ATLAS Offline Software
Functions
avgData Namespace Reference

Functions

def tempCorr (Temp, Eg)
 
def averageData (m, lumi_df)
 
def main ()
 

Function Documentation

◆ averageData()

def avgData.averageData (   m,
  lumi_df 
)

Definition at line 21 of file avgData.py.

21 def averageData (m,lumi_df):
22 
23  #home directory definition
24  homeDirectory = os.path.expanduser('/eos/atlas/user/j/jdickins/Pixel/LeakageCurrent/')
25 
26  # Define path to folder
27  dataFolder = homeDirectory + "/IBLData/processedData/means_dat/"
28  inputFolder = homeDirectory + "/IBLData/processedData/"
29 
30  if not os.path.exists(dataFolder):
31  os.mkdir(dataFolder)
32 
33  # Time bins = every day
34  b = lumi_df["start"].drop_duplicates()
35 
36  output_dict = pd.DataFrame({})
37 
38  # Loop over lumi blocks
39  lumis = []
40  total_lumi = 0
41  for l in lumi_df["intlumi"]:
42  total_lumi += l/(10**9)
43  lumis += [ total_lumi ]
44 
45  print(total_lumi)
46  lumi_df["totlumi"] = lumis
47 
48 # tmp_dict = lumi_df.groupby(pd.cut(lumi_df["start"],bins=b),as_index=False).mean()
49 # tmp_dict.fillna(method='ffill',inplace=True)
50  output_dict["start"] = b
51  output_dict["intlumi"] = lumi_df["totlumi"]
52  output_dict.fillna(method='ffill',inplace=True)
53  times = [datetime.datetime.utcfromtimestamp(s) for s in b]
54 
55  plt.scatter(times,output_dict["intlumi"],marker=".")
56  plt.title(m)
57  plt.savefig(dataFolder+"intlumi/"+m+"_time.png")
58  plt.close()
59 
60  # Jennet gets these from https://twiki.cern.ch/twiki/bin/viewauth/Atlas/PixelConditionsRUN2
61  voltage_settings = []
62 
63  volume = []
64  sensorSize_planar = 50*250*200*1E-12 #cm3
65  sensorSize_3D = 50*250*230*1E-12 #cm3
66 
67  sensorsPerModule = 336*80
68 
69  if m.endswith("M4"): # 3D module
70  for s in output_dict["start"]:
71  volume += [sensorSize_3D*sensorsPerModule*4]
72 
73  if m == "LI_S11_A_M4":
74  if s < time.mktime(datetime.date(2017,1,1).timetuple()):
75  voltage_settings += [20.0]
76  elif s < time.mktime(datetime.date(2018,1,1).timetuple()):
77  voltage_settings += [30.0]
78  else:
79  voltage_settings += [20.0]
80  continue
81  if m == "LI_S12_A_M4":
82  if s < time.mktime(datetime.date(2017,1,1).timetuple()):
83  voltage_settings += [20.0]
84  elif s < time.mktime(datetime.date(2018,1,1).timetuple()):
85  voltage_settings += [21.0]
86  else:
87  voltage_settings += [30.0]
88  continue
89  if m == "LI_S13_A_M4":
90  if s < time.mktime(datetime.date(2017,1,1).timetuple()):
91  voltage_settings += [15.0]
92  else:
93  voltage_settings += [40.0]
94  continue
95  if s < time.mktime(datetime.date(2017,1,1).timetuple()):
96  voltage_settings += [20.0]
97  else:
98  voltage_settings += [40.0]
99  else: # Planar module
100  for s in output_dict["start"]:
101  volume += [sensorSize_planar*sensorsPerModule*4]
102 
103  if s < time.mktime(datetime.date(2016,9,16).timetuple()):
104  voltage_settings += [80.0]
105  elif s < time.mktime(datetime.date(2017,1,1).timetuple()):
106  voltage_settings += [150.0]
107  elif s < time.mktime(datetime.date(2017,11,7).timetuple()):
108  voltage_settings += [350.0]
109  else:
110  voltage_settings += [400.0]
111 
112  output_dict["HV_VSet"] = voltage_settings
113  output_dict["volume"] = volume
114 
115  dataTypes = ["PP4LV","TModule","ENV_TT","HV_VMeas","HV_IMeas"]
116 
117  for dataType in dataTypes:
118 
119  print ("Investigating " + dataType )
120 
121  if not os.path.exists(dataFolder+dataType):
122  os.mkdir(dataFolder+dataType)
123 
124  # DO THE AVERAGES
125  infile = inputFolder + dataType + "/" + m + ".ssv"
126  meas_header=["module_name","measurement_date","measurement_time","unix-timestamp",dataType]
127  meas_dict = pd.read_csv(infile, names=meas_header, delimiter=' ', skiprows=1)
128  output_dict[dataType] = meas_dict.groupby(pd.cut(meas_dict["unix-timestamp"],bins=b),as_index=False).mean()[dataType]
129 
130  if dataType == "TModule" or dataType == "PP4LV" or dataType == "ENV_TT":
131  output_dict.fillna(method='ffill',inplace=True)
132 
133  if dataType == "HV_VMeas":
134  output_dict["HV_VMeas_0"] = meas_dict.groupby(pd.cut(meas_dict["unix-timestamp"],bins=b),as_index=False).mean()[dataType]
135  output_dict.fillna(method='ffill',inplace=True)
136  output_dict["HV_VMeas_1"] = meas_dict.groupby(pd.cut(meas_dict["unix-timestamp"],bins=b),as_index=False).mean()[dataType]
137  output_dict.fillna(method='bfill',inplace=True)
138  output_dict["HV_VMeas"] = output_dict[["HV_VMeas_0","HV_VMeas_1"]].mean(axis=1)
139 
140  output_dict.plot.scatter(x="intlumi",y=dataType,marker=".")
141  plt.title(m)
142  plt.savefig(dataFolder+dataType+"/"+m+".png")
143  plt.close()
144 
145  plt.scatter(times,output_dict[dataType],marker=".")
146  plt.title(m)
147  plt.savefig(dataFolder+dataType+"/"+m+"_time.png")
148  plt.close()
149 
150  # Take cooling pipe temp
151 # output_dict['TModule'] = np.where(output_dict['TModule'] < -20, output_dict['ENV_TT'], output_dict['TModule'])
152 
153  plt.scatter(times,output_dict["TModule"],marker=".",s=1,label="TModule")
154  plt.scatter(times,output_dict["ENV_TT"],marker=".",s=1,label="ENV_TT")
155  plt.legend()
156  plt.title(m)
157  plt.savefig(m+".png")
158  plt.close()
159 
160  saveFileName = dataFolder + m + "_nocuts.ssv"
161  if os.path.exists(saveFileName):
162  os.remove(saveFileName)
163  output_dict.to_csv(saveFileName,index=False)
164 
165  output_dict.dropna(inplace=True)
166 
167  # Veto
168  output_dict = output_dict[abs(output_dict["HV_VMeas"]-output_dict["HV_VSet"])<1.0]
169 
170  # Correct
171  output_dict["I_Eg1.12"] = [ row["HV_IMeas"] * tempCorr(row["TModule"],1.12) / row["volume"] for i, row in output_dict.iterrows() ]
172  output_dict["I_Eg1.21"] = [ row["HV_IMeas"] * tempCorr(row["TModule"],1.21) / row["volume"] for i, row in output_dict.iterrows() ]
173  output_dict["I_Eg1.30"] = [ row["HV_IMeas"] * tempCorr(row["TModule"],1.30) / row["volume"] for i, row in output_dict.iterrows() ]
174 
175  if not os.path.exists(dataFolder+"I_Eg1.12"):
176  os.mkdir(dataFolder+"I_Eg1.12")
177  output_dict.plot.scatter("intlumi","I_Eg1.12",marker=".")
178  plt.title(m)
179  plt.savefig(dataFolder+"I_Eg1.12/"+m+".png")
180  plt.close()
181 
182  if not os.path.exists(dataFolder+"I_Eg1.21"):
183  os.mkdir(dataFolder+"I_Eg1.21")
184  output_dict.plot.scatter("intlumi","I_Eg1.21",marker=".")
185  plt.title(m)
186  plt.savefig(dataFolder+"I_Eg1.21/"+m+".png")
187  plt.close()
188 
189  if not os.path.exists(dataFolder+"I_Eg1.30"):
190  os.mkdir(dataFolder+"I_Eg1.30")
191  output_dict.plot.scatter("intlumi","I_Eg1.30",marker=".")
192  plt.title(m)
193  plt.savefig(dataFolder+"I_Eg1.30/"+m+".png")
194  plt.close()
195 
196  saveFileName = dataFolder + m + ".ssv"
197  if os.path.exists(saveFileName):
198  os.remove(saveFileName)
199  output_dict.to_csv(saveFileName,index=False)
200 
201 # Begin script

◆ main()

def avgData.main ( )

Definition at line 202 of file avgData.py.

202 def main():
203 
204  infile_lumi = "/eos/atlas/user/j/jdickins/Pixel/LeakageCurrent/IBLData/processedData/Lumi/runData.txt"
205  lumi_header=["run","fill","lb","start","len","0","1","lumiall","intlumi"]
206  lumi_df=pd.read_csv(infile_lumi, names=lumi_header, delimiter=' ', skiprows=0)
207 
208 # lumi_df.drop_duplicates(subset='intlumi',keep='first',inplace=True)
209 
210  input_module = sys.argv[1]
211  averageData(input_module,lumi_df)
212 

◆ tempCorr()

def avgData.tempCorr (   Temp,
  Eg 
)

Definition at line 12 of file avgData.py.

12 def tempCorr(Temp,Eg):
13 
14  kB = 8.617*pow(10,-5) # eV/K
15  Tref = 273.0 # Reference temperature in K
16  Temp = Temp + 273 # Convert to K
17 
18  return pow(1.0*Tref/Temp,2)*np.exp((-0.5*Eg/kB)*(1.0/Tref - 1.0/Temp))
19 
20 # Jennet shamelessly steals Nick's code for bookkeeping
mean
void mean(std::vector< double > &bins, std::vector< double > &values, const std::vector< std::string > &files, const std::string &histname, const std::string &tplotname, const std::string &label="")
Definition: dependence.cxx:254
avgData.averageData
def averageData(m, lumi_df)
Definition: avgData.py:21
print
void print(char *figname, TCanvas *c1)
Definition: TRTCalib_StrawStatusPlots.cxx:25
avgData.tempCorr
def tempCorr(Temp, Eg)
Definition: avgData.py:12
avgData.main
def main()
Definition: avgData.py:202
pow
constexpr int pow(int base, int exp) noexcept
Definition: ap_fixedTest.cxx:15