4 from AnalysisAlgorithmsConfig.ConfigBlock
import ConfigBlock
5 from AnalysisAlgorithmsConfig.ConfigAccumulator
import DataType
8 '''ConfigBlock for the bootstrap generator'''
11 super(BootstrapGeneratorConfig, self).
__init__()
12 self.addOption (
'nReplicas', 1000, type=int,
13 info=
"the number (int) of bootstrap replicas to generate. "
14 "The default is 1000.")
15 self.addOption (
'decoration',
None, type=str,
16 info=
"the name of the output vector branch containing the "
17 "bootstrapped weights. The default is bootstrapWeights.")
18 self.setOptionValue(
'skipOnMC',
True)
22 alg = config.createAlgorithm(
'CP::BootstrapGeneratorAlg',
'BootstrapGenerator')
23 alg.nReplicas = self.nReplicas
24 alg.isData = config.dataType()
is DataType.Data
26 alg.decorationName = self.decoration
28 alg.decorationName =
"bootstrapWeights_%SYS%"
30 config.addOutputVar (
'EventInfo', alg.decorationName, alg.decorationName.split(
"_%SYS%")[0], noSys=
True)
38 Setup a simple bootstrapping algorithm
41 nReplicas -- the number of bootstrap replicas to generate
42 decoration -- the name of the output vector branch containing the bootstrapped weights
46 config.setOptionValue (
'nReplicas', nReplicas)
47 config.setOptionValue (
'decoration', decoration)