ATLAS Offline Software
Namespaces | Functions | Variables
covarianceTool.py File Reference

Go to the source code of this file.

Namespaces

 covarianceTool
 

Functions

def covarianceTool.isFloat (x)
 
def covarianceTool.convertHistToScatter (ao)
 
def covarianceTool.renameAOs (fin_name, aoMap)
 
def covarianceTool.makeBeamer (plotDictionary, outdir)
 
def covarianceTool.makeSummaryTable (plotDictionary, outfile, hdataName=None)
 
def covarianceTool.matchAOs (aoList1, aoList2, strategy=0, recursive=True)
 
def covarianceTool.markupYODAwithCorrelationsFromYODAs (reference, correlationsDir)
 
def covarianceTool.markupYODAwithCorrelationsFromYAML (reference, correlationsDir)
 
def covarianceTool.markupYODAwithCorrelations (ref, corrDir, ignoreCorrelations)
 
def covarianceTool.returnFileContents (filename, inputType='data')
 
def covarianceTool.getCorrelationInfoFromWeb (name=None, dlformat="yoda")
 

Variables

 covarianceTool.parser = optparse.OptionParser(usage="%prog [options]")
 
 covarianceTool.help
 
 covarianceTool.dest
 
 covarianceTool.default
 
 covarianceTool.False
 
 covarianceTool.action
 
 covarianceTool.opts
 
 covarianceTool.args
 
dictionary covarianceTool.histograms
 
 covarianceTool.ntoys
 
 covarianceTool.verbosity
 
 covarianceTool.filter
 
 covarianceTool.ignore_corrs_data
 
 covarianceTool.ignore_corrs_mc
 
dictionary covarianceTool.mcNames = {}
 
dictionary covarianceTool.plotDictionary = {'error-analysis': {}, 'covariance-matrix': {}, 'correlation-matrix': {}, 'data-vs-mc': {}, 'chi2-contribs': {}, 'chi2-value': {}, 'covDetails': {}, 'summary-plot': {}, 'summary-table': {}}
 
 covarianceTool.data
 
string covarianceTool.outdir = "outputs/%s/data/plots" % (opts.data.replace(".yoda", ""))
 
 covarianceTool.plotparser = rivet.mkStdPlotParser([], [])
 
 covarianceTool.headers = plotparser.getHeaders(hdata.path())
 
 covarianceTool.XLabel
 
 covarianceTool.Title
 
 covarianceTool.xLabel
 
 covarianceTool.title
 
 covarianceTool.mcName = mc.split(":")[1]
 
 covarianceTool.mc = mc.split(":")[0]
 
def covarianceTool.mcnew = markupYODAwithCorrelations(mc, opts.corr_mc, opts.ignore_corrs_mc)
 
def covarianceTool.aoMap = matchAOs(histograms['data'], histograms['models'][mcnew])
 
def covarianceTool.newmc = renameAOs(mcnew, aoMap)
 
 covarianceTool.dataSuperAO = ct.makeSuperAO(histograms['data'])
 
 covarianceTool.mcSuperAO = ct.makeSuperAO(histograms['models'][mc])
 
dictionary covarianceTool.mcResults = {}
 
bool covarianceTool.passFilter = False
 
def covarianceTool.hmc = aoMap[hdata]
 
string covarianceTool.covDetailsData = "Size of uncertainties across range, and Data Correlation Matrix"
 
 covarianceTool.covData = ct.makeCovarianceMatrixFromToys(hdata, opts.ntoys, opts.ignore_corrs_data)
 
string covarianceTool.covDetailsMC = "MC Covariance Matrix"
 
 covarianceTool.covMC = ct.makeCovarianceMatrixFromToys(hmc, opts.ntoys, opts.ignore_corrs_mc)
 
 covarianceTool.covTotal = covData + covMC
 
 covarianceTool.chi2
 
 covarianceTool.ndf
 
 covarianceTool.prob
 
 covarianceTool.chi2contribs
 
 covarianceTool.chi2ContribsByRow = ct.chi2ContribsByRow(chi2contribs)
 
 covarianceTool.chi2ContribsByRowYAML = yaml.dump(chi2ContribsByRow, default_flow_style=True, default_style='', width=1e6)
 
dictionary covarianceTool.res = {'%s' % opts.data: '[Data]', '%s' % model: '[%s (# chi^2=%.2f/%d)]' % (mcName, chi2, ndf)}
 
string covarianceTool.outdirplots = outdir + "/data-vs-%s/plots/" % mcName
 
 covarianceTool.plots = st.makeSystematicsPlotsWithROOT(res, outdirplots, nominalName='Data', ratioZoom=None, regexFilter=".*%s.*" % hmc.name(), regexVeto=None)
 
 covarianceTool.pathName = hdata.path().replace("/REF", "")
 
dictionary covarianceTool.mcR = mcResults[model]
 
def covarianceTool.beamerPath = makeBeamer(plotDictionary, outdir)