ATLAS Offline Software
TRT_HitCollectionCnv_p3.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2021 CERN for the benefit of the ATLAS collaboration
3 */
4 
9 
10 #include <cmath>
11 
12 // CLHEP
13 #include "CLHEP/Geometry/Point3D.h"
14 #include "CLHEP/Units/SystemOfUnits.h"
15 
16 // Gaudi
17 #include "GaudiKernel/MsgStream.h"
18 
19 // Athena
21 #include "StoreGate/StoreGateSvc.h"
22 
23 // Transient(Geant) to Persistent(Disk)
25 {
26 
27  /*
28  Spring 2009
29  Andrew Beddall - lossy TRT G4hit compression [p3]
30 
31  In p1, p2 versions, GEANT hits are persistified on disk as floats.
32  In this p3 version, floats are compressed to "integers"/"short-floats" before persistifying.
33  The saving is about 75%; see http://cern.ch/beddall/TRThitCompression/
34 
35  Spring 2008
36  Rob Duxfield - lossless TRT G4hit compression [p2]
37 
38  Finds hits belonging to a "string" (in which the end point of one hit is
39  the same as the start point of the next) and persistifies the end point
40  of each hit plus the start point of the first hit in each string.
41  */
42 
43  // The original units from the hit simulation are indicated in comments;
44  // they are all in CLHEP units except for hitEne which is in keV.
45  // I sometimes make use of CLHEP scales *CLHEP::mm and *CLHEP::ns (both=1) for clarity (I hope!).
46  // See also https://twiki.cern.ch/twiki/bin/view/Atlas/TrtSoftware#Production_of_Hits
47 
48  static const double dRcut = 1.0e-7*CLHEP::mm;
49  static const double dTcut = 1.0*CLHEP::ns; // redundant?
50 
51  // if (log.level() <= MSG::DEBUG) log << MSG::DEBUG << "In TRT_HitCollectionCnv_p3::transToPers()" << endmsg;
52 
53  int lastBarcode = -1;
54  int lastId = -1;
55  double lastT = 0.0*CLHEP::ns;
56  unsigned int idx = 0;
57  unsigned int endBC = 0;
58  unsigned int endId = 0;
59  unsigned int endHit = 0;
60  HepGeom::Point3D<double> lastEnd(0.0, 0.0, 0.0); // mm
61 
62  for (TRTUncompressedHitCollection::const_iterator it = transCont->begin(); it != transCont->end(); ++it) {
63 
64  // const TRTUncompressedHit* trtHit = *it;
66 
67  if ( trtHit->particleLink().barcode() != lastBarcode || idx - endBC > 65500) { // max unsigned short = 65535;
68  // store barcode once for set of consecutive hits with same barcode
69  lastBarcode = trtHit->particleLink().barcode();
70  persCont->m_barcode.push_back(lastBarcode);
71  if ( idx > 0 ) {
72  persCont->m_nBC.push_back(idx - endBC);
73  endBC = idx;
74  }
75  }
76 
77  if ( (int)trtHit->GetParticleEncoding() != lastId || idx - endId > 65500) { // max unsigned short = 65535;
78  // store id once for set of consecutive hits with same id
79  lastId = trtHit->GetParticleEncoding();
80  persCont->m_id.push_back(lastId);
81  if ( idx > 0 ) {
82  persCont->m_nId.push_back(idx - endId);
83  endId = idx;
84  }
85  }
86 
87  const HepGeom::Point3D<double> hitStart(trtHit->GetPreStepX(), trtHit->GetPreStepY(), trtHit->GetPreStepZ()); // mm
88 
89  const double meanTime = trtHit->GetGlobalTime(); // ns // Time of flight from the I.P. to the center of the hit.
90  const double dTLast = fabs(meanTime - lastT); // |d(meantime)| between the previous hit and the current one.
91  const double dRLast = lastEnd.distance(hitStart); // Distance between end of previous hit and start of current one;
92  // this is zero if the hit is a continuation of the same particle in the same straw.
93 
94  // Begin a new string if the current and previous hits are disconnected;
95  // it looks like dTcut is redundant (but not sure about this).
96  if ( dRLast >= dRcut || dTLast >= dTcut ) {
97 
98  // if ( dRLast < dRcut) std::cout << "AJBdTLastTriggeredNewString " << dRLast << " " << dTLast << std::endl;
99 
101  // new hit string //
103 
104  //
105  // Persistify string *strawId* using 24 bits.
106  // Assumes 0 <= strawId <= 16,777,215 (strawId appears to be < 4,000,000)
107  //
108  const unsigned int strawId = trtHit->GetHitID();
109  persCont->m_strawId1b.push_back( (unsigned char)(strawId % 256) ); // 8 bits
110  persCont->m_strawId2b.push_back( (unsigned short)(strawId / 256) ); // 16 bits
111  if ( strawId>16777215 )
112  log << MSG::WARNING << "TRT_HitCollectionCnv: strawId > 2^24-1 cannot be persistified correctly! " << endmsg;
113 
114  //
115  // Persistify string start radius using 1 bit (istartRflag) or 8 bits (startR)
116  // Note that the smallest value of R is the wire radius (0.0155 mm)
117  //
118  // R will be flagged as 2 mm if it is within 0.1 um of the straw wall => max error = 0.1 um,
119  // otherwise compress with 8 bits => max error = 3.9 um (0.078 ns), RMS error = 1.1 um (0.022 ns)
120  //
121  const double startR = sqrt( hitStart.x()*hitStart.x() + hitStart.y()*hitStart.y() ); // mm
122  unsigned short istartRflag;
123  if ( startR > 1.9999*CLHEP::mm ) {
124  istartRflag=1; // persistify as a 1-bit flag
125  }
126  else {
127  istartRflag=0; // compress to 8 bits with a span of 2 mm
128  persCont->m_startR.push_back( (unsigned char)(startR/(2.0*CLHEP::mm)*256.0) );
129  }
130 
131  //
132  // Persistify string *startPhi* using 8 bits (min=-pi, max=+pi)
133  // Max. error = 12 mrad (< 24 um, 0.48 ns); RMS error = 7 mrad (< 14 um, 0.28 ns)
134  //
135  const double startPhi = atan2( hitStart.y(), hitStart.x() ); // returns range -pi to +pi rad
136  persCont->m_startPhi.push_back( (unsigned char)( (startPhi+M_PI)/(2.0*M_PI)*256.0 ) );
137 
138  //
139  // Persistify *startZ* using a 4 bits (min = -365 mm, max= +365 mm)
140  // Max. error = 25 mm (25e-3/(0.75c) = 0.111 ns * 2 reflect = 0.222 ns)
141  // RMS error = 14 mm (14e-3/(0.75c) = 0.062 ns * 2 reflect = 0.124 ns)
142  // Also the 1-bit *istartRflag* is packed into this variable.
143  //
144  // Note:
145  // In the digi code we need to allow for something like 22.5 mm outside straw.
146  // Also because we have short straws,
147  // short straws are about < +-180 mm, long straws are about < +-350 mm
148  // The following compressions can give a large "out of straw" value;
149  // *don't* use these: (2.0), 32.0, 128.0, 256.0.
150 
151  unsigned char istartZ = (unsigned char)( (hitStart.z()+365.0*CLHEP::mm)/(730.0*CLHEP::mm)*16.0 );
152  istartZ = (istartZ << 1) | istartRflag;
153  persCont->m_startZ.push_back( istartZ );
154 
155  if ( idx > 0 ) {
156  persCont->m_nHits.push_back( idx - endHit );
157  endHit = idx;
158  }
159  /*
160  // Validation output
161  std::cout.precision(15);
162  std::cout << "AJBTtoPstrawId " << strawId << std::endl;
163  std::cout << "AJBTtoPstartR " << startR << std::endl;
164  std::cout << "AJBTtoPstartPhi " << startPhi << std::endl;
165  std::cout << "AJBTtoPstartX " << hitStart.x() << std::endl;
166  std::cout << "AJBTtoPstartY " << hitStart.y() << std::endl;
167  std::cout << "AJBTtoPstartZ " << hitStart.z() << std::endl;
168  */
169  } // end of "begin new hit string"
170 
172  // Now for the end hits //
174 
175  const HepGeom::Point3D<double> hitEnd(trtHit->GetPostStepX(), trtHit->GetPostStepY(), trtHit->GetPostStepZ()); // mm
176  const HepGeom::Point3D<double> hitLength = (hitEnd - hitStart);
177 
178  //
179  // Here both *kinEne* (kinetic energy of the particle causing the hit) and
180  // *steplength* (g4hit length) are persistified using a 15-bit "short float"
181  // (9 bit unsigned mantissa, 6 bit unsigned exponent).
182  // This stores values in the range 0.51*2^0 = 0.51 to 1.00*2^63 = 9.2e18.
183  // I enforce the limits 1.0 and 9.0e18; see below.
184  // Max relative error = 0.0010, RMS = 0.0004
185  //
186  // Notes:
187  //
188  // - G4 gives kinEne in MeV; I sometimes see values ~ 1e-7 MeV (100 meV) [float round-off?]
189  // So I multiply by 1e9 and store in units of meV => range 1.0 meV to 9.0e18 meV (9000 TeV!)
190  // - About 1 in 10000 hits have steplength ~ 1e-7 mm [float round-off?]
191  // so again I multiply by 1e9 and store in units of pm => range 1.0 pm to 9.0e18 pm (9000 km)
192  // - The mantissa has maximum 9 bits, the exponent has maximum 6 bits,
193  // Note: a rare condition causes an 10-bit mantissa (mantissa=512).
194  //
195  double kinEne = trtHit->GetKineticEnergy() * 1.0e9; // nano Mev = meV.
196  double steplength = hitLength.distance() * 1.0e9; // nano mm = pm.
197  if ( kinEne < 1.0 ) kinEne=1.0; // Keep the value
198  if ( steplength < 1.0 ) steplength=1.0; // well within the
199  if ( kinEne > 9.0e18 ) kinEne=9.0e18; // range of the
200  if ( steplength > 9.0e18 ) steplength=9.0e18; // short float.
201  const unsigned int kexponent = (unsigned int)ceil(log10(kinEne)/0.30102999566398);
202  const unsigned int sexponent = (unsigned int)ceil(log10(steplength)/0.30102999566398);
203  const unsigned int kmantissa = (unsigned int)(kinEne/pow(2.0,kexponent)*1024) - 512;
204  const unsigned int smantissa = (unsigned int)(steplength/pow(2.0,sexponent)*1024) - 512;
205  persCont->m_kinEne.push_back( (kmantissa << 6) | kexponent );
206  persCont->m_steplength.push_back( (smantissa << 6) | sexponent );
207 
208  //
209  // Persistify hit end radius using 1 bit (iendRflag) or 8 bits (endR).
210  // Note that the smallest value of R is the wire radius (0.0155 mm)
211  //
212  // R will be flagged as 2 mm if it is within 0.1 um of the straw wall => max error = 0.1 um,
213  // otherwise compress with 8 bits. The errors are as for startR, but can increased greatly
214  // after steplength preservation in PtoT.
215  //
216  const double endR = sqrt( hitEnd.x()*hitEnd.x() + hitEnd.y()*hitEnd.y() ); // mm
217  unsigned short iendRflag;
218  if ( endR > 1.9999*CLHEP::mm ) {
219  iendRflag=1; // persistify as a 1-bit flag
220  }
221  else {
222  iendRflag=0; // compress to 8 bits with a span of 2 mm
223  persCont->m_endR.push_back( (unsigned char)(endR/(2.0*CLHEP::mm)*256.0) );
224  }
225 
226  //
227  // Persistify string *endPhi* using 8 bits (min=-pi, max=+pi)
228  // The errors are as for startPhi, but are very different after steplength
229  // preservation in PtoT.
230  //
231  const double endPhi = atan2( hitEnd.y(), hitEnd.x() ); // returns range -pi to +pi rad
232  persCont->m_endPhi.push_back( (unsigned char)( (endPhi+M_PI)/(2.0*M_PI)*256.0 ) );
233 
234  //
235  // Persistify hit *meanTime* using 10 bits (min=0.,span=75 ns)
236  // with float overflow for meanTime >= 75ns (the tail of the distribution).
237  // Max. error = 0.037 ns; RMS error = 0.021 ns.
238  // Also the 1-bit *iendRflag* and 1-bit *idZsign* are packed into this variable.
239  //
240  unsigned short idZsign = (hitLength.z()>0.0) ? 1 : 0; // flag the sign of dZ
241  unsigned short imeanTime = ( meanTime < 75.0*CLHEP::ns ) ? (unsigned short)(meanTime/(75.0*CLHEP::ns)*1024.0) : 1023;
242  if ( imeanTime == 1023 ) persCont->m_meanTimeof.push_back( (float)meanTime ); // "overflow flag"
243  imeanTime = (imeanTime << 2) | (idZsign << 1) | iendRflag;
244  persCont->m_meanTime.push_back( imeanTime );
245 
246  //
247  // Persistify hit *hitEne* (the energy deposited by the hit in keV) using a float but only for photons
248  // (relatively very few of these). Digitisation does not use hitEne for charged particles.
249  //
250  if ( lastId == 22 ||
251  (int)(abs(lastId)/100000) == 41 ||
252  (int)(abs(lastId)/10000000) == 1
253  ) persCont->m_hitEne.push_back( (float)(trtHit->GetEnergyDeposit()) ); // keV
254 
255  lastEnd = hitEnd;
256  lastT = meanTime;
257  ++idx;
258  /*
259  // Validation output
260  std::cout.precision(15);
261  std::cout << "AJBTtoPendR " << endR << std::endl;
262  std::cout << "AJBTtoPendPhi " << endPhi << std::endl;
263  std::cout << "AJBTtoPendX " << hitEnd.x() << std::endl;
264  std::cout << "AJBTtoPendY " << hitEnd.y() << std::endl;
265  std::cout << "AJBTtoPendZ " << hitEnd.z() << std::endl;
266  std::cout << "AJBTtoPmeanTime " << meanTime << std::endl;
267  std::cout << "AJBTtoPkinEne " << trtHit->kineticEnergy << std::endl;
268  std::cout << "AJBTtoPhitEne " << trtHit->energyDeposit << std::endl;
269  std::cout << "AJBTtoPsteplength " << hitLength.distance() << std::endl;
270  */
271  }
272 
273  persCont->m_nBC.push_back(idx - endBC);
274  persCont->m_nId.push_back(idx - endId);
275  persCont->m_nHits.push_back( idx - endHit );
276 
277 } // transToPers
278 
279 
280 // Create Transient
282  std::unique_ptr<TRTUncompressedHitCollection> trans(std::make_unique<TRTUncompressedHitCollection>("DefaultCollectionName",persObj->m_nHits.size()));
283  persToTrans(persObj, trans.get(), log);
284  return(trans.release());
285 } //createTransient
286 
287 
288 // Persistent(Disk) to Transient
290 {
291 
292  // if (log.level() <= MSG::DEBUG) log << MSG::DEBUG << "In TRT_HitCollectionCnv_p3::persToTrans()" << endmsg;
293 
294  // some values are read less than once per hit, these need counters.
295  unsigned int meanTimeofCount=0, startRCount=0, endRCount=0, hitEneCount=0;
296  unsigned int idxBC=0, idxId=0, endHit=0, endBC=0, endId=0;
297 
298  // Assume that all Hits should be linked to the hard-scatter GenEvent
300  const int event_number = HepMcParticleLink::getEventNumberAtPosition (0, sg);
301 
302  //
303  // loop over strings - index [i]
304  //
305 
306  for ( unsigned int i = 0; i < persCont->m_nHits.size(); i++ ) {
307 
308  if ( persCont->m_nHits[i] ) { // at least one hit in the string
309 
310  const unsigned int startHit = endHit;
311  endHit += persCont->m_nHits[i];
312 
313  //
314  // string strawId
315  //
316  const unsigned int i1 = persCont->m_strawId1b[i]; // 8 bits
317  const unsigned int i2 = persCont->m_strawId2b[i]; // 16 bits
318  const unsigned int strawId = i2*256+i1; // => 24 bits (0 to 16,777,215)
319 
320  //
321  // string startPhi
322  //
323  const unsigned int istartPhi = persCont->m_startPhi[i]; // 8 bits
324  const double startPhi = -M_PI + (istartPhi+0.5)*2.0*M_PI/256.0; // rad (min = -pi, max = +pi)
325 
326  //
327  // string startZ
328  //
329  const unsigned int istartZ = persCont->m_startZ[i] >> 1; // 4 bits
330  double startZ = -365.0*CLHEP::mm + (istartZ+0.5)*730.0*CLHEP::mm/16.0; // (min = -365 mm, max = +365 mm)
331 
332  //
333  // start Rflag
334  //
335  const unsigned int istartRflag = persCont->m_startZ[i] & 1; // 1 bit
336 
337  //
338  // string startR
339  //
340  double startR;
341  if ( istartRflag == 1 ) {
342  startR = 2.0*CLHEP::mm; // 1 bit
343  }
344  else {
345  const unsigned int istartR = persCont->m_startR[startRCount++]; // 8 bits
346  startR = (istartR+0.5)*2.0*CLHEP::mm/256.0; // (range 0 - 2 mm)
347  if ( startR < 0.0155*CLHEP::mm ) startR = 0.0155*CLHEP::mm; // The wire radius
348  }
349 
350  //
351  // string startX, startY (derived from R,Phi)
352  //
353  double startX = startR*cos(startPhi);
354  double startY = startR*sin(startPhi);
355  /*
356  // Validation output
357  std::cout.precision(15);
358  std::cout << "AJBPtoTstrawId " << strawId << std::endl;
359  std::cout << "AJBPtoTstartR " << startR << std::endl;
360  std::cout << "AJBPtoTstartPhi " << startPhi << std::endl;
361  std::cout << "AJBPtoTstartX " << startX << std::endl;
362  std::cout << "AJBPtoTstartY " << startY << std::endl;
363  std::cout << "AJBPtoTstartZ " << startZ << std::endl;
364  std::cout << "AJBPtoTnHits " << persCont->m_nHits[i] << std::endl;
365  */
366  //
367  // loop over end hits in the string - index [j]
368  //
369 
370  for ( unsigned int j = startHit; j < endHit; j++ ) {
371 
372  if ( j >= endBC + persCont->m_nBC[idxBC] ) endBC += persCont->m_nBC[idxBC++];
373  if ( j >= endId + persCont->m_nId[idxId] ) endId += persCont->m_nId[idxId++];
374 
375  //
376  // hit meanTime
377  //
378  const unsigned int imeanTime = persCont->m_meanTime[j] >> 2; // 10 bits
379  double meanTime = (imeanTime+0.5)*75.0*CLHEP::ns/1024.0; // (min = 0.0 ns, max = 75.0 ns)
380  if ( imeanTime == 1023 ) meanTime = (double)persCont->m_meanTimeof[meanTimeofCount++]; // ns, 32-bit float overflow
381 
382  //
383  // dZ sign
384  //
385  const unsigned int idZsign = (persCont->m_meanTime[j] >> 1 ) & 1; // 1 bit
386 
387  //
388  // endR flag
389  //
390  const unsigned int iendRflag = persCont->m_meanTime[j] & 1; // 1 bit
391 
392  //
393  // hit energy deposited in keV (only relevant for photons) 32-bit float
394  //
395  const double hitEne = ( persCont->m_id[idxId] == 22 ||
396  (int)(abs(persCont->m_id[idxId])/100000) == 41 ||
397  (int)(abs(persCont->m_id[idxId])/10000000) == 1
398  ) ? (double)persCont->m_hitEne[hitEneCount++] : 0.0;
399 
400  //
401  // hit endPhi (can be modified later during "steplength preservation")
402  //
403  const unsigned int iendPhi = persCont->m_endPhi[j]; // 8 bits
404  double endPhi = -M_PI + (iendPhi+0.5)*2.0*M_PI/256.0; // rad (min = -pi, max = +pi)
405 
406  //
407  // string endR (can be modified later during "steplength preservation")
408  //
409  double endR;
410  if ( iendRflag==1 ) {
411  endR = 2.0*CLHEP::mm; // 1 bit
412  }
413  else {
414  const unsigned int iendR = persCont->m_endR[endRCount++];
415  endR = (iendR+0.5)*2.0*CLHEP::mm/256.0; // 8 bits
416  if ( endR < 0.0155*CLHEP::mm ) endR = 0.0155*CLHEP::mm; // the wire radius
417  }
418 
419  //
420  // hit endX, endY (derived from R,Phi)
421  //
422  double endX = endR*cos(endPhi); // can be modified later during "steplength preservation"
423  double endY = endR*sin(endPhi); // can be modified later during "steplength preservation"
424 
425  // Save the (o)riginal endX, endY values for the next hit start because
426  // they might get shrunk to fit the g4 steplength of the current hit.
427  double endXo = endX;
428  double endYo = endY;
429 
430  //
431  // g4 step length of the hit, m_steplength, and
432  // kinetic energy of the hit, m_kinEne, are both 15-bit short floats.
433  // Note: a rare condition causes a 16-bit short float (mantissa=512).
434  //
435  const int kmantissa = persCont->m_kinEne[j] >> 6; // 9 bits (expected)
436  const int smantissa = persCont->m_steplength[j] >> 6;
437  const int kexponent = persCont->m_kinEne[j] & 0x3F; // 6 bits
438  const int sexponent = persCont->m_steplength[j] & 0x3F;
439  const double kinEne = (kmantissa+512.5)/1024 * pow(2.0,kexponent) / 1.0e9; // MeV
440  double g4steplength = (smantissa+512.5)/1024 * pow(2.0,sexponent) / 1.0e9; // mm
441  if ( idZsign==0 ) g4steplength = -g4steplength;
442 
443  //
444  // Preserving the steplength of the hit by setting endZ or shrinking dX,dY.
445  //
446  double dX = endX-startX;
447  double dY = endY-startY;
448  double dZ;
449  double dXY2 = dX*dX+dY*dY;
450  double dL2 = g4steplength*g4steplength;
451  if ( dL2 > dXY2 ) { // define dZ such that steplength = g4steplength
452  dZ = sqrt(dL2-dXY2);
453  if (g4steplength<0.0) dZ=-dZ;
454  }
455  else { // dL2 < dXY2 // shrink dX,dY such that dXY = g4steplength
456  dX = dX * sqrt(dL2/dXY2); // this includes the cases where dL2=0!
457  dY = dY * sqrt(dL2/dXY2);
458  dZ = 0.0*CLHEP::mm;
459  endX = startX + dX;
460  endY = startY + dY;
461  //endR = sqrt( endX*endX + endY*endY ); // for validation information
462  //endPhi = atan2(endY,endX); // for validation information
463  }
464  double endZ = startZ + dZ;
465  //dX = endX-startX; // for validation information
466  //dY = endY-startY; // for validation information
467  /*
468  // Validation output
469  std::cout.precision(15);
470  std::cout << "AJBPtoTendR " << endR << std::endl;
471  std::cout << "AJBPtoTendPhi " << endPhi << std::endl;
472  std::cout << "AJBPtoTendX " << endX << std::endl;
473  std::cout << "AJBPtoTendY " << endY << std::endl;
474  std::cout << "AJBPtoTendZ " << endZ << std::endl;
475  std::cout << "AJBPtoTmeanTime " << meanTime << std::endl;
476  std::cout << "AJBPtoTkinEne " << kinEne << std::endl;
477  std::cout << "AJBPtoThitEne " << hitEne << std::endl;
478  std::cout << "AJBPtoTsteplength " << sqrt(dX*dX+dY*dY+dZ*dZ) << std::endl;
479  */
480  //
481  // Notes:
482  // - All units are CLHEP, except hitEne which is in keV.
483  // - For charged particles kinEne is *zero*!
484  //
485 
486  HepMcParticleLink partLink(persCont->m_barcode[idxBC], event_number, HepMcParticleLink::IS_EVENTNUM, HepMcParticleLink::IS_BARCODE, sg);
487  if ( HepMC::BarcodeBased::is_truth_suppressed_pileup(static_cast<int>(persCont->m_barcode[idxBC])) ) {
489  }
490  transCont->Emplace( strawId, partLink, persCont->m_id[idxId],
491  kinEne, hitEne, startX, startY, startZ,
492  endX, endY, endZ, meanTime );
493  //
494  // End of this hit becomes the start of the next;
495  // use the original (uncorrected) values for X,Y
496  // but the derived value for Z.
497  //
498  startX = endXo; startY = endYo; startZ = endZ;
499 
500  }
501  } // nhits>0
502  } // straw loop
503 } // persToTrans
TRT_HitCollection_p3::m_endR
std::vector< unsigned char > m_endR
Definition: TRT_HitCollection_p3.h:42
TRT_HitCollection_p3::m_startR
std::vector< unsigned char > m_startR
Definition: TRT_HitCollection_p3.h:32
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
TRT_HitCollection_p3::m_steplength
std::vector< unsigned short > m_steplength
Definition: TRT_HitCollection_p3.h:41
TRT_HitCollection_p3::m_startPhi
std::vector< unsigned char > m_startPhi
Definition: TRT_HitCollection_p3.h:33
TRT_HitCollection_p3::m_barcode
std::vector< unsigned int > m_barcode
Definition: TRT_HitCollection_p3.h:53
xAOD::char
char
Definition: TrigDecision_v1.cxx:38
TRT_HitCollection_p3::m_kinEne
std::vector< unsigned short > m_kinEne
Definition: TRT_HitCollection_p3.h:40
TRT_HitCollection_p3::m_endPhi
std::vector< unsigned char > m_endPhi
Definition: TRT_HitCollection_p3.h:43
AtlasHitsVector
Definition: AtlasHitsVector.h:33
skel.it
it
Definition: skel.GENtoEVGEN.py:396
TRT_HitCollection_p3
Definition: TRT_HitCollection_p3.h:18
M_PI
#define M_PI
Definition: ActiveFraction.h:11
SG::CurrentEventStore::store
static IProxyDict * store()
Fetch the current store.
drawFromPickle.cos
cos
Definition: drawFromPickle.py:36
AtlasHitsVector::begin
const_iterator begin() const
Definition: AtlasHitsVector.h:131
TRT_HitCollection_p3::m_startZ
std::vector< unsigned char > m_startZ
Definition: TRT_HitCollection_p3.h:34
IProxyDict
A proxy dictionary.
Definition: AthenaKernel/AthenaKernel/IProxyDict.h:47
AtlasHitsVector::const_iterator
CONT::const_iterator const_iterator
Definition: AtlasHitsVector.h:43
AtlasHitsVector::Emplace
void Emplace(Args &&... args)
Definition: AtlasHitsVector.h:81
lumiFormat.i
int i
Definition: lumiFormat.py:85
TRT_HitCollection_p3::m_hitEne
std::vector< float > m_hitEne
Definition: TRT_HitCollection_p3.h:51
endmsg
#define endmsg
Definition: AnalysisConfig_Ntuple.cxx:63
TRT_HitCollectionCnv_p3.h
TRT_HitCollection_p3::m_meanTimeof
std::vector< float > m_meanTimeof
Definition: TRT_HitCollection_p3.h:45
xAOD::double
double
Definition: CompositeParticle_v1.cxx:159
MagicNumbers.h
TRT_HitCollection_p3.h
HepMC::BarcodeBased::is_truth_suppressed_pileup
bool is_truth_suppressed_pileup(const T &p)
Method to establish if a particle (or barcode) corresponds to truth-suppressed pile-up.
Definition: MagicNumbers.h:197
TRT_HitCollection_p3::m_strawId2b
std::vector< unsigned short > m_strawId2b
Definition: TRT_HitCollection_p3.h:30
TRT_HitCollection_p3::m_strawId1b
std::vector< unsigned char > m_strawId1b
Definition: TRT_HitCollection_p3.h:31
TRT_HitCollection_p3::m_nBC
std::vector< unsigned short > m_nBC
Definition: TRT_HitCollection_p3.h:54
python.SystemOfUnits.mm
int mm
Definition: SystemOfUnits.py:83
TRT_HitCollection_p3::m_id
std::vector< int > m_id
Definition: TRT_HitCollection_p3.h:55
TRTUncompressedHitCollection.h
TRTUncompressedHit.h
TRT_HitCollectionCnv_p3::createTransient
virtual TRTUncompressedHitCollection * createTransient(const TRT_HitCollection_p3 *persObj, MsgStream &log)
Definition: TRT_HitCollectionCnv_p3.cxx:281
AtlasHitsVector::end
const_iterator end() const
Definition: AtlasHitsVector.h:134
python.CaloCondTools.log
log
Definition: CaloCondTools.py:20
LArNewCalib_DelayDump_OFC_Cali.idx
idx
Definition: LArNewCalib_DelayDump_OFC_Cali.py:69
EBC_PU_SUPPRESSED
@ EBC_PU_SUPPRESSED
Definition: MagicNumbers.h:30
TRT_HitCollectionCnv_p3::transToPers
virtual void transToPers(const TRTUncompressedHitCollection *transCont, TRT_HitCollection_p3 *persCont, MsgStream &log)
Definition: TRT_HitCollectionCnv_p3.cxx:24
python.SystemOfUnits.ns
int ns
Definition: SystemOfUnits.py:130
TRT_HitCollection_p3::m_nId
std::vector< unsigned short > m_nId
Definition: TRT_HitCollection_p3.h:52
drawFromPickle.sin
sin
Definition: drawFromPickle.py:36
TRT_HitCollection_p3::m_nHits
std::vector< unsigned short > m_nHits
Definition: TRT_HitCollection_p3.h:29
pow
constexpr int pow(int base, int exp) noexcept
Definition: ap_fixedTest.cxx:15
TRT_HitCollectionCnv_p3::persToTrans
virtual void persToTrans(const TRT_HitCollection_p3 *persCont, TRTUncompressedHitCollection *transCont, MsgStream &log)
Definition: TRT_HitCollectionCnv_p3.cxx:289
StoreGateSvc.h
TRT_HitCollection_p3::m_meanTime
std::vector< unsigned short > m_meanTime
Definition: TRT_HitCollection_p3.h:44