base class, with just the eta-phi limits and the overlap functionality
More...
#include <RegSelEtaPhiModule.h>
base class, with just the eta-phi limits and the overlap functionality
Definition at line 27 of file RegSelEtaPhiModule.h.
◆ EtaPhiBase()
| EtaPhiBase::EtaPhiBase |
( |
double | etamin, |
|
|
double | etamax, |
|
|
double | phimin, |
|
|
double | phimax ) |
|
inline |
Definition at line 31 of file RegSelEtaPhiModule.h.
33
35
38
41
44
47
49 }
double etamin() const
accessors
double m_eta[2]
eta and phi limits for the module
◆ ~EtaPhiBase()
| virtual EtaPhiBase::~EtaPhiBase |
( |
| ) |
|
|
virtualdefault |
◆ etamax()
| double EtaPhiBase::etamax |
( |
| ) |
const |
|
inline |
◆ etamin()
| double EtaPhiBase::etamin |
( |
| ) |
const |
|
inline |
◆ overlap()
| bool EtaPhiBase::overlap |
( |
const EtaPhiBase & | e | ) |
const |
|
inline |
do two eta-phi regions overlap?
eta overlap is trivial
phi overlap is less trivial, because modules can span the 2pi boundary
don't need to worry about eta overlap since it is already true if we have got to this stage
Definition at line 63 of file RegSelEtaPhiModule.h.
63 {
64
66
67
68
70 if ( ! (
e.etamin()<
etamax() &&
e.etamax()>
etamin() ) )
return false;
71
74 bool inphi = false;
75
78
79 double phimin2 =
e.phimin();
80 double phimax2 =
e.phimax();
81
82
83 if ( phimin1>phimax1 ) phimax1 +=
twopi;
84 if ( phimin2>phimax2 ) phimax2 +=
twopi;
85
86 if ( ( phimin1<phimax2 && phimax1>phimin2 ) ||
87 ( phimin1<(phimax2+
twopi) && phimax1>(phimin2+
twopi) ) ||
88 ( (phimin1+
twopi)<phimax2 && (phimax1+
twopi)>phimin2 ) ) inphi =
true;
89
90
91
94 return inphi;
95 }
◆ phimax()
| double EtaPhiBase::phimax |
( |
| ) |
const |
|
inline |
◆ phimin()
| double EtaPhiBase::phimin |
( |
| ) |
const |
|
inline |
◆ m_boundary
| bool EtaPhiBase::m_boundary |
|
protected |
◆ m_eta
| double EtaPhiBase::m_eta[2] |
|
protected |
◆ m_phi
| double EtaPhiBase::m_phi[2] |
|
protected |
The documentation for this class was generated from the following file: