ATLAS Offline Software
Public Member Functions | Static Public Attributes | Static Private Member Functions | Private Attributes | List of all members
python.PythonConfig.PythonConfig Class Reference
Inheritance diagram for python.PythonConfig.PythonConfig:
Collaboration diagram for python.PythonConfig.PythonConfig:

Public Member Functions

def __init__ (self, typeAndName, **kwargs)
 
def getName (self)
 
def getType (self)
 
def addSelfToJob (self, job)
 
def __getattr__ (self, name)
 
def __setattr__ (self, key, value)
 
def __eq__ (self, other)
 
def __ne__ (self, other)
 
def __str__ (self)
 
def addPrivateTool (self, name, type)
 
def addPrivateToolInArray (self, name, type)
 

Static Public Attributes

int printHeaderWidth = 80
 
int printHeaderPre = 3
 

Static Private Member Functions

def _printHeader (title)
 
def _printFooter (title)
 

Private Attributes

 _props
 

Detailed Description

Standalone Analysis Component Configuration

This class is used to describe the configuration of an analysis component
(a C++ class inheriting from asg::AsgComponentConfig) in Python. It behaves
similar to an Athena configurable, but is implemented in a much simpler
way.

An example of using it in configuring an EventLoop job could look like:

   job = ROOT.EL.Job()
   ...
   from AnaAlgorithm.PythonConfig import PythonConfig
   alg = PythonConfig( "EL::UnitTestAlg2/TestAlg",
                        property = 1.23 )
   alg.setComponentType( "AnaAlgorithm" )
   alg.string_property = "Foo"
   job.algsAdd( alg )

Note that the python code doesn't know what properties can actually be set
on any given C++ algorithm. Any mistake made in the Python configuration
(apart from syntax errors) is only discovered while initialising the
analysis job.

Definition at line 8 of file PythonConfig.py.

Constructor & Destructor Documentation

◆ __init__()

def python.PythonConfig.PythonConfig.__init__ (   self,
  typeAndName,
**  kwargs 
)
Constructor for an algorithm configuration object

Keyword arguments:
  typeAndName -- The type/instance name of the algorithm

Note that you can pass (initial) properties to the constructor like:

   alg = PythonConfig( "EL::UnitTestAlg2/TestAlg",
               property = 1.23 )

Definition at line 37 of file PythonConfig.py.

37  def __init__( self, typeAndName, **kwargs ):
38  """Constructor for an algorithm configuration object
39 
40  Keyword arguments:
41  typeAndName -- The type/instance name of the algorithm
42 
43  Note that you can pass (initial) properties to the constructor like:
44 
45  alg = PythonConfig( "EL::UnitTestAlg2/TestAlg",
46  property = 1.23 )
47  """
48 
49  # Call the base class's constructor. Use the default constructor instead
50  # of the one receiving the type and name, to avoid ROOT-10872.
51  super( PythonConfig, self ).__init__()
52  self.setTypeAndName( typeAndName )
53 
54  # Initialise the properties of the algorihm:
55  self._props = {}
56 
57  # Set the properties on the object:
58  for key, value in kwargs.items():
59  self.setPropertyFromString( key, stringPropValue( value ) )
60  self._props[ key ] = copy.deepcopy( value )
61  pass
62 
63  pass
64 

Member Function Documentation

◆ __eq__()

def python.PythonConfig.PythonConfig.__eq__ (   self,
  other 
)
Check for equality with another object

The implementation of this is very simple. We only check that the type
and the name of the algorithms would match.

Definition at line 137 of file PythonConfig.py.

137  def __eq__( self, other ):
138  """Check for equality with another object
139 
140  The implementation of this is very simple. We only check that the type
141  and the name of the algorithms would match.
142  """
143 
144  # First check that the other object is also an PythonConfig one:
145  if not isinstance( other, PythonConfig ):
146  return False
147 
148  # Now check whether the type and the name of the algorithms agree:
149  return ( ( self.type() == other.type() ) and
150  ( self.name() == other.name() ) )
151 

◆ __getattr__()

def python.PythonConfig.PythonConfig.__getattr__ (   self,
  name 
)
Get a previously set property value from the configuration

This function allows us to retrieve the value of a property that was
already set for the algorithm, to possibly use it in some configuration
decisions in the Python code itself.

Keyword arguments:
  name -- The name of the property

Definition at line 92 of file PythonConfig.py.

92  def __getattr__( self, name ):
93  """Get a previously set property value from the configuration
94 
95  This function allows us to retrieve the value of a property that was
96  already set for the algorithm, to possibly use it in some configuration
97  decisions in the Python code itself.
98 
99  Keyword arguments:
100  name -- The name of the property
101  """
102 
103  # Fail if the property was not (yet) set:
104  if not name in self._props:
105  raise AttributeError( 'Property \'%s\' was not set on \'%s/%s\'' %
106  ( name, self.type(), self.name() ) )
107 
108  # Return the property value:
109  return self._props[ name ]
110 

◆ __ne__()

def python.PythonConfig.PythonConfig.__ne__ (   self,
  other 
)
Check for an inequality with another object

This is just defined to make the '!=' operator of Python behave
consistently with the '==' operator for such objects.

Definition at line 152 of file PythonConfig.py.

152  def __ne__( self, other ):
153  """Check for an inequality with another object
154 
155  This is just defined to make the '!=' operator of Python behave
156  consistently with the '==' operator for such objects.
157  """
158  return not self.__eq__( other )
159 

◆ __setattr__()

def python.PythonConfig.PythonConfig.__setattr__ (   self,
  key,
  value 
)
Set an algorithm property on an existing configuration object

This function allows us to set/override properties on an algorithm
configuration object. Allowing for the following syntax:

   alg = ...
   alg.IntProperty = 66
   alg.FloatProperty = 3.141592
   alg.StringProperty = "Foo"

Keyword arguments:
  key   -- The key/name of the property
  value -- The value to set for the property

Definition at line 111 of file PythonConfig.py.

111  def __setattr__( self, key, value ):
112  """Set an algorithm property on an existing configuration object
113 
114  This function allows us to set/override properties on an algorithm
115  configuration object. Allowing for the following syntax:
116 
117  alg = ...
118  alg.IntProperty = 66
119  alg.FloatProperty = 3.141592
120  alg.StringProperty = "Foo"
121 
122  Keyword arguments:
123  key -- The key/name of the property
124  value -- The value to set for the property
125  """
126 
127  # Private variables should be set directly:
128  if key[ 0 ] == '_':
129  return super( PythonConfig, self ).__setattr__( key, value )
130 
131  # Set the property, and remember its value:
132  super( PythonConfig,
133  self ).setPropertyFromString( key, stringPropValue( value ) )
134  self._props[ key ] = copy.deepcopy( value )
135  pass
136 

◆ __str__()

def python.PythonConfig.PythonConfig.__str__ (   self)
Print the algorithm configuration in a user friendly way

This is just to help with debugging configurations, allowing
the user to get a nice printout of their job configuration.

Definition at line 160 of file PythonConfig.py.

160  def __str__( self ):
161  """Print the algorithm configuration in a user friendly way
162 
163  This is just to help with debugging configurations, allowing
164  the user to get a nice printout of their job configuration.
165  """
166 
167  name = 'PythonConfig %s/%s/%s' % ( self.componentType(),self.type(), self.name() )
168  result = PythonConfig._printHeader( name )
169  result += '\n'
170  for key, value in sorted( self._props.items() ):
171  if isinstance( value, str ):
172  printedValue = "'%s'" % value
173  else:
174  printedValue = value
175  pass
176  result += "|- %s: %s\n" % ( key, indentBy( printedValue, "| " ) )
177  pass
178  result += PythonConfig._printFooter( name )
179  return result
180 

◆ _printFooter()

def python.PythonConfig.PythonConfig._printFooter (   title)
staticprivate
Produce a nice footer when printing the configuration

This function is used for printing the footer of both algorithms
and tools.

Keyword arguments:
  indentString -- String used as indentation
  title        -- The title of the algorithm/tool

Definition at line 283 of file PythonConfig.py.

283  def _printFooter( title ):
284  """Produce a nice footer when printing the configuration
285 
286  This function is used for printing the footer of both algorithms
287  and tools.
288 
289  Keyword arguments:
290  indentString -- String used as indentation
291  title -- The title of the algorithm/tool
292  """
293 
294  preLength = PythonConfig.printHeaderPre
295  postLength = PythonConfig.printHeaderWidth - 12 - preLength - \
296  len( title )
297  return '\\%s (End of %s) %s' % ( preLength * '-', title,
298  postLength * '-' )
299 

◆ _printHeader()

def python.PythonConfig.PythonConfig._printHeader (   title)
staticprivate
Produce a nice header when printing the configuration

This function is used for printing the header of both algorithms
and tools.

Keyword arguments:
  indentString -- String used as indentation
  title        -- The title of the algorithm/tool

Definition at line 266 of file PythonConfig.py.

266  def _printHeader( title ):
267  """Produce a nice header when printing the configuration
268 
269  This function is used for printing the header of both algorithms
270  and tools.
271 
272  Keyword arguments:
273  indentString -- String used as indentation
274  title -- The title of the algorithm/tool
275  """
276 
277  preLength = PythonConfig.printHeaderPre
278  postLength = PythonConfig.printHeaderWidth - 3 - preLength - \
279  len( title )
280  return '/%s %s %s' % ( preLength * '*', title, postLength * '*' )
281 

◆ addPrivateTool()

def python.PythonConfig.PythonConfig.addPrivateTool (   self,
  name,
  type 
)
Create a private tool for the algorithm

This function is used in 'standalone' mode to declare a private tool
for the algorithm, or a private tool for an already declared private
tool.

Can be used like:
  config.addPrivateTool( 'tool1', 'ToolType1' )
  config.addPrivateTool( 'tool1.tool2', 'ToolType2' )

Keyword arguments:
  name -- The full name of the private tool
  type -- The C++ type of the private tool

Definition at line 181 of file PythonConfig.py.

181  def addPrivateTool( self, name, type ):
182  """Create a private tool for the algorithm
183 
184  This function is used in 'standalone' mode to declare a private tool
185  for the algorithm, or a private tool for an already declared private
186  tool.
187 
188  Can be used like:
189  config.addPrivateTool( 'tool1', 'ToolType1' )
190  config.addPrivateTool( 'tool1.tool2', 'ToolType2' )
191 
192  Keyword arguments:
193  name -- The full name of the private tool
194  type -- The C++ type of the private tool
195  """
196 
197  # And now set up the Python object that will take care of setting
198  # properties on this tool.
199 
200  # Tokenize the tool's name. In case it is a subtool of a tool, or
201  # something possibly even deeper.
202  toolNames = name.split( '.' )
203 
204  # Look up the component that we need to set up the private tool on.
205  component = self
206  for tname in toolNames[ 0 : -1 ]:
207  component = getattr( component, tname )
208  pass
209 
210  # Check that the component doesn't have such a (tool) property yet.
211  if hasattr( component, toolNames[ -1 ] ):
212  raise RuntimeError( "Tool with name '%s' already exists" % name )
213  pass
214 
215  # Now set up a smart object as a property on that component.
216  component._props[ toolNames[ -1 ] ] = PrivateToolConfig( self, name,
217  type )
218 
219  # Finally, tell the C++ code what to do.
220  self.createPrivateTool( name, type ).ignore()
221 
222  pass
223 

◆ addPrivateToolInArray()

def python.PythonConfig.PythonConfig.addPrivateToolInArray (   self,
  name,
  type 
)
Create a private tool in an array for the algorithm

This function is used in 'standalone' mode to declare a
private tool in a tool array for the algorithm, or a private
tool in a tool array for an already declared private tool.

Can be used like:
  tool = config.addPrivateToolInArray( 'tool1', 'ToolType1' )
  tool = config.addPrivateToolInArray( 'tool1.tool2', 'ToolType2' )

Keyword arguments:
  name -- The full name of the private tool
  type -- The C++ type of the private tool

Definition at line 224 of file PythonConfig.py.

224  def addPrivateToolInArray( self, name, type ):
225  """Create a private tool in an array for the algorithm
226 
227  This function is used in 'standalone' mode to declare a
228  private tool in a tool array for the algorithm, or a private
229  tool in a tool array for an already declared private tool.
230 
231  Can be used like:
232  tool = config.addPrivateToolInArray( 'tool1', 'ToolType1' )
233  tool = config.addPrivateToolInArray( 'tool1.tool2', 'ToolType2' )
234 
235  Keyword arguments:
236  name -- The full name of the private tool
237  type -- The C++ type of the private tool
238  """
239 
240  # And now set up the Python object that will take care of setting
241  # properties on this tool.
242 
243  # Tokenize the tool's name. In case it is a subtool of a tool, or
244  # something possibly even deeper.
245  toolNames = name.split( '.' )
246 
247  # Look up the component that we need to set up the private tool on.
248  component = self
249  for tname in toolNames[ 0 : -1 ]:
250  component = getattr( component, tname )
251  pass
252 
253  # Finally, tell the C++ code what to do.
254  actualName = self.createPrivateToolInArray( name, type )
255 
256  # Tokenize the actual tool's name. In case it is a subtool of
257  # a tool, or something possibly even deeper.
258  actualToolNames = actualName.split( '.' )
259 
260  # Now set up a smart object as a property on that component.
261  config = PrivateToolConfig( self, actualName, type )
262  component._props[ actualToolNames[ -1 ] ] = config
263  return config
264 

◆ addSelfToJob()

def python.PythonConfig.PythonConfig.addSelfToJob (   self,
  job 
)
add a copy of this config to the EventLoop job object

Keyword arguments:
  job      -- The job object to add ourself to

Definition at line 83 of file PythonConfig.py.

83  def addSelfToJob( self, job ):
84  """add a copy of this config to the EventLoop job object
85 
86  Keyword arguments:
87  job -- The job object to add ourself to
88  """
89  job.algsAdd( self )
90  pass
91 

◆ getName()

def python.PythonConfig.PythonConfig.getName (   self)
Get the instance name of the algorithm

This is for compatibility with the getName() function of Athena
configurables.

Definition at line 65 of file PythonConfig.py.

65  def getName( self ):
66  """Get the instance name of the algorithm
67 
68  This is for compatibility with the getName() function of Athena
69  configurables.
70  """
71 
72  return self.name()
73 

◆ getType()

def python.PythonConfig.PythonConfig.getType (   self)
Get the type name of the algorithm

This is for compatibility with the getType() function of Athena
configurables.

Definition at line 74 of file PythonConfig.py.

74  def getType( self ):
75  """Get the type name of the algorithm
76 
77  This is for compatibility with the getType() function of Athena
78  configurables.
79  """
80 
81  return self.type()
82 

Member Data Documentation

◆ _props

python.PythonConfig.PythonConfig._props
private

Definition at line 55 of file PythonConfig.py.

◆ printHeaderPre

int python.PythonConfig.PythonConfig.printHeaderPre = 3
static

Definition at line 35 of file PythonConfig.py.

◆ printHeaderWidth

int python.PythonConfig.PythonConfig.printHeaderWidth = 80
static

Definition at line 34 of file PythonConfig.py.


The documentation for this class was generated from the following file:
python.PythonConfig.stringPropValue
def stringPropValue(value)
Definition: PythonConfig.py:396
python.DualUseConfig.addPrivateTool
def addPrivateTool(alg, toolName, typeName)
Definition: DualUseConfig.py:180
dumpTruth.getName
getName
Definition: dumpTruth.py:34
python.DualUseConfig.addPrivateToolInArray
def addPrivateToolInArray(alg, toolName, typeName)
Definition: DualUseConfig.py:229
DiTauMassTools::ignore
void ignore(T &&)
Definition: PhysicsAnalysis/TauID/DiTauMassTools/DiTauMassTools/HelperFunctions.h:58
python.PythonConfig.indentBy
def indentBy(propValue, indent)
Definition: PythonConfig.py:406
DerivationFramework::TriggerMatchingUtils::sorted
std::vector< typename T::value_type > sorted(T begin, T end)
Helper function to create a sorted vector from an unsorted one.
TrigJetMonitorAlgorithm.items
items
Definition: TrigJetMonitorAlgorithm.py:79
python.processes.powheg.ZZ.ZZ.__init__
def __init__(self, base_directory, **kwargs)
Constructor: all process options are set here.
Definition: ZZ.py:18
python.PyAthenaComps.__setattr__
__setattr__
Definition: PyAthenaComps.py:39
Ringer::getType
T getType(const char *cStr)
Return Ringer enumeration of type T identifying string type: