|
| covarianceTool.parser = optparse.OptionParser(usage="%prog [options]") |
|
| covarianceTool.help |
|
| covarianceTool.dest |
|
| covarianceTool.default |
|
| covarianceTool.False |
|
| covarianceTool.action |
|
| covarianceTool.opts |
|
| covarianceTool.args |
|
dictionary | covarianceTool.histograms |
|
| covarianceTool.ntoys |
|
| covarianceTool.verbosity |
|
| covarianceTool.filter |
|
| covarianceTool.ignore_corrs_data |
|
| covarianceTool.ignore_corrs_mc |
|
dictionary | covarianceTool.mcNames = {} |
|
dictionary | covarianceTool.plotDictionary = {'error-analysis': {}, 'covariance-matrix': {}, 'correlation-matrix': {}, 'data-vs-mc': {}, 'chi2-contribs': {}, 'chi2-value': {}, 'covDetails': {}, 'summary-plot': {}, 'summary-table': {}} |
|
| covarianceTool.data |
|
string | covarianceTool.outdir = "outputs/%s/data/plots" % (opts.data.replace(".yoda", "")) |
|
| covarianceTool.plotparser = rivet.mkStdPlotParser([], []) |
|
| covarianceTool.headers = plotparser.getHeaders(hdata.path()) |
|
| covarianceTool.XLabel |
|
| covarianceTool.Title |
|
| covarianceTool.xLabel |
|
| covarianceTool.title |
|
| covarianceTool.mcName = mc.split(":")[1] |
|
| covarianceTool.mc = mc.split(":")[0] |
|
def | covarianceTool.mcnew = markupYODAwithCorrelations(mc, opts.corr_mc, opts.ignore_corrs_mc) |
|
def | covarianceTool.aoMap = matchAOs(histograms['data'], histograms['models'][mcnew]) |
|
def | covarianceTool.newmc = renameAOs(mcnew, aoMap) |
|
| covarianceTool.dataSuperAO = ct.makeSuperAO(histograms['data']) |
|
| covarianceTool.mcSuperAO = ct.makeSuperAO(histograms['models'][mc]) |
|
dictionary | covarianceTool.mcResults = {} |
|
bool | covarianceTool.passFilter = False |
|
def | covarianceTool.hmc = aoMap[hdata] |
|
string | covarianceTool.covDetailsData = "Size of uncertainties across range, and Data Correlation Matrix" |
|
| covarianceTool.covData = ct.makeCovarianceMatrixFromToys(hdata, opts.ntoys, opts.ignore_corrs_data) |
|
string | covarianceTool.covDetailsMC = "MC Covariance Matrix" |
|
| covarianceTool.covMC = ct.makeCovarianceMatrixFromToys(hmc, opts.ntoys, opts.ignore_corrs_mc) |
|
| covarianceTool.covTotal = covData + covMC |
|
| covarianceTool.chi2 |
|
| covarianceTool.ndf |
|
| covarianceTool.prob |
|
| covarianceTool.chi2contribs |
|
| covarianceTool.chi2ContribsByRow = ct.chi2ContribsByRow(chi2contribs) |
|
| covarianceTool.chi2ContribsByRowYAML = yaml.dump(chi2ContribsByRow, default_flow_style=True, default_style='', width=1e6) |
|
dictionary | covarianceTool.res = {'%s' % opts.data: '[Data]', '%s' % model: '[%s (# chi^2=%.2f/%d)]' % (mcName, chi2, ndf)} |
|
string | covarianceTool.outdirplots = outdir + "/data-vs-%s/plots/" % mcName |
|
| covarianceTool.plots = st.makeSystematicsPlotsWithROOT(res, outdirplots, nominalName='Data', ratioZoom=None, regexFilter=".*%s.*" % hmc.name(), regexVeto=None) |
|
| covarianceTool.pathName = hdata.path().replace("/REF", "") |
|
dictionary | covarianceTool.mcR = mcResults[model] |
|
def | covarianceTool.beamerPath = makeBeamer(plotDictionary, outdir) |
|