base class, with just the eta-phi limits and the overlap functionality
More...
#include <RegSelEtaPhiModule.h>
base class, with just the eta-phi limits and the overlap functionality
Definition at line 27 of file RegSelEtaPhiModule.h.
◆ EtaPhiBase()
EtaPhiBase::EtaPhiBase |
( |
double |
etamin, |
|
|
double |
etamax, |
|
|
double |
phimin, |
|
|
double |
phimax |
|
) |
| |
|
inline |
◆ ~EtaPhiBase()
virtual EtaPhiBase::~EtaPhiBase |
( |
| ) |
|
|
virtualdefault |
◆ etamax()
double EtaPhiBase::etamax |
( |
| ) |
const |
|
inline |
◆ etamin()
double EtaPhiBase::etamin |
( |
| ) |
const |
|
inline |
◆ overlap()
do two eta-phi regions overlap?
eta overlap is trivial
phi overlap is less trivial, because modules can span the 2pi boundary
don't need to worry about eta overlap since it is already true if we have got to this stage
Definition at line 63 of file RegSelEtaPhiModule.h.
70 if ( ! (
e.etamin()<
etamax() &&
e.etamax()>
etamin() ) )
return false;
79 double phimin2 =
e.phimin();
80 double phimax2 =
e.phimax();
83 if ( phimin1>phimax1 ) phimax1 +=
twopi;
84 if ( phimin2>phimax2 ) phimax2 +=
twopi;
86 if ( ( phimin1<phimax2 && phimax1>phimin2 ) ||
87 ( phimin1<(phimax2+
twopi) && phimax1>(phimin2+
twopi) ) ||
88 ( (phimin1+
twopi)<phimax2 && (phimax1+
twopi)>phimin2 ) ) inphi =
true;
◆ phimax()
double EtaPhiBase::phimax |
( |
| ) |
const |
|
inline |
◆ phimin()
double EtaPhiBase::phimin |
( |
| ) |
const |
|
inline |
◆ m_boundary
bool EtaPhiBase::m_boundary |
|
protected |
◆ m_eta
double EtaPhiBase::m_eta[2] |
|
protected |
◆ m_phi
double EtaPhiBase::m_phi[2] |
|
protected |
The documentation for this class was generated from the following file: