi");
320  static const SG::Decorator<std::vector<std::vector<int>>> RdoEta("RdoEta");
321 
322  d0err(*trk) = trk->definingParametersCovMatrixVec().at(0);
323  z0err(*trk) = trk->definingParametersCovMatrixVec().at(2);
324  HoleIndex(*trk) = std::move(holeIndex);
325  ClusterLayer(*trk) = std::move(clusterLayer);
326  ClusterBEC(*trk) = std::move(clusterBEC);
327  ClusterModulePhi(*trk) = std::move(clusterModulePhi);
328  ClusterModuleEta(*trk) = std::move(clusterModuleEta);
329  ClusterCharge(*trk) = std::move(clusterCharge);
330  ClusterToT(*trk) = std::move(clusterToT);
331  ClusterL1A(*trk) = std::move(clusterL1A);
332  ClusterIsSplit(*trk) = std::move(clusterIsSplit);
333  ClusterSize(*trk) = std::move(clusterSize);
334  ClusterSizePhi(*trk) = std::move(clusterSizePhi);
335  ClusterSizeZ(*trk) = std::move(clusterSizeZ);
336  ClusterIsEdge(*trk) = std::move(isEdge);
337  ClusterIsOverflow(*trk) = std::move(isOverflow);
338  TrackLocalPhi(*trk) = std::move(trackPhi);
339  TrackLocalTheta(*trk) = std::move(trackTheta);
340  TrackLocalX(*trk) = std::move(trackX);
341  TrackLocalY(*trk) = std::move(trackY);
342  ClusterLocalX(*trk) = std::move(localX);
343  ClusterLocalY(*trk) = std::move(localY);
344  ClusterGlobalX(*trk) = std::move(globalX);
345  ClusterGlobalY(*trk) = std::move(globalY);
346  ClusterGlobalZ(*trk) = std::move(globalZ);
347  UnbiasedResidualX(*trk) = std::move(unbiasedResidualX);
348  UnbiasedResidualY(*trk) = std::move(unbiasedResidualY);
349  ClusterIsolation10x2(*trk) = std::move(clusterIsolation10x2);
350  ClusterIsolation20x4(*trk) = std::move(clusterIsolation20x4);
351  NumTotalClustersPerModule(*trk) = std::move(numTotalClustersPerModule);
352  NumTotalPixelsPerModule(*trk) = std::move(numTotalPixelsPerModule);
353  ModuleLorentzShift(*trk) = std::move(moduleLorentzShift);
354  RdoToT(*trk) = std::move(rdoToT);
355  RdoCharge(*trk) = std::move(rdoCharge);
356  RdoPhi(*trk) = std::move(rdoPhi);
357  RdoEta(*trk) = std::move(rdoEta);
358  }
359 
360  // further track selection for slimmed track variables
361  uint8_t nPixelDeadSensor = 0; trk->summaryValue(nPixelDeadSensor,xAOD::numberOfPixelDeadSensors);
365  uint8_t nSCTHoles = 0; trk->summaryValue(nSCTHoles,xAOD::numberOfSCTHoles);
366  uint8_t nPixSharedHits = 0; trk->summaryValue(nPixSharedHits,xAOD::numberOfPixelSharedHits);
368 
369  // loose track selection
370  bool passLooseCut = static_cast<bool>(m_selector->accept(trk));
371  if (!passLooseCut) { continue; }
372 
373  //==================
374  // Efficiency check
375  //==================
376  int checkIBL(0),check3D(0),checkBLY(0),checkLY1(0),checkLY2(0),checkEA1(0),checkEA2(0),checkEA3(0),checkEC1(0),checkEC2(0),checkEC3(0);
377  for (int i=0; i<(int)clusterLayer.size(); i++) {
378  if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==0) {
379  if (clusterModuleEta.at(i)>-7 && clusterModuleEta.at(i)<6) { checkIBL++; }
380  else { check3D++; }
381  }
382  else if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==1) { checkBLY++; }
383  else if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==2) { checkLY1++; }
384  else if (clusterBEC.at(i)== 0 && clusterLayer.at(i)==3) { checkLY2++; }
385  else if (clusterBEC.at(i)== 2 && clusterLayer.at(i)==0) { checkEA1++; }
386  else if (clusterBEC.at(i)== 2 && clusterLayer.at(i)==1) { checkEA2++; }
387  else if (clusterBEC.at(i)== 2 && clusterLayer.at(i)==2) { checkEA3++; }
388  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==0) { checkEC1++; }
389  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==1) { checkEC2++; }
390  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==2) { checkEC3++; }
391  }
392 
393  if (trk->pt()>2000.0 && nPixelDeadSensor==0) {
394  int ietabin = trunc((trk->eta()+3.0)/0.2);
395 
396  std::for_each((trkEta.begin()+ietabin),(trkEta.begin()+ietabin+1),[](int &n){ n++; });
397  if (numberOfPixelHoles>0) { std::for_each((trkHole.begin()+ietabin),(trkHole.begin()+ietabin+1),[](int &n){ n++; }); }
398 
399  if (checkBLY>0 && checkLY1>0 && checkLY2>0) { std::for_each((clusEta[0].begin()+ietabin),(clusEta[0].begin()+ietabin+1),[](int &n){ n++; }); if (checkIBL>0) { std::for_each((clusHitEta[0].begin()+ietabin),(clusHitEta[0].begin()+ietabin+1),[](int &n){ n++; }); }}
400  if (checkBLY>0 && checkEC2>0 && checkEC3>0) { std::for_each((clusEta[1].begin()+ietabin),(clusEta[1].begin()+ietabin+1),[](int &n){ n++; }); if (check3D>0) { std::for_each((clusHitEta[1].begin()+ietabin),(clusHitEta[1].begin()+ietabin+1),[](int &n){ n++; }); }}
401  if (checkIBL>0 && checkLY1>0 && checkLY2>0) { std::for_each((clusEta[2].begin()+ietabin),(clusEta[2].begin()+ietabin+1),[](int &n){ n++; }); if (checkBLY>0) { std::for_each((clusHitEta[2].begin()+ietabin),(clusHitEta[2].begin()+ietabin+1),[](int &n){ n++; }); }}
402  if (checkIBL>0 && checkBLY>0 && checkLY2>0) { std::for_each((clusEta[3].begin()+ietabin),(clusEta[3].begin()+ietabin+1),[](int &n){ n++; }); if (checkLY1>0) { std::for_each((clusHitEta[3].begin()+ietabin),(clusHitEta[3].begin()+ietabin+1),[](int &n){ n++; }); }}
403  if (checkIBL>0 && checkBLY>0 && checkLY1>0) { std::for_each((clusEta[4].begin()+ietabin),(clusEta[4].begin()+ietabin+1),[](int &n){ n++; }); if (checkLY2>0) { std::for_each((clusHitEta[4].begin()+ietabin),(clusHitEta[4].begin()+ietabin+1),[](int &n){ n++; }); }}
404  if (checkIBL>0 && checkEA2>0 && checkEA3>0) { std::for_each((clusEta[5].begin()+ietabin),(clusEta[5].begin()+ietabin+1),[](int &n){ n++; }); if (checkEA1>0) { std::for_each((clusHitEta[5].begin()+ietabin),(clusHitEta[5].begin()+ietabin+1),[](int &n){ n++; }); }}
405  if (checkIBL>0 && checkEA1>0 && checkEA3>0) { std::for_each((clusEta[6].begin()+ietabin),(clusEta[6].begin()+ietabin+1),[](int &n){ n++; }); if (checkEA2>0) { std::for_each((clusHitEta[6].begin()+ietabin),(clusHitEta[6].begin()+ietabin+1),[](int &n){ n++; }); }}
406  if (checkIBL>0 && checkEA1>0 && checkEA2>0) { std::for_each((clusEta[7].begin()+ietabin),(clusEta[7].begin()+ietabin+1),[](int &n){ n++; }); if (checkEA3>0) { std::for_each((clusHitEta[7].begin()+ietabin),(clusHitEta[7].begin()+ietabin+1),[](int &n){ n++; }); }}
407  if (checkIBL>0 && checkEC2>0 && checkEC3>0) { std::for_each((clusEta[8].begin()+ietabin),(clusEta[8].begin()+ietabin+1),[](int &n){ n++; }); if (checkEC1>0) { std::for_each((clusHitEta[8].begin()+ietabin),(clusHitEta[8].begin()+ietabin+1),[](int &n){ n++; }); }}
408  if (checkIBL>0 && checkEC1>0 && checkEC3>0) { std::for_each((clusEta[9].begin()+ietabin),(clusEta[9].begin()+ietabin+1),[](int &n){ n++; }); if (checkEC2>0) { std::for_each((clusHitEta[9].begin()+ietabin),(clusHitEta[9].begin()+ietabin+1),[](int &n){ n++; }); }}
409  if (checkIBL>0 && checkEC1>0 && checkEC2>0) { std::for_each((clusEta[10].begin()+ietabin),(clusEta[10].begin()+ietabin+1),[](int &n){ n++; }); if (checkEC3>0) { std::for_each((clusHitEta[10].begin()+ietabin),(clusHitEta[10].begin()+ietabin+1),[](int &n){ n++; }); }}
410 
411  for (int i=0; i<(int)holeIndex.size(); i++) {
412  int becH, layerH, etaH, phiH;
413  GetLayerEtaPhiFromId(holeIndex.at(i),&becH,&layerH,&etaH,&phiH);
414  if (becH== 0 && layerH==0) {
415  if (etaH>-7 && etaH<6) { std::for_each((clusHole[0].begin()+ietabin),(clusHole[0].begin()+ietabin+1),[](int &n){ n++; }); }
416  else { std::for_each((clusHole[1].begin()+ietabin),(clusHole[1].begin()+ietabin+1),[](int &n){ n++; }); }
417  }
418  if (becH== 0 && layerH==1) { std::for_each((clusHole[2].begin()+ietabin),(clusHole[2].begin()+ietabin+1),[](int &n){ n++; }); }
419  if (becH== 0 && layerH==2) { std::for_each((clusHole[3].begin()+ietabin),(clusHole[3].begin()+ietabin+1),[](int &n){ n++; }); }
420  if (becH== 0 && layerH==3) { std::for_each((clusHole[4].begin()+ietabin),(clusHole[4].begin()+ietabin+1),[](int &n){ n++; }); }
421  if (becH== 2 && layerH==0) { std::for_each((clusHole[5].begin()+ietabin),(clusHole[5].begin()+ietabin+1),[](int &n){ n++; }); }
422  if (becH== 2 && layerH==1) { std::for_each((clusHole[6].begin()+ietabin),(clusHole[6].begin()+ietabin+1),[](int &n){ n++; }); }
423  if (becH== 2 && layerH==2) { std::for_each((clusHole[7].begin()+ietabin),(clusHole[7].begin()+ietabin+1),[](int &n){ n++; }); }
424  if (becH==-2 && layerH==0) { std::for_each((clusHole[8].begin()+ietabin),(clusHole[8].begin()+ietabin+1),[](int &n){ n++; }); }
425  if (becH==-2 && layerH==1) { std::for_each((clusHole[9].begin()+ietabin),(clusHole[9].begin()+ietabin+1),[](int &n){ n++; }); }
426  if (becH==-2 && layerH==2) { std::for_each((clusHole[10].begin()+ietabin),(clusHole[10].begin()+ietabin+1),[](int &n){ n++; }); }
427  }
428  }
429 
430  // Cluster should not contain edge pixels
431  int clusterEdge = 0;
432  for (int i=0; i<(int)clusterLayer.size(); i++) { clusterEdge+=isEdge.at(i); }
433 
434  // Cluster should not contain overflow pixels
435  int clusterOverflow = 0;
436  for (int i=0; i<(int)clusterLayer.size(); i++) { clusterOverflow+=isOverflow.at(i); }
437 
438  // Cluster should not contain split state
439  int isSplit = 0;
440  for (int i=0; i<(int)clusterLayer.size(); i++) { isSplit+=clusterIsSplit.at(i); }
441 
442  // Strong isolation
443  int iso20x4 = 0;
444  for (int i=0; i<(int)clusterLayer.size(); i++) { iso20x4+=clusterIsolation20x4.at(i); }
445 
446  // Good tracks must be required for the dE/dx and Lorentz angle measurements
447  bool passCut = false;
448  if (numberOfPixelHits>3 && numberOfPixelHoles==0 && nPixelDeadSensor==0 && numberOfPixelOutliers==0 && clusterEdge==0 && clusterOverflow==0 && isSplit==0 && iso20x4==0) {
449  if (checkIBL>0 && checkBLY>0 && checkLY1>0 && checkLY2>0) { // Barrel
450  passCut = true;
451  }
452  else if (checkIBL>0 && checkEA1>0 && checkEA2>0 && checkEA3>0) { // Endcap
453  passCut = true;
454  }
455  else if (checkIBL>0 && checkEC1>0 && checkEC2>0 && checkEC3>0) { // Endcap
456  passCut = true;
457  }
458  else if (check3D>0 && checkEC2>0 && checkEC3>0) { // 3D
459  passCut = true;
460  }
461  }
462  if (!passCut) { continue; }
463 
464  // Cut on angle alpha
465  bool isAlphaCut = false;
466  for (int i=0; i<(int)clusterLayer.size(); i++) {
467  float alpha = std::atan(std::hypot(std::tan(trackTheta[i]),std::tan(trackPhi[i])));
468  if (std::cos(alpha)<0.16) { isAlphaCut=true; break; }
469  }
470  if (isAlphaCut) { continue; }
471 
472  if (trk->pt()>maxPt) {
473  maxPt = trk->pt();
474  trk_maxpt = trk;
475  }
476 
477  // Cluster study
478  float energyPair = 3.62e-6; // Electron-hole pair creation energy e-h/[MeV]
479  float siDensity = 2.329; // Silicon density [g/cm^3]
480  float thicknessIBL = 0.0200; // thickness for IBL planar [cm]
481  float thickness3D = 0.0230; // thickness for IBL 3D [cm]
482  float thicknessPIX = 0.0250; // thickness for PIXEL [cm]
483  float sumE = 0.0;
484  float sumX = 0.0;
485  for (int i=0; i<(int)clusterLayer.size(); i++) {
486 
487  float alpha = std::atan(std::hypot(std::tan(trackTheta[i]),std::tan(trackPhi[i])));
488  float thickness = thicknessPIX;
489  if (clusterBEC.at(i)==0 && clusterLayer.at(i)==0) {
490  thickness = (clusterModuleEta[i]<6 && clusterModuleEta[i]>-7) ? thicknessIBL : thickness3D;
491  }
492  float recodEdx = clusterCharge[i]*energyPair/thickness/siDensity*std::cos(alpha);
493  sumE += clusterCharge[i]*energyPair;
494  sumX += thickness*siDensity/std::cos(alpha);
495 
496  int ibc = (clusterCharge[i]>0.0 && clusterCharge[i]<120000.0) ? trunc(clusterCharge[i]/2000.0) : nbin_charge-1;
497  int ibt = (clusterToT[i]>0 && clusterToT[i]<120) ? trunc(clusterToT[i]) : nbin_tot-1;
498  int ibe = (recodEdx>0.0 && recodEdx<3.0) ? trunc(recodEdx*100) : nbin_dedx-1;
499  int ibx = (clusterSizePhi[i]>-0.5 && clusterSizePhi[i]<9.5) ? trunc(clusterSizePhi[i]) : nbin_size-1;
500  int ibz = (clusterSizeZ[i]>-0.5 && clusterSizeZ[i]<9.5) ? trunc(clusterSizeZ[i]) : nbin_size-1;
501  int irx = (unbiasedResidualX[i]>-0.4 && unbiasedResidualX[i]<0.4) ? trunc((unbiasedResidualX[i]+0.4)/0.01) : nbin_reso-1;
502  int iry = (unbiasedResidualY[i]>-0.4 && unbiasedResidualY[i]<0.4) ? trunc((unbiasedResidualY[i]+0.4)/0.01) : nbin_reso-1;
503  int ibo = (numTotalPixelsPerModule[i]>-0.1 && numTotalPixelsPerModule[i]<160) ? trunc(numTotalPixelsPerModule[i]/2.0) : nbin_occ-1;
504 
505  int idx = 0;
506  if (clusterBEC.at(i)==0 && clusterLayer.at(i)==0) {
507  if (clusterModuleEta[i]<6 && clusterModuleEta[i]>-7) { idx=0; } // IBL-planar
508  else { idx=1; } // 3D sensor
509  }
510  else if (clusterBEC.at(i)==0 && clusterLayer.at(i)==1) { idx=2; } // B-layer
511  else if (clusterBEC.at(i)==0 && clusterLayer.at(i)==2) { idx=3; } // Layer-1
512  else if (clusterBEC.at(i)==0 && clusterLayer.at(i)==3) { idx=4; } // Layer-2
513  else if (clusterBEC.at(i)==2 && clusterLayer.at(i)==0) { idx=5; } // Endcap-A1
514  else if (clusterBEC.at(i)==2 && clusterLayer.at(i)==1) { idx=6; } // Endcap-A2
515  else if (clusterBEC.at(i)==2 && clusterLayer.at(i)==2) { idx=7; } // Endcap-A3
516  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==0) { idx=8; } // Endcap-C1
517  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==1) { idx=9; } // Endcap-C2
518  else if (clusterBEC.at(i)==-2 && clusterLayer.at(i)==2) { idx=10; } // Endcap-C3
519 
520  std::for_each((clusCharge[idx].begin()+ibc),(clusCharge[idx].begin()+ibc+1),[](int &n){ n++; });
521  std::for_each((clusToT[idx].begin()+ibt),(clusToT[idx].begin()+ibt+1),[](int &n){ n++; });
522  std::for_each((clusdEdx[idx].begin()+ibe),(clusdEdx[idx].begin()+ibe+1),[](int &n){ n++; });
523  std::for_each((clusSizeX[idx].begin()+ibx),(clusSizeX[idx].begin()+ibx+1),[](int &n){ n++; });
524  std::for_each((clusSizeZ[idx].begin()+ibz),(clusSizeZ[idx].begin()+ibz+1),[](int &n){ n++; });
525  std::for_each((clusResidualX[idx].begin()+irx),(clusResidualX[idx].begin()+irx+1),[](int &n){ n++; });
526  std::for_each((clusResidualY[idx].begin()+iry),(clusResidualY[idx].begin()+iry+1),[](int &n){ n++; });
527  std::for_each((clusOcc[idx].begin()+ibo),(clusOcc[idx].begin()+ibo+1),[](int &n){ n++; });
528  }
529 
530  if (sumX>0.0) {
531  int iby = (sumE/sumX>0.0 && sumE/sumX<3.0) ? trunc(sumE/sumX*100) : 299;
532  std::for_each((trkdEdx.begin()+iby),(trkdEdx.begin()+iby+1),[](int &n){ n++; });
533  }
534  }
535 
536  if (m_storeMode==2) {
537  if (maxPt>0.0) {
539  tp->makePrivateStore(*trk_maxpt);
540  tp->setDefiningParametersCovMatrixVec(tmpCov);
541 
542  static const SG::Decorator<std::vector<int>> TrackEtaIBL("TrackEtaIBL");
543  static const SG::Decorator<std::vector<int>> TrackEta3D("TrackEta3D");
544  static const SG::Decorator<std::vector<int>> TrackEtaBL("TrackEtaBL");
545  static const SG::Decorator<std::vector<int>> TrackEtaL1("TrackEtaL1");
546  static const SG::Decorator<std::vector<int>> TrackEtaL2("TrackEtaL2");
547  static const SG::Decorator<std::vector<int>> TrackEtaEA1("TrackEtaEA1");
548  static const SG::Decorator<std::vector<int>> TrackEtaEA2("TrackEtaEA2");
549  static const SG::Decorator<std::vector<int>> TrackEtaEA3("TrackEtaEA3");
550  static const SG::Decorator<std::vector<int>> TrackEtaEC1("TrackEtaEC1");
551  static const SG::Decorator<std::vector<int>> TrackEtaEC2("TrackEtaEC2");
552  static const SG::Decorator<std::vector<int>> TrackEtaEC3("TrackEtaEC3");
553  static const SG::Decorator<std::vector<int>> TrackHitEtaIBL("TrackHitEtaIBL");
554  static const SG::Decorator<std::vector<int>> TrackHitEta3D("TrackHitEta3D");
555  static const SG::Decorator<std::vector<int>> TrackHitEtaBL("TrackHitEtaBL");
556  static const SG::Decorator<std::vector<int>> TrackHitEtaL1("TrackHitEtaL1");
557  static const SG::Decorator<std::vector<int>> TrackHitEtaL2("TrackHitEtaL2");
558  static const SG::Decorator<std::vector<int>> TrackHitEtaEA1("TrackHitEtaEA1");
559  static const SG::Decorator<std::vector<int>> TrackHitEtaEA2("TrackHitEtaEA2");
560  static const SG::Decorator<std::vector<int>> TrackHitEtaEA3("TrackHitEtaEA3");
561  static const SG::Decorator<std::vector<int>> TrackHitEtaEC1("TrackHitEtaEC1");
562  static const SG::Decorator<std::vector<int>> TrackHitEtaEC2("TrackHitEtaEC2");
563  static const SG::Decorator<std::vector<int>> TrackHitEtaEC3("TrackHitEtaEC3");
564  static const SG::Decorator<std::vector<int>> ClusterChargeIBL("ClusterChargeIBL");
565  static const SG::Decorator<std::vector<int>> ClusterCharge3D("ClusterCharge3D");
566  static const SG::Decorator<std::vector<int>> ClusterChargeBL("ClusterChargeBL");
567  static const SG::Decorator<std::vector<int>> ClusterChargeL1("ClusterChargeL1");
568  static const SG::Decorator<std::vector<int>> ClusterChargeL2("ClusterChargeL2");
569  static const SG::Decorator<std::vector<int>> ClusterChargeEA1("ClusterChargeEA1");
570  static const SG::Decorator<std::vector<int>> ClusterChargeEA2("ClusterChargeEA2");
571  static const SG::Decorator<std::vector<int>> ClusterChargeEA3("ClusterChargeEA3");
572  static const SG::Decorator<std::vector<int>> ClusterChargeEC1("ClusterChargeEC1");
573  static const SG::Decorator<std::vector<int>> ClusterChargeEC2("ClusterChargeEC2");
574  static const SG::Decorator<std::vector<int>> ClusterChargeEC3("ClusterChargeEC3");
575  static const SG::Decorator<std::vector<int>> ClusterToTIBL("ClusterToTIBL");
576  static const SG::Decorator<std::vector<int>> ClusterToT3D("ClusterToT3D");
577  static const SG::Decorator<std::vector<int>> ClusterToTBL("ClusterToTBL");
578  static const SG::Decorator<std::vector<int>> ClusterToTL1("ClusterToTL1");
579  static const SG::Decorator<std::vector<int>> ClusterToTL2("ClusterToTL2");
580  static const SG::Decorator<std::vector<int>> ClusterToTEA1("ClusterToTEA1");
581  static const SG::Decorator<std::vector<int>> ClusterToTEA2("ClusterToTEA2");
582  static const SG::Decorator<std::vector<int>> ClusterToTEA3("ClusterToTEA3");
583  static const SG::Decorator<std::vector<int>> ClusterToTEC1("ClusterToTEC1");
584  static const SG::Decorator<std::vector<int>> ClusterToTEC2("ClusterToTEC2");
585  static const SG::Decorator<std::vector<int>> ClusterToTEC3("ClusterToTEC3");
586  static const SG::Decorator<std::vector<int>> ClusterdEdxIBL("ClusterdEdxIBL");
587  static const SG::Decorator<std::vector<int>> ClusterdEdx3D("ClusterdEdx3D");
588  static const SG::Decorator<std::vector<int>> ClusterdEdxBL("ClusterdEdxBL");
589  static const SG::Decorator<std::vector<int>> ClusterdEdxL1("ClusterdEdxL1");
590  static const SG::Decorator<std::vector<int>> ClusterdEdxL2("ClusterdEdxL2");
591  static const SG::Decorator<std::vector<int>> ClusterdEdxEA1("ClusterdEdxEA1");
592  static const SG::Decorator<std::vector<int>> ClusterdEdxEA2("ClusterdEdxEA2");
593  static const SG::Decorator<std::vector<int>> ClusterdEdxEA3("ClusterdEdxEA3");
594  static const SG::Decorator<std::vector<int>> ClusterdEdxEC1("ClusterdEdxEC1");
595  static const SG::Decorator<std::vector<int>> ClusterdEdxEC2("ClusterdEdxEC2");
596  static const SG::Decorator<std::vector<int>> ClusterdEdxEC3("ClusterdEdxEC3");
597  static const SG::Decorator<std::vector<int>> ClusterSizeXIBL("ClusterSizeXIBL");
598  static const SG::Decorator<std::vector<int>> ClusterSizeX3D("ClusterSizeX3D");
599  static const SG::Decorator<std::vector<int>> ClusterSizeXBL("ClusterSizeXBL");
600  static const SG::Decorator<std::vector<int>> ClusterSizeXL1("ClusterSizeXL1");
601  static const SG::Decorator<std::vector<int>> ClusterSizeXL2("ClusterSizeXL2");
602  static const SG::Decorator<std::vector<int>> ClusterSizeXEA1("ClusterSizeXEA1");
603  static const SG::Decorator<std::vector<int>> ClusterSizeXEA2("ClusterSizeXEA2");
604  static const SG::Decorator<std::vector<int>> ClusterSizeXEA3("ClusterSizeXEA3");
605  static const SG::Decorator<std::vector<int>> ClusterSizeXEC1("ClusterSizeXEC1");
606  static const SG::Decorator<std::vector<int>> ClusterSizeXEC2("ClusterSizeXEC2");
607  static const SG::Decorator<std::vector<int>> ClusterSizeXEC3("ClusterSizeXEC3");
608  static const SG::Decorator<std::vector<int>> ClusterSizeZIBL("ClusterSizeZIBL");
609  static const SG::Decorator<std::vector<int>> ClusterSizeZ3D("ClusterSizeZ3D");
610  static const SG::Decorator<std::vector<int>> ClusterSizeZBL("ClusterSizeZBL");
611  static const SG::Decorator<std::vector<int>> ClusterSizeZL1("ClusterSizeZL1");
612  static const SG::Decorator<std::vector<int>> ClusterSizeZL2("ClusterSizeZL2");
613  static const SG::Decorator<std::vector<int>> ClusterSizeZEA1("ClusterSizeZEA1");
614  static const SG::Decorator<std::vector<int>> ClusterSizeZEA2("ClusterSizeZEA2");
615  static const SG::Decorator<std::vector<int>> ClusterSizeZEA3("ClusterSizeZEA3");
616  static const SG::Decorator<std::vector<int>> ClusterSizeZEC1("ClusterSizeZEC1");
617  static const SG::Decorator<std::vector<int>> ClusterSizeZEC2("ClusterSizeZEC2");
618  static const SG::Decorator<std::vector<int>> ClusterSizeZEC3("ClusterSizeZEC3");
619  static const SG::Decorator<std::vector<int>> ClusterResidualXIBL("ClusterResidualXIBL");
620  static const SG::Decorator<std::vector<int>> ClusterResidualX3D("ClusterResidualX3D");
621  static const SG::Decorator<std::vector<int>> ClusterResidualXBL("ClusterResidualXBL");
622  static const SG::Decorator<std::vector<int>> ClusterResidualXL1("ClusterResidualXL1");
623  static const SG::Decorator<std::vector<int>> ClusterResidualXL2("ClusterResidualXL2");
624  static const SG::Decorator<std::vector<int>> ClusterResidualXEA1("ClusterResidualXEA1");
625  static const SG::Decorator<std::vector<int>> ClusterResidualXEA2("ClusterResidualXEA2");
626  static const SG::Decorator<std::vector<int>> ClusterResidualXEA3("ClusterResidualXEA3");
627  static const SG::Decorator<std::vector<int>> ClusterResidualXEC1("ClusterResidualXEC1");
628  static const SG::Decorator<std::vector<int>> ClusterResidualXEC2("ClusterResidualXEC2");
629  static const SG::Decorator<std::vector<int>> ClusterResidualXEC3("ClusterResidualXEC3");
630  static const SG::Decorator<std::vector<int>> ClusterResidualYIBL("ClusterResidualYIBL");
631  static const SG::Decorator<std::vector<int>> ClusterResidualY3D("ClusterResidualY3D");
632  static const SG::Decorator<std::vector<int>> ClusterResidualYBL("ClusterResidualYBL");
633  static const SG::Decorator<std::vector<int>> ClusterResidualYL1("ClusterResidualYL1");
634  static const SG::Decorator<std::vector<int>> ClusterResidualYL2("ClusterResidualYL2");
635  static const SG::Decorator<std::vector<int>> ClusterResidualYEA1("ClusterResidualYEA1");
636  static const SG::Decorator<std::vector<int>> ClusterResidualYEA2("ClusterResidualYEA2");
637  static const SG::Decorator<std::vector<int>> ClusterResidualYEA3("ClusterResidualYEA3");
638  static const SG::Decorator<std::vector<int>> ClusterResidualYEC1("ClusterResidualYEC1");
639  static const SG::Decorator<std::vector<int>> ClusterResidualYEC2("ClusterResidualYEC2");
640  static const SG::Decorator<std::vector<int>> ClusterResidualYEC3("ClusterResidualYEC3");
641  static const SG::Decorator<std::vector<int>> ClusterHoleIBL("ClusterHoleIBL");
642  static const SG::Decorator<std::vector<int>> ClusterHole3D("ClusterHole3D");
643  static const SG::Decorator<std::vector<int>> ClusterHoleBL("ClusterHoleBL");
644  static const SG::Decorator<std::vector<int>> ClusterHoleL1("ClusterHoleL1");
645  static const SG::Decorator<std::vector<int>> ClusterHoleL2("ClusterHoleL2");
646  static const SG::Decorator<std::vector<int>> ClusterHoleEA1("ClusterHoleEA1");
647  static const SG::Decorator<std::vector<int>> ClusterHoleEA2("ClusterHoleEA2");
648  static const SG::Decorator<std::vector<int>> ClusterHoleEA3("ClusterHoleEA3");
649  static const SG::Decorator<std::vector<int>> ClusterHoleEC1("ClusterHoleEC1");
650  static const SG::Decorator<std::vector<int>> ClusterHoleEC2("ClusterHoleEC2");
651  static const SG::Decorator<std::vector<int>> ClusterHoleEC3("ClusterHoleEC3");
652  static const SG::Decorator<std::vector<int>> ClusterOccIBL("ClusterOccIBL");
653  static const SG::Decorator<std::vector<int>> ClusterOcc3D("ClusterOcc3D");
654  static const SG::Decorator<std::vector<int>> ClusterOccBL("ClusterOccBL");
655  static const SG::Decorator<std::vector<int>> ClusterOccL1("ClusterOccL1");
656  static const SG::Decorator<std::vector<int>> ClusterOccL2("ClusterOccL2");
657  static const SG::Decorator<std::vector<int>> ClusterOccEA1("ClusterOccEA1");
658  static const SG::Decorator<std::vector<int>> ClusterOccEA2("ClusterOccEA2");
659  static const SG::Decorator<std::vector<int>> ClusterOccEA3("ClusterOccEA3");
660  static const SG::Decorator<std::vector<int>> ClusterOccEC1("ClusterOccEC1");
661  static const SG::Decorator<std::vector<int>> ClusterOccEC2("ClusterOccEC2");
662  static const SG::Decorator<std::vector<int>> ClusterOccEC3("ClusterOccEC3");
663  static const SG::Decorator<std::vector<int>> TrackALL("TrackALL");
664  static const SG::Decorator<std::vector<int>> TrackHOLE("TrackHOLE");
665  static const SG::Decorator<std::vector<int>> TrackdEdx("TrackdEdx");
666 
667  TrackEtaIBL(*tp) = std::move(clusEta[0]);
668  TrackEta3D(*tp) = std::move(clusEta[1]);
669  TrackEtaBL(*tp) = std::move(clusEta[2]);
670  TrackEtaL1(*tp) = std::move(clusEta[3]);
671  TrackEtaL2(*tp) = std::move(clusEta[4]);
672  TrackEtaEA1(*tp) = std::move(clusEta[5]);
673  TrackEtaEA2(*tp) = std::move(clusEta[6]);
674  TrackEtaEA3(*tp) = std::move(clusEta[7]);
675  TrackEtaEC1(*tp) = std::move(clusEta[8]);
676  TrackEtaEC2(*tp) = std::move(clusEta[9]);
677  TrackEtaEC3(*tp) = std::move(clusEta[10]);
678  TrackHitEtaIBL(*tp) = std::move(clusHitEta[0]);
679  TrackHitEta3D(*tp) = std::move(clusHitEta[1]);
680  TrackHitEtaBL(*tp) = std::move(clusHitEta[2]);
681  TrackHitEtaL1(*tp) = std::move(clusHitEta[3]);
682  TrackHitEtaL2(*tp) = std::move(clusHitEta[4]);
683  TrackHitEtaEA1(*tp) = std::move(clusHitEta[5]);
684  TrackHitEtaEA2(*tp) = std::move(clusHitEta[6]);
685  TrackHitEtaEA3(*tp) = std::move(clusHitEta[7]);
686  TrackHitEtaEC1(*tp) = std::move(clusHitEta[8]);
687  TrackHitEtaEC2(*tp) = std::move(clusHitEta[9]);
688  TrackHitEtaEC3(*tp) = std::move(clusHitEta[10]);
689  ClusterChargeIBL(*tp) = std::move(clusCharge[0]);
690  ClusterCharge3D(*tp) = std::move(clusCharge[1]);
691  ClusterChargeBL(*tp) = std::move(clusCharge[2]);
692  ClusterChargeL1(*tp) = std::move(clusCharge[3]);
693  ClusterChargeL2(*tp) = std::move(clusCharge[4]);
694  ClusterChargeEA1(*tp) = std::move(clusCharge[5]);
695  ClusterChargeEA2(*tp) = std::move(clusCharge[6]);
696  ClusterChargeEA3(*tp) = std::move(clusCharge[7]);
697  ClusterChargeEC1(*tp) = std::move(clusCharge[8]);
698  ClusterChargeEC2(*tp) = std::move(clusCharge[9]);
699  ClusterChargeEC3(*tp) = std::move(clusCharge[10]);
700  ClusterToTIBL(*tp) = std::move(clusToT[0]);
701  ClusterToT3D(*tp) = std::move(clusToT[1]);
702  ClusterToTBL(*tp) = std::move(clusToT[2]);
703  ClusterToTL1(*tp) = std::move(clusToT[3]);
704  ClusterToTL2(*tp) = std::move(clusToT[4]);
705  ClusterToTEA1(*tp) = std::move(clusToT[5]);
706  ClusterToTEA2(*tp) = std::move(clusToT[6]);
707  ClusterToTEA3(*tp) = std::move(clusToT[7]);
708  ClusterToTEC1(*tp) = std::move(clusToT[8]);
709  ClusterToTEC2(*tp) = std::move(clusToT[9]);
710  ClusterToTEC3(*tp) = std::move(clusToT[10]);
711  ClusterdEdxIBL(*tp) = std::move(clusdEdx[0]);
712  ClusterdEdx3D(*tp) = std::move(clusdEdx[1]);
713  ClusterdEdxBL(*tp) = std::move(clusdEdx[2]);
714  ClusterdEdxL1(*tp) = std::move(clusdEdx[3]);
715  ClusterdEdxL2(*tp) = std::move(clusdEdx[4]);
716  ClusterdEdxEA1(*tp) = std::move(clusdEdx[5]);
717  ClusterdEdxEA2(*tp) = std::move(clusdEdx[6]);
718  ClusterdEdxEA3(*tp) = std::move(clusdEdx[7]);
719  ClusterdEdxEC1(*tp) = std::move(clusdEdx[8]);
720  ClusterdEdxEC2(*tp) = std::move(clusdEdx[9]);
721  ClusterdEdxEC3(*tp) = std::move(clusdEdx[10]);
722  ClusterSizeXIBL(*tp) = std::move(clusSizeX[0]);
723  ClusterSizeX3D(*tp) = std::move(clusSizeX[1]);
724  ClusterSizeXBL(*tp) = std::move(clusSizeX[2]);
725  ClusterSizeXL1(*tp) = std::move(clusSizeX[3]);
726  ClusterSizeXL2(*tp) = std::move(clusSizeX[4]);
727  ClusterSizeXEA1(*tp) = std::move(clusSizeX[5]);
728  ClusterSizeXEA2(*tp) = std::move(clusSizeX[6]);
729  ClusterSizeXEA3(*tp) = std::move(clusSizeX[7]);
730  ClusterSizeXEC1(*tp) = std::move(clusSizeX[8]);
731  ClusterSizeXEC2(*tp) = std::move(clusSizeX[9]);
732  ClusterSizeXEC3(*tp) = std::move(clusSizeX[10]);
733  ClusterSizeZIBL(*tp) = std::move(clusSizeZ[0]);
734  ClusterSizeZ3D(*tp) = std::move(clusSizeZ[1]);
735  ClusterSizeZBL(*tp) = std::move(clusSizeZ[2]);
736  ClusterSizeZL1(*tp) = std::move(clusSizeZ[3]);
737  ClusterSizeZL2(*tp) = std::move(clusSizeZ[4]);
738  ClusterSizeZEA1(*tp) = std::move(clusSizeZ[5]);
739  ClusterSizeZEA2(*tp) = std::move(clusSizeZ[6]);
740  ClusterSizeZEA3(*tp) = std::move(clusSizeZ[7]);
741  ClusterSizeZEC1(*tp) = std::move(clusSizeZ[8]);
742  ClusterSizeZEC2(*tp) = std::move(clusSizeZ[9]);
743  ClusterSizeZEC3(*tp) = std::move(clusSizeZ[10]);
744  ClusterResidualXIBL(*tp) = std::move(clusResidualX[0]);
745  ClusterResidualX3D(*tp) = std::move(clusResidualX[1]);
746  ClusterResidualXBL(*tp) = std::move(clusResidualX[2]);
747  ClusterResidualXL1(*tp) = std::move(clusResidualX[3]);
748  ClusterResidualXL2(*tp) = std::move(clusResidualX[4]);
749  ClusterResidualXEA1(*tp) = std::move(clusResidualX[5]);
750  ClusterResidualXEA2(*tp) = std::move(clusResidualX[6]);
751  ClusterResidualXEA3(*tp) = std::move(clusResidualX[7]);
752  ClusterResidualXEC1(*tp) = std::move(clusResidualX[8]);
753  ClusterResidualXEC2(*tp) = std::move(clusResidualX[9]);
754  ClusterResidualXEC3(*tp) = std::move(clusResidualX[10]);
755  ClusterResidualYIBL(*tp) = std::move(clusResidualY[0]);
756  ClusterResidualY3D(*tp) = std::move(clusResidualY[1]);
757  ClusterResidualYBL(*tp) = std::move(clusResidualY[2]);
758  ClusterResidualYL1(*tp) = std::move(clusResidualY[3]);
759  ClusterResidualYL2(*tp) = std::move(clusResidualY[4]);
760  ClusterResidualYEA1(*tp) = std::move(clusResidualY[5]);
761  ClusterResidualYEA2(*tp) = std::move(clusResidualY[6]);
762  ClusterResidualYEA3(*tp) = std::move(clusResidualY[7]);
763  ClusterResidualYEC1(*tp) = std::move(clusResidualY[8]);
764  ClusterResidualYEC2(*tp) = std::move(clusResidualY[9]);
765  ClusterResidualYEC3(*tp) = std::move(clusResidualY[10]);
766  ClusterHoleIBL(*tp) = std::move(clusHole[0]);
767  ClusterHole3D(*tp) = std::move(clusHole[1]);
768  ClusterHoleBL(*tp) = std::move(clusHole[2]);
769  ClusterHoleL1(*tp) = std::move(clusHole[3]);
770  ClusterHoleL2(*tp) = std::move(clusHole[4]);
771  ClusterHoleEA1(*tp) = std::move(clusHole[5]);
772  ClusterHoleEA2(*tp) = std::move(clusHole[6]);
773  ClusterHoleEA3(*tp) = std::move(clusHole[7]);
774  ClusterHoleEC1(*tp) = std::move(clusHole[8]);
775  ClusterHoleEC2(*tp) = std::move(clusHole[9]);
776  ClusterHoleEC3(*tp) = std::move(clusHole[10]);
777  ClusterOccIBL(*tp) = std::move(clusOcc[0]);
778  ClusterOcc3D(*tp) = std::move(clusOcc[1]);
779  ClusterOccBL(*tp) = std::move(clusOcc[2]);
780  ClusterOccL1(*tp) = std::move(clusOcc[3]);
781  ClusterOccL2(*tp) = std::move(clusOcc[4]);
782  ClusterOccEA1(*tp) = std::move(clusOcc[5]);
783  ClusterOccEA2(*tp) = std::move(clusOcc[6]);
784  ClusterOccEA3(*tp) = std::move(clusOcc[7]);
785  ClusterOccEC1(*tp) = std::move(clusOcc[8]);
786  ClusterOccEC2(*tp) = std::move(clusOcc[9]);
787  ClusterOccEC3(*tp) = std::move(clusOcc[10]);
788  TrackALL(*tp) = std::move(trkEta);
789  TrackHOLE(*tp) = std::move(trkHole);
790  TrackdEdx(*tp) = std::move(trkdEdx);
791 
792  PixelMonitoringTrack->push_back(tp);
793  }
794  }
795  return StatusCode::SUCCESS;
796 }
797 
798 void DerivationFramework::PixelNtupleMaker::GetLayerEtaPhiFromId(uint64_t id,int *barrelEC, int *layer, int *eta, int *phi) {
799  *eta =(id>>43) % 0x20 - 10;
800  *phi =(id>>43) % 0x800 / 0x20;
801  int layer_index = ((id>>43) / 0x800) & 0xF;
802 
803  //A possibility is to use a bit by bit AND: layer_index & 0xF
804  switch (layer_index) {
805  case 4:
806  *barrelEC=-2;
807  *layer = 0;
808  break;
809  case 5:
810  *barrelEC=-2;
811  *layer = 1;
812  break;
813  case 6:
814  *barrelEC=-2;
815  *layer = 2;
816  break;
817  case 8:
818  *barrelEC=0;
819  *layer=0;
820  break;
821  case 9:
822  *layer=1;
823  *barrelEC=0;
824  break;
825  case 10:
826  *layer=2;
827  *barrelEC=0;
828  break;
829  case 11:
830  *barrelEC=0;
831  *layer =3;
832  break;
833  case 12:
834  *barrelEC=2;
835  *layer=0;
836  break;
837  case 13:
838  *layer =1;
839  *barrelEC=2;
840  break;
841  case 14:
842  *layer=2;
843  *barrelEC=2;
844  break;
845  }
846 }
847 
ShallowCopy.h
xAOD::numberOfPixelHoles
@ numberOfPixelHoles
number of pixel layers on track with absence of hits [unit8_t].
Definition: TrackingPrimitives.h:262
Trk::TrackState::Pixel
@ Pixel
Definition: TrackStateDefs.h:28
add-xsec-uncert-quadrature-N.alpha
alpha
Definition: add-xsec-uncert-quadrature-N.py:110
xAOD::numberOfSCTSharedHits
@ numberOfSCTSharedHits
number of SCT hits shared by several tracks [unit8_t].
Definition: TrackingPrimitives.h:273
xAOD::uint8_t
uint8_t
Definition: Muon_v1.cxx:557
xAOD::TrackStateValidation_v1::detType
char detType() const
Returns the detector type.
makeComparison.deltaY
int deltaY
Definition: makeComparison.py:44
TrackStateDefs.h
SG::ReadHandle
Definition: StoreGate/StoreGate/ReadHandle.h:67
PlotCalibFromCool.begin
begin
Definition: PlotCalibFromCool.py:94
TRT::Hit::globalZ
@ globalZ
Definition: HitInfo.h:39
ParticleTest.tp
tp
Definition: ParticleTest.py:25
xAOD::TrackStateValidation_v1
Class describing a TrackStateValidation.
Definition: TrackStateValidation_v1.h:28
xAOD::TrackStateValidation_v1::detElementId
uint64_t detElementId() const
Returns the detector element identifier.
xAOD::numberOfPixelHits
@ numberOfPixelHits
these are the pixel hits, including the b-layer [unit8_t].
Definition: TrackingPrimitives.h:260
xAOD::TrackStateValidation_v1::trackMeasurementValidationLink
ElementLink< xAOD::TrackMeasurementValidationContainer > trackMeasurementValidationLink() const
SG::ConstAccessor
Helper class to provide constant type-safe access to aux data.
Definition: ConstAccessor.h:55
InDetSecVtxTruthMatchUtils::isSplit
bool isSplit(int matchInfo)
Definition: InDetSecVtxTruthMatchTool.h:56
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
drawFromPickle.cos
cos
Definition: drawFromPickle.py:36
xAOD::TrackStateValidation_v1::localX
float localX() const
DerivationFramework::PixelNtupleMaker::~PixelNtupleMaker
~PixelNtupleMaker()
drawFromPickle.atan
atan
Definition: drawFromPickle.py:36
DerivationFramework::PixelNtupleMaker::PixelNtupleMaker
PixelNtupleMaker(const std::string &t, const std::string &n, const IInterface *p)
Definition: PixelNtupleMaker.cxx:18
IDTPM::nSCTSharedHits
float nSCTSharedHits(const U &p)
Definition: TrackParametersHelper.h:413
xAOD::TrackParticle
TrackParticle_v1 TrackParticle
Reference the current persistent version:
Definition: Event/xAOD/xAODTracking/xAODTracking/TrackParticle.h:13
xAOD::TrackStateValidation_v1::unbiasedResidualY
float unbiasedResidualY() const
Returns the unbiased x residual.
xAOD::TrackMeasurementValidation_v1
Class describing a TrackMeasurementValidation.
Definition: TrackMeasurementValidation_v1.h:27
xAOD::numberOfPixelSharedHits
@ numberOfPixelSharedHits
number of Pixel all-layer hits shared by several tracks [unit8_t].
Definition: TrackingPrimitives.h:263
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
SG::Decorator< float >
Trk::TrackStateOnSurface::Hole
@ Hole
A hole on the track - this is defined in the following way.
Definition: TrackStateOnSurface.h:128
lumiFormat.i
int i
Definition: lumiFormat.py:85
IDTPM::nSCTHits
float nSCTHits(const U &p)
Definition: TrackParametersHelper.h:393
beamspotman.n
n
Definition: beamspotman.py:731
EL::StatusCode
::StatusCode StatusCode
StatusCode definition for legacy code.
Definition: PhysicsAnalysis/D3PDTools/EventLoop/EventLoop/StatusCode.h:22
TRT::Hit::layer
@ layer
Definition: HitInfo.h:79
python.LArMinBiasAlgConfig.int
int
Definition: LArMinBiasAlgConfig.py:59
DerivationFramework::PixelNtupleMaker::MeasurementsOnTrack
std::vector< ElementLink< xAOD::TrackStateValidationContainer > > MeasurementsOnTrack
Definition: PixelNtupleMaker.h:55
xAOD::uint64_t
uint64_t
Definition: EventInfo_v1.cxx:123
xAOD::numberOfPixelOutliers
@ numberOfPixelOutliers
these are the pixel outliers, including the b-layer [unit8_t].
Definition: TrackingPrimitives.h:261
ATH_CHECK
#define ATH_CHECK
Definition: AthCheckMacros.h:40
drawFromPickle.tan
tan
Definition: drawFromPickle.py:36
xAOD::numberOfSCTHoles
@ numberOfSCTHoles
number of SCT holes [unit8_t].
Definition: TrackingPrimitives.h:271
IDTPM::nSCTHoles
float nSCTHoles(const U &p)
Definition: TrackParametersHelper.h:403
compareGeometries.deltaX
float deltaX
Definition: compareGeometries.py:32
xAOD::TrackStateValidation_v1::localY
float localY() const
Returns the y position.
SG::ReadHandle::isValid
virtual bool isValid() override final
Can the handle be successfully dereferenced?
DerivationFramework::PixelNtupleMaker::finalize
StatusCode finalize()
Definition: PixelNtupleMaker.cxx:33
charge
double charge(const T &p)
Definition: AtlasPID.h:931
DataVector::push_back
value_type push_back(value_type pElem)
Add an element to the end of the collection.
xAOD::TrackParticle_v1::e
virtual double e() const override final
The total energy of the particle.
Definition: TrackParticle_v1.cxx:109
TrackParticle.h
SG::WriteHandle
Definition: StoreGate/StoreGate/WriteHandle.h:73
xAOD::TrackStateValidation_v1::localPhi
float localPhi() const
Returns the phi position.
PixelNtupleMaker.h
SG::WriteHandle::record
StatusCode record(std::unique_ptr< T > data)
Record a const object to the store.
xAOD::TrackStateValidation_v1::unbiasedResidualX
float unbiasedResidualX() const
Returns the unbiased x residual.
DerivationFramework::PixelNtupleMaker::addBranches
virtual StatusCode addBranches() const
Definition: PixelNtupleMaker.cxx:38
LArNewCalib_DelayDump_OFC_Cali.idx
idx
Definition: LArNewCalib_DelayDump_OFC_Cali.py:69
xAOD::numberOfSCTHits
@ numberOfSCTHits
number of hits in SCT [unit8_t].
Definition: TrackingPrimitives.h:269
SG::ConstAccessor::isAvailable
bool isAvailable(const ELT &e) const
Test to see if this variable exists in the store.
TauGNNUtils::Variables::Track::trackPhi
bool trackPhi(const xAOD::TauJet &, const xAOD::TauTrack &track, double &out)
Definition: TauGNNUtils.cxx:492
xAOD::numberOfPixelDeadSensors
@ numberOfPixelDeadSensors
number of dead pixel sensors crossed [unit8_t].
Definition: TrackingPrimitives.h:267
xAOD::TrackParticle_v1
Class describing a TrackParticle.
Definition: TrackParticle_v1.h:43
DerivationFramework::PixelNtupleMaker::GetLayerEtaPhiFromId
static void GetLayerEtaPhiFromId(uint64_t id, int *barrelEC, int *layer, int *eta, int *phi)
Definition: PixelNtupleMaker.cxx:798
ConstAccessor.h
Helper class to provide constant type-safe access to aux data.
DerivationFramework::PixelNtupleMaker::initialize
StatusCode initialize()
Definition: PixelNtupleMaker.cxx:25
xAOD::TrackStateValidation_v1::type
int type() const
xAOD::TrackStateValidation_v1::localTheta
float localTheta() const
Returns the theta position.
TrackStateOnSurface.h