23 return StatusCode::SUCCESS;
28 Ort::SessionOptions session_options;
29 Ort::AllocatorWithDefaultOptions allocator;
30 session_options.SetIntraOpNumThreads(1);
31 session_options.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
32 m_session = std::make_unique<Ort::Session>(
m_svc->env(), path.c_str(), session_options);
34 ATH_MSG_INFO(
"Created ONNX runtime session with model " << path);
36 size_t num_input_nodes = m_session->GetInputCount();
39 for (std::size_t i = 0; i < num_input_nodes; i++) {
41 char* input_name = m_session->GetInputNameAllocated(i, allocator).release();
43 <<
" name= " << input_name);
46 Ort::TypeInfo type_info = m_session->GetInputTypeInfo(i);
47 auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
48 ONNXTensorElementDataType
type = tensor_info.GetElementType();
50 <<
" type= " <<
type);
63 std::vector<int64_t> output_node_dims;
64 size_t num_output_nodes = m_session->GetOutputCount();
68 for (std::size_t i = 0; i < num_output_nodes; i++) {
70 char* output_name = m_session->GetOutputNameAllocated(i, allocator).release();
72 <<
" name= " << output_name);
75 Ort::TypeInfo type_info = m_session->GetOutputTypeInfo(i);
76 auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
77 ONNXTensorElementDataType
type = tensor_info.GetElementType();
79 <<
" type= " <<
type);
82 output_node_dims = tensor_info.GetShape();
83 ATH_MSG_INFO(
"Output " << i <<
" : num_dims= " << output_node_dims.size());
84 for (std::size_t j = 0; j < output_node_dims.size(); j++) {
85 if (output_node_dims[j] < 0) output_node_dims[j] = 1;
86 ATH_MSG_INFO(
"Output" << i <<
" : dim " << j <<
"= " << output_node_dims[j]);
90 return StatusCode::SUCCESS;
136 constexpr std::array<int,19> calo_numbers{1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20};
137 constexpr std::array<int,12> fixed_r_numbers = {1,2,3,12,13,14,15,16,17,18,19,20};
138 constexpr std::array<double,12> fixed_r_vals = {1532.18, 1723.89, 1923.02, 2450.00, 2995.00, 3630.00, 3215.00,
139 3630.00, 2246.50, 2450.00, 2870.00, 3480.00
141 constexpr std::array<int, 7> fixed_z_numbers = {5,6,7,8,9,10,11};
142 constexpr std::array<double, 7> fixed_z_vals = {3790.03, 3983.68, 4195.84, 4461.25, 4869.50, 5424.50, 5905.00};
143 std::unordered_map<int, double> r_calo_dict;
144 std::unordered_map<int, double> z_calo_dict;
145 for(
size_t i=0; i<fixed_r_vals.size(); i++) r_calo_dict[fixed_r_numbers[i]] = fixed_r_vals[i];
146 for(
size_t i=0; i<fixed_z_numbers.size(); i++) z_calo_dict[fixed_z_numbers[i]] = fixed_z_vals[i];
148 std::vector<float> inputnn;
149 inputnn.assign(5430, 0.0);
150 std::vector<eflowRecCluster*> matchedClusters;
151 std::vector<eflowTrackClusterLink*> links = ptr->getClusterMatches();
153 std::array<double, 19> etatotal =
getEtaTrackCalo(ptr->getTrackCaloPoints());
154 std::array<double, 19> phitotal =
getPhiTrackCalo(ptr->getTrackCaloPoints());
156 const std::array<double, 2> track{ptr->getTrack()->eta(), ptr->getTrack()->phi()};
158 for(
auto *clink : links){
159 auto *cell = clink->getCluster()->getCluster();
160 float clusterE = cell->e()*1e-3;
161 float clusterEta = cell->eta();
163 if (clusterE < 0.0 || clusterE > 1e4f || std::abs(clusterEta) > 2.5)
continue;
165 constexpr bool cutOnR =
false;
167 std::array<double, 2> p{clink->getCluster()->getCluster()->eta(), clink->getCluster()->getCluster()->phi()};
168 double part1 = p[0] - track[0];
169 double part2 = p[1] - track[1];
175 if(R >= 1.2)
continue;
178 matchedClusters.push_back(clink->getCluster());
181 std::vector<std::array<double, 5>> cells;
184 bool trk_bool_em[2] = {
false,
false};
189 for(
int i =0; i<2; i++) {
190 trk_bool_em[i] = std::abs(trk_em_eta[i]) < 2.5 && std::abs(trk_em_phi[i]) <=
M_PI;
192 int nProj_em = (int)trk_bool_em[0] + (
int)trk_bool_em[1];
195 eta_ctr = trk_bool_em[0] ? trk_em_eta[0] : trk_em_eta[1];
196 phi_ctr = trk_bool_em[0] ? trk_em_phi[0] : trk_em_phi[1];
197 }
else if(nProj_em==2) {
198 eta_ctr = (trk_em_eta[0] + trk_em_eta[1]) / 2.0;
199 phi_ctr = (trk_em_phi[0] + trk_em_phi[1]) / 2.0;
201 eta_ctr = ptr->getTrack()->eta();
202 phi_ctr = ptr->getTrack()->phi();
207 for(
auto *cptr : matchedClusters){
208 auto *clustlink = cptr->getCluster();
210 for(
auto it_cell = clustlink->cell_begin(); it_cell != clustlink->cell_end(); it_cell++){
212 float cellE = cell->e()*(it_cell.weight())*1e-3f;
213 if(cellE < 0.005)
continue;
214 const auto *theDDE=it_cell->caloDDE();
215 double cx=theDDE->x();
216 double cy=theDDE->y();
218 cells.emplace_back( std::array<double, 5> { cellE,
219 theDDE->eta() - eta_ctr,
220 theDDE->phi() - phi_ctr,
227 std::vector<bool> trk_bool(calo_numbers.size(),
false);
228 std::vector<std::array<double,4>> trk_full(calo_numbers.size());
229 for(
size_t j=0; j<phitotal.size(); j++) {
230 int cnum = calo_numbers[j];
231 double eta = etatotal[j];
232 double phi = phitotal[j];
233 if(std::abs(
eta) < 2.5 && std::abs(
phi) <=
M_PI) {
235 trk_full[j][0] =
eta;
236 trk_full[j][1] =
phi;
237 trk_full[j][3] = cnum;
238 double rPerp =-99999;
239 if(
auto itr = r_calo_dict.find(cnum); itr != r_calo_dict.end()) rPerp = itr->second;
240 else if(
auto itr = z_calo_dict.find(cnum); itr != z_calo_dict.end())
242 double z = itr->second;
244 double aeta = std::abs(
eta);
245 rPerp =
z*2.*std::exp(aeta)/(std::exp(2.0*aeta)-1.0);
248 throw std::runtime_error(
"Calo sample num not found in dicts..");
250 trk_full[j][2] = rPerp;
252 trk_full[j].fill(0.0);
255 double trackP = std::abs(1. / ptr->getTrack()->qOverP()) * 1e-3;
256 int trk_proj_num = std::accumulate(trk_bool.begin(), trk_bool.end(), 0);
257 if(trk_proj_num ==0) {
259 std::array<double,5> trk_arr{};
262 trk_arr[1] = ptr->getTrack()->eta() - eta_ctr;
263 trk_arr[2] = ptr->getTrack()->phi() - phi_ctr;
264 trk_arr[3] = 1532.18;
267 cells.emplace_back(trk_arr);
269 for(
size_t i =0; i<calo_numbers.size(); i++) {
270 if(!trk_bool[i])
continue;
271 std::array<double,5> trk_arr{};
272 trk_arr[0]= trackP/double(trk_proj_num);
273 trk_arr[1]= trk_full[i][0] - eta_ctr;
274 trk_arr[2]= trk_full[i][1] - phi_ctr;
275 trk_arr[3]= trk_full[i][2];
278 cells.emplace_back(trk_arr);
283 for(
auto &in : cells){
284 std::copy(in.begin(), in.end(), inputnn.begin() +
index);
286 if(
index >=
static_cast<int>(inputnn.size()-4)) {
297 return predictedEnergy;