ATLAS Offline Software
trfGraph.py
Go to the documentation of this file.
1 # Copyright (C) 2002-2021 CERN for the benefit of the ATLAS collaboration
2 
3 
26 
27 
28 import copy
29 import os
30 
31 import logging
32 msg = logging.getLogger(__name__)
33 
34 import PyJobTransforms.trfExceptions as trfExceptions
35 
36 from PyJobTransforms.trfExitCodes import trfExit
37 
38 
39 
40 
41 
43 
44 
48  def __init__(self, executorSet, inputData = set([]), outputData = set([])):
49 
50  # Set basic node list
51  self._nodeDict = {}
52 
53  msg.info('Transform graph input data: {0}; output data {1}'.format(inputData, outputData))
54 
55  if len(executorSet) == 1:
56  # Single executor - in this case inData/outData is not mandatory, so we set them to the
57  # input/output data of the transform
58  executor = list(executorSet)[0]
59  if len(executor._inData) == 0 and len(executor._outData) == 0:
60  executor.inData = inputData
61  executor.outData = outputData
62 
63  for executor in executorSet:
64  self.addNode(executor)
65 
66  self._inputData = set(inputData)
67  self._outputData = set(outputData)
68 
69  # It's forbidden for a transform to consume and produce the same datatype
70  dataOverlap = self._inputData & self._outputData
71  if len(dataOverlap) > 0:
72  raise trfExceptions.TransformSetupException(trfExit.nameToCode('TRF_GRAPH_ERROR'),
73  'Transform definition error, you cannot produce and consume the same datatypes in a transform. Duplicated input/output types {0}.'.format(' '.join(dataOverlap)))
74 
75  # Add a pseudo-start/stop nodes, from which input data flows and output data finally arrives
76  # This makes the graph 'concrete' for this job
77  # This is useful as then data edges all connect properly to a pair of nodes
78  # We add a node for every possible output as this enables topo sorting of the graph
79  # nodes for any intermediate data end nodes as well
80  pseudoNodes = dict()
81  pseudoNodes['_start'] = graphNode(name='_start', inData=[], outData=self._inputData, weight = 0)
82  for node in self._nodeDict.values():
83  for dataType in node.outputDataTypes:
84  endNodeName = '_end_{0}'.format(dataType)
85  pseudoNodes[endNodeName] = graphNode(name=endNodeName, inData=[dataType], outData=[], weight = 0)
86  self._nodeDict.update(pseudoNodes)
87 
88  # Toposort not yet done
89  self._toposort = []
90  self._toposortData = []
91 
92  # Now find connections between nodes
93  self.findConnections()
94 
95  @property
96  def inputData(self):
97  return self._inputData
98 
99  @inputData.setter
100  def inputData(self, inputData):
101  self._inputData = set(inputData)
102 
103  @property
104  def outputData(self):
105  return self._outputData
106 
107  @outputData.setter
108  def outputData(self, outputData):
109  self._outputData = set(outputData)
110 
111 
112  @property
113  def execution(self):
114  exeList = []
115  for nodeName in self._toposort:
116  # Start and end nodes are not real - they never actually execute
117  if nodeName.startswith(('_start', '_end')):
118  continue
119  if self._execution[nodeName]['enabled'] is True:
120  exeList.append({'name': nodeName, 'input': self._execution[nodeName]['input'],
121  'output': self._execution[nodeName]['output']})
122  return exeList
123 
124 
125  @property
126  def data(self):
127  dataset = set()
128  for nodeName in self._toposort:
129  # Start and end nodes are not real - they never actually execute
130  if nodeName.startswith(('_start', '_end')):
131  continue
132  if self._execution[nodeName]['enabled'] is True:
133  dataset.update(self._execution[nodeName]['input'])
134  dataset.update(self._execution[nodeName]['output'])
135  return dataset
136 
137 
138  def addNode(self, executor):
139  self._nodeDict[executor.name] = executorNode(executor)
140 
141 
142 
143  def deleteNote(self, executor):
144  if executor.name in self._nodeDict:
145  del(self._nodeDict[executor.name])
146 
147 
148  def _resetConnections(self):
149  for node in self._nodeDict.values():
150  node.resetConnections()
151 
152 
154  def findConnections(self):
155  self._resetConnections()
156  for nodeNameA, nodeA in self._nodeDict.items():
157  for nodeNameB, nodeB in self._nodeDict.items():
158  if nodeNameA == nodeNameB:
159  continue
160  dataIntersection = list(set(nodeA.outputDataTypes) & set(nodeB.inputDataTypes))
161  msg.debug('Data connections between {0} and {1}: {2}'.format(nodeNameA, nodeNameB, dataIntersection))
162  if len(dataIntersection) > 0:
163  nodeA.addConnection(nodeNameB, dataIntersection, direction='out')
164  nodeB.addConnection(nodeNameA, dataIntersection, direction='in')
165 
166  msg.debug('Graph connections are: \n{0}'.format(self))
167 
168 
171  def doToposort(self):
172  # We will manipulate the graph, so deepcopy it
173  graphCopy = copy.deepcopy(self._nodeDict)
174  # Find all valid start nodes in this graph - ones with no data dependencies themselves
175  startNodeNames = []
176  for nodeName, node in graphCopy.items():
177  if len(node.connections['in']) == 0:
178  startNodeNames.append(nodeName)
179 
180  if len(startNodeNames) == 0:
181  raise trfExceptions.TransformGraphException(trfExit.nameToCode('TRF_GRAPH_ERROR'),
182  'There are no starting nodes in this graph - non-DAG graphs are not supported')
183 
184  msg.debug('Found this list of start nodes for toposort: {0}'.format(startNodeNames))
185 
186  # The startNodeNames holds the list of nodes with their dependencies now satisfied (no input edges anymore)
187  while len(startNodeNames) > 0:
188  # Take the next startNodeName and zap it from the graph
189  theNodeName = startNodeNames.pop()
190  theNode = graphCopy[theNodeName]
191  self._toposort.append(theNodeName)
192  del graphCopy[theNodeName]
193 
194  # Now delete the edges this node was a source for
195  msg.debug('Considering connections from node {0}'.format(theNodeName))
196  for connectedNodeName in theNode.connections['out']:
197  graphCopy[connectedNodeName].delConnection(toExe = theNodeName, direction = 'in')
198  # Look for nodes which now have their dependencies satisfied
199  if len(graphCopy[connectedNodeName].connections['in']) == 0:
200  startNodeNames.append(connectedNodeName)
201 
202  # If there are nodes left then the graph has cycles, which means it's not a DAG
203  if len(graphCopy) > 0:
204  raise trfExceptions.TransformGraphException(trfExit.nameToCode('TRF_GRAPH_ERROR'),
205  'Graph topological sort had no more start nodes, but nodes were left {0} - non-DAG graphs are not supported'.format(list(graphCopy)))
206 
207  msg.debug('Topologically sorted node order: {0}'.format(self._toposort))
208 
209  # Now toposort the input data for nodes
210  self._toposortData = []
211  for nodeName in self._toposort:
212  # First add input data, then output data
213  for dataType in self._nodeDict[nodeName].inputDataTypes:
214  if dataType not in self._toposortData:
215  self._toposortData.append(dataType)
216  for dataType in self._nodeDict[nodeName].outputDataTypes:
217  if dataType not in self._toposortData:
218  self._toposortData.append(dataType)
219 
220  msg.debug('Topologically sorted data order: {0}'.format(self._toposortData))
221 
222 
223 
227  def findExecutionPath(self):
228  # Switch off all nodes, except if we have a single node which is not data driven...
229  self._execution = {}
230  for nodeName, node in self._nodeDict.items():
231  if len(self._nodeDict) == 1 and node.inputDataTypes == set() and node.inputDataTypes == set():
232  self._execution[nodeName] = {'enabled' : True, 'input' : set(), 'output' : set()}
233  else:
234  self._execution[nodeName] = {'enabled' : False, 'input' : set(), 'output' : set()}
235 
236  dataToProduce = copy.deepcopy(self._outputData)
237  dataAvailable = copy.deepcopy(self._inputData)
238 
239  # Consider the next data type in topo order
240  while len(dataToProduce) > 0:
241  nextDataType = None
242  for dataType in self._toposortData:
243  if dataType in dataToProduce:
244  nextDataType = dataType
245  dataToProduce.remove(nextDataType)
246  dataAvailable.update([nextDataType])
247  break
248 
249  if not nextDataType:
250  msg.error('Still have to produce data type(s) {0}, but did not find anything in the toposorted data list ({1}).'
251  ' Transform parameters/graph are broken so aborting.'.format(dataToProduce, self._toposortData))
252  raise trfExceptions.TransformGraphException(trfExit.nameToCode('TRF_GRAPH_ERROR'),
253  'Data type graph error')
254 
255  msg.debug('Next data type to try is {0}'.format(nextDataType))
256  bestPath = self._bestPath(nextDataType, dataAvailable)
257 
258  msg.debug('Found best path for {0}: {1}'.format(nextDataType, bestPath))
259 
260 
261  modPath = bestPath.path + [None]
262  for (nodeName, nextNodeName) in [ (n, modPath[modPath.index(n)+1]) for n in bestPath.path ]:
263  self._execution[nodeName]['enabled'] = True
264  # Add the necessary data types to the output of the first node and the input of the next
265  if nodeName in bestPath.newData:
266  self._execution[nodeName]['output'].update(bestPath.newData[nodeName])
267  for newData in bestPath.newData[nodeName]:
268  if newData not in dataAvailable:
269  dataToProduce.update([newData])
270  if nextNodeName:
271  self._execution[nextNodeName]['input'].update(bestPath.newData[nodeName])
272  if nextNodeName in bestPath.extraData:
273  self._execution[nextNodeName]['input'].update(bestPath.extraData[nodeName])
274  # Add any extra data we need (from multi-exit nodes) to the data to produce list
275  for extraNodeData in bestPath.extraData.values():
276  for extra in extraNodeData:
277  if extra not in dataAvailable:
278  dataToProduce.update([extra])
279 
280  # Now remove the fake data objects from activated nodes
281  for node, props in self._execution.items():
282  msg.debug('Removing fake data from node {0}'.format(node))
283  props['input'] -= set(['inNULL', 'outNULL'])
284  props['output'] -= set(['inNULL', 'outNULL'])
285 
286  msg.debug('Execution dictionary: {0}'.format(self._execution))
287 
288 
289 
299  def _bestPath(self, data, dataAvailable, startNodeName = '_start', endNodeName = None):
300 
301  if endNodeName is None:
302  endNodeName = '_end_{0}'.format(data)
303 
304  if endNodeName not in self._nodeDict:
305  raise trfExceptions.TransformGraphException(trfExit.nameToCode('TRF_GRAPH_ERROR'),
306  'Node {0} was not found - the transform data connection definition is broken'.format(endNodeName))
307 
308 
309  # Set of all considered paths
310  # Initialise this with our endNode name - algorithm works back to the start
311  pathSet = [graphPath(endNodeName, data),]
312 
313  msg.debug('Started path finding with seed path {0}'.format(pathSet[0]))
314 
315  # Halting condition - only one path and its first element is startNodeName
316  while len(pathSet) > 1 or pathSet[0].path[0] != startNodeName:
317  msg.debug('Starting best path iteration with {0} paths in {1}'.format(len(pathSet), pathSet))
318  # Copy the pathSet to do this, as we will update it
319  for path in pathSet[:]:
320  msg.debug('Continuing path finding with path {0}'.format(path))
321  currentNodeName = path.path[0]
322  if currentNodeName == startNodeName:
323  msg.debug('Path {0} has reached the start node - finished'.format(path))
324  continue
325  # If there are no paths out of this node then it's a dead end - kill it
326  if len(self._nodeDict[currentNodeName].connections['in']) == 0:
327  msg.debug('Path {0} is a dead end - removing'.format(path))
328  pathSet.remove(path)
329  continue
330  # If there is only one path out of this node, we extend it
331  if len(self._nodeDict[currentNodeName].connections['in']) == 1:
332  msg.debug('Single exit from path {0} - adding connection to {1}'.format(path, list(self._nodeDict[currentNodeName].connections['in'])[0]))
333  self._extendPath(path, currentNodeName, list(self._nodeDict[currentNodeName].connections['in'])[0])
334  continue
335  # Else we need to clone the path for each possible exit
336  msg.debug('Multiple exits from path {0} - will clone for each extra exit'.format([path]))
337  for nextNodeName in list(self._nodeDict[currentNodeName].connections['in'])[1:]:
338  newPath = copy.deepcopy(path)
339  msg.debug('Cloned exit from path {0} to {1}'.format(newPath, nextNodeName))
340  self._extendPath(newPath, currentNodeName, nextNodeName)
341  pathSet.append(newPath)
342  # Finally, use the original path to extend along the first node exit
343  msg.debug('Adding exit from original path {0} to {1}'.format(path, list(self._nodeDict[currentNodeName].connections['in'])[0]))
344  self._extendPath(path, currentNodeName, list(self._nodeDict[currentNodeName].connections['in'])[0])
345 
346  # Now compare paths which made it to the end - only keep the shortest
347  lowestCostPath = None
348  for path in pathSet[:]:
349  currentNodeName = path.path[0]
350  if currentNodeName == startNodeName:
351  if lowestCostPath is None:
352  lowestCostPath = path
353  continue
354  if path.cost >= lowestCostPath.cost:
355  msg.debug('Path {0} is no cheaper than best path {1} - removing'.format(path, lowestCostPath))
356  pathSet.remove(path)
357  else:
358  msg.debug('Path {0} is cheaper than previous best path {1} - removing previous'.format(path, lowestCostPath))
359  pathSet.remove(lowestCostPath)
360  lowestCostPath = path
361 
362  # Emergency break
363  if len(pathSet) == 0:
364  raise trfExceptions.TransformGraphException(trfExit.nameToCode('TRF_GRAPH_ERROR'),
365  'No path found between {0} and {1} for {2}'.format(startNodeName, endNodeName, data))
366  return pathSet[0]
367 
368 
369 
372  def _extendPath(self, path, currentNodeName, nextNodeName):
373  edgeData = self._nodeDict[currentNodeName].connections['in'][nextNodeName]
374  msg.debug('Connecting {0} to {1} with data {2}'.format(currentNodeName, nextNodeName, edgeData))
375 
376  extraData = set()
377  if self._execution[currentNodeName]['enabled'] is True:
378  extraCost = 0
379  else:
380  for edgeDataElement in edgeData:
381  # Simple case - one data connection only
382  if edgeDataElement in self._nodeDict[currentNodeName].inData:
383  extraCost = self._nodeDict[currentNodeName].weights[edgeDataElement]
384  else:
385  # Complex case - the start requirement for this node must be multi-data
386  # Only the first match in the dataIn lists is considered
387  # This will break if there are multiple overlapping dataIn requirements
388  for nodeStartData in self._nodeDict[currentNodeName].inData:
389  if isinstance(nodeStartData, (list, tuple)) and edgeDataElement in nodeStartData:
390  extraCost = self._nodeDict[currentNodeName].weights[nodeStartData]
391  msg.debug('Found multi-data exit from {0} to {1} - adding {2} to data requirements'.format(currentNodeName, nextNodeName, nodeStartData))
392  extraData.update(nodeStartData)
393  break
394  # Remove data which is on the edge itself
395  extraData.difference_update(edgeData)
396 
397  msg.debug('Updating path {0} with {1}, {2}, {3}, {4}'.format(path, nextNodeName, edgeData, extraData, extraCost))
398  path.addToPath(nextNodeName, edgeData, extraData, extraCost)
399 
400 
401 
402  def __str__(self):
403  nodeStrList = []
404  if len(self._toposort) > 0:
405  nodeNames = self._toposort
406  else:
407  nodeNames = list(self._nodeDict)
408  nodeNames.sort()
409  for nodeName in nodeNames:
410  if not nodeName.startswith('_'):
411  nodeStrList.append(str(self._nodeDict[nodeName]))
412  return os.linesep.join(nodeStrList)
413 
414 
415 
416  def __repr__(self):
417  nodeStrList = []
418  if len(self._toposort) > 0:
419  nodeNames = self._toposort
420  else:
421  nodeNames = list(self._nodeDict)
422  nodeNames.sort()
423  for nodeName in nodeNames:
424  nodeStrList.append(repr(self._nodeDict[nodeName]))
425  return os.linesep.join(nodeStrList)
426 
427 
428 
430 
431 
439  def __init__(self, name, inData, outData, weight = None):
440  self._name = name
441  self._inData = set(inData)
442  self._outData = set(outData)
443 
444 
446  self._inWeights = {}
447  if weight is None:
448  for data in self._inData:
449  self._inWeights[data] = 1
450  elif isinstance(weight, int):
451  for data in self._inData:
452  self._inWeights[data] = weight
453  else:
454  # Must be a dictionary with its keys equal to the _inData elements
455  self._inWeights = weight
456 
459 
460  # Connections dictionary will hold incoming and outgoing edges - the incoming connections
461  # are very useful for topological ordering. Nested dictionary with 'in', 'out' keys, where
462  # the values are dictionaries with nodeName keys and set(dataTypes) as values.
463  # e.g., {'out': {'_end_HIST': set(['HIST'])}, 'in': {'ESDtoAOD': set(['HIST_AOD']), 'RAWtoESD': set(['HIST_ESD'])}}
464  self._connections = {'in': {}, 'out': {}}
465 
466  @property
467  def name(self):
468  return self._name
469 
470  @property
471  def inData(self):
472  return self._inData
473 
474  @property
475  def outData(self):
476  return self._outData
477 
478  @property
479  def inputDataTypes(self):
480  return self._flattenSet(self.inData)
481 
482  @property
483  def outputDataTypes(self):
484  return self._flattenSet(self._outData)
485 
486  @property
487  def connections(self):
488  return self._connections
489 
490  @property
491  def weights(self):
492  return self._inWeights
493 
494 
498  def addConnection(self, toExe, data, direction = 'out'):
499  self._connections[direction][toExe] = set(data)
500 
501 
504  def delConnection(self, toExe, direction = 'out'):
505  del self._connections[direction][toExe]
506 
507 
508  def resetConnections(self):
509  self._connections = {'in': {}, 'out': {}}
510 
511 
513  def _flattenSet(self, startSet):
514  flatData = set()
515  for data in startSet:
516  if isinstance(data, (list, tuple)):
517  flatData.update(data)
518  else:
519  flatData.update([data])
520  return flatData
521 
522  def __str__(self):
523  return '{0} (dataIn {1} -> dataOut {2})'.format(self._name, self._inData, self._outData)
524 
525  def __repr__(self):
526  return '{0} (dataIn {1}, weights {2}; dataOut {3}; connect {4})'.format(self._name, self._inData, self._inWeights, self._outData, self._connections)
527 
528 
529 
531 
536  def __init__(self, executor = None, weight = None):
537  super(executorNode, self).__init__(executor.name, executor.inData, executor.outData, weight)
538 
539 
541 
542 
546  def __init__(self, endNodeName, data, cost = 0):
547  self._path = [endNodeName]
548  self._data = data
549  self._cost = cost
550 
551 
555  self._newData = dict()
556  self._extraData = dict()
557 
558  @property
559  def path(self):
560  return self._path
561 
562  @property
563  def cost(self):
564  return self._cost
565 
566  @property
567  def newData(self):
568  return self._newData
569 
570  @property
571  def extraData(self):
572  return self._extraData
573 
574  def addToPath(self, newNodeName, newData = set(), extraData = set(), extraCost = 0):
575  self._path.insert(0, newNodeName)
576  self._newData[newNodeName] = newData
577  self._cost += extraCost
578  self._extraData[newNodeName] = extraData
579 
580  def addCost(self, cost):
581  self._cost += cost
582 
583  def __str__(self):
584  return '{0}: path {1}; cost {2}, newData {3}, extraData {4}'.format(self._data, self._path, self._cost, self._newData, self._extraData)
585 
python.trfGraph.graphNode._inData
_inData
Definition: trfGraph.py:441
python.trfGraph.graphNode._inWeights
_inWeights
Definition: trfGraph.py:446
python.trfGraph.graphNode._outputDataTypes
_outputDataTypes
Definition: trfGraph.py:458
python.trfGraph.executorGraph.__repr__
def __repr__(self)
Nodes in topologically sorted order, if available, else sorted name order.
Definition: trfGraph.py:416
python.trfGraph.graphNode.inData
def inData(self)
Definition: trfGraph.py:471
python.trfGraph.graphPath.addCost
def addCost(self, cost)
Definition: trfGraph.py:580
python.trfGraph.executorGraph._toposortData
_toposortData
Definition: trfGraph.py:90
python.trfGraph.executorGraph._execution
_execution
Definition: trfGraph.py:229
python.trfExceptions.TransformSetupException
Setup exceptions.
Definition: trfExceptions.py:42
vtune_athena.format
format
Definition: vtune_athena.py:14
python.trfGraph.executorGraph.outputData
def outputData(self)
Definition: trfGraph.py:104
python.trfGraph.graphNode.connections
def connections(self)
Definition: trfGraph.py:487
python.trfGraph.executorGraph.__str__
def __str__(self)
Nodes in topologically sorted order, if available, else sorted name order.
Definition: trfGraph.py:402
python.trfGraph.graphPath._cost
_cost
Definition: trfGraph.py:549
python.trfGraph.executorNode.__init__
def __init__(self, executor=None, weight=None)
executorNode constructor
Definition: trfGraph.py:536
python.trfGraph.executorGraph
Simple graph object describing the links between executors.
Definition: trfGraph.py:42
python.trfGraph.graphNode.__init__
def __init__(self, name, inData, outData, weight=None)
Graph node constructor.
Definition: trfGraph.py:439
python.trfGraph.graphPath._data
_data
Definition: trfGraph.py:548
PyJobTransforms.trfExitCodes
Module for transform exit codes.
dumpHVPathFromNtuple.append
bool append
Definition: dumpHVPathFromNtuple.py:91
python.trfGraph.graphNode._inputDataTypes
_inputDataTypes
Definition: trfGraph.py:457
python.trfGraph.graphNode.weights
def weights(self)
Definition: trfGraph.py:491
python.trfGraph.graphPath._path
_path
Definition: trfGraph.py:547
python.Bindings.values
values
Definition: Control/AthenaPython/python/Bindings.py:805
python.trfGraph.graphNode.resetConnections
def resetConnections(self)
Delete all connections.
Definition: trfGraph.py:508
python.trfGraph.graphPath.newData
def newData(self)
Definition: trfGraph.py:567
python.trfGraph.graphNode._flattenSet
def _flattenSet(self, startSet)
Take a list and return all simple members plus the members of any list/tuples in the set (i....
Definition: trfGraph.py:513
python.trfGraph.graphNode.name
def name(self)
Definition: trfGraph.py:467
python.trfGraph.executorGraph.doToposort
def doToposort(self)
Find a topologically sorted list of the graph nodes.
Definition: trfGraph.py:171
python.trfGraph.executorGraph._resetConnections
def _resetConnections(self)
Definition: trfGraph.py:148
python.trfGraph.graphNode._name
_name
Definition: trfGraph.py:440
PyAthena::repr
std::string repr(PyObject *o)
returns the string representation of a python object equivalent of calling repr(o) in python
Definition: PyAthenaUtils.cxx:106
histSizes.list
def list(name, path='/')
Definition: histSizes.py:38
python.trfGraph.executorGraph.findExecutionPath
def findExecutionPath(self)
Find the graph's execution nodes, from input to output data types with each activated step and the in...
Definition: trfGraph.py:227
python.trfGraph.executorNode
Initialise a graph node from an executor.
Definition: trfGraph.py:530
python.trfGraph.graphPath.path
def path(self)
Definition: trfGraph.py:559
python.trfGraph.graphNode.inputDataTypes
def inputDataTypes(self)
Definition: trfGraph.py:479
python.trfGraph.executorGraph.addNode
def addNode(self, executor)
Add an executor node to the graph.
Definition: trfGraph.py:138
python.trfGraph.executorGraph._toposort
_toposort
Definition: trfGraph.py:89
python.trfGraph.executorGraph.data
def data(self)
Return a list of all data used in this execution.
Definition: trfGraph.py:126
CxxUtils::set
constexpr std::enable_if_t< is_bitmask_v< E >, E & > set(E &lhs, E rhs)
Convenience function to set bits in a class enum bitmask.
Definition: bitmask.h:232
python.trfGraph.graphPath.__init__
def __init__(self, endNodeName, data, cost=0)
graphPath constructor
Definition: trfGraph.py:546
python.trfGraph.graphNode.delConnection
def delConnection(self, toExe, direction='out')
Delete a connection from this node.
Definition: trfGraph.py:504
python.trfGraph.graphPath
Path object holding a list of nodes and data types which trace a single path through the graph.
Definition: trfGraph.py:540
TCS::join
std::string join(const std::vector< std::string > &v, const char c=',')
Definition: Trigger/TrigT1/L1Topo/L1TopoCommon/Root/StringUtils.cxx:10
python.trfGraph.graphPath.addToPath
def addToPath(self, newNodeName, newData=set(), extraData=set(), extraCost=0)
Definition: trfGraph.py:574
python.trfGraph.executorGraph._bestPath
def _bestPath(self, data, dataAvailable, startNodeName='_start', endNodeName=None)
Find the best path from a end to a start node, producing a certain type of data given the set of curr...
Definition: trfGraph.py:299
python.trfGraph.graphNode.outData
def outData(self)
Definition: trfGraph.py:475
python.trfGraph.executorGraph._outputData
_outputData
Definition: trfGraph.py:67
python.trfGraph.graphPath._extraData
_extraData
Definition: trfGraph.py:556
TrigJetMonitorAlgorithm.items
items
Definition: TrigJetMonitorAlgorithm.py:79
python.trfGraph.graphNode.addConnection
def addConnection(self, toExe, data, direction='out')
Add a new edge connection for this node.
Definition: trfGraph.py:498
python.trfGraph.graphNode.__repr__
def __repr__(self)
Definition: trfGraph.py:525
python.trfGraph.graphPath._newData
_newData
Definition: trfGraph.py:555
python.trfGraph.executorGraph.findConnections
def findConnections(self)
Look at executor nodes and work out how they are connected.
Definition: trfGraph.py:154
python.trfGraph.graphNode._connections
_connections
Definition: trfGraph.py:464
python.trfGraph.executorGraph._extendPath
def _extendPath(self, path, currentNodeName, nextNodeName)
Connect a path to a particular node.
Definition: trfGraph.py:372
python.trfGraph.graphNode
Vanilla graph node.
Definition: trfGraph.py:429
python.trfGraph.executorGraph.deleteNote
def deleteNote(self, executor)
Remove an executor node from the graph.
Definition: trfGraph.py:143
python.trfGraph.graphNode._outData
_outData
Definition: trfGraph.py:442
python.trfGraph.graphPath.extraData
def extraData(self)
Definition: trfGraph.py:571
python.trfGraph.graphNode.outputDataTypes
def outputDataTypes(self)
Definition: trfGraph.py:483
python.trfGraph.executorGraph.inputData
def inputData(self)
Definition: trfGraph.py:96
pickleTool.object
object
Definition: pickleTool.py:30
str
Definition: BTagTrackIpAccessor.cxx:11
python.trfGraph.graphPath.cost
def cost(self)
Definition: trfGraph.py:563
python.trfGraph.executorGraph._nodeDict
_nodeDict
Definition: trfGraph.py:51
python.trfGraph.executorGraph._inputData
_inputData
Definition: trfGraph.py:66
WriteBchToCool.update
update
Definition: WriteBchToCool.py:67
python.trfGraph.executorGraph.__init__
def __init__(self, executorSet, inputData=set([]), outputData=set([]))
Initialise executor graph.
Definition: trfGraph.py:48
python.trfGraph.graphNode.__str__
def __str__(self)
Definition: trfGraph.py:522
python.trfGraph.executorGraph.execution
def execution(self)
Return a list of execution nodes with their data inputs/outputs.
Definition: trfGraph.py:113
python.trfExceptions.TransformGraphException
Exception for problems finding the path through the graph.
Definition: trfExceptions.py:70
python.trfGraph.graphPath.__str__
def __str__(self)
Definition: trfGraph.py:583