ATLAS Offline Software
Loading...
Searching...
No Matches
TrigInDetPattRecoTools/src/SeedingToolBase.cxx
Go to the documentation of this file.
1/*
2 Copyright (C) 2002-2025 CERN for the benefit of the ATLAS collaboration
3*/
4
7
9
11
12#include "GNN_TrackingFilter.h"
13
15
16#include "SeedingToolBase.h"
17
18#include "GNN_TrackingFilter.h"
19
20#include <cmath>
21#include <numeric> //for std::iota
22#include <algorithm> //for std::sort
23
25 ATH_CHECK(AthAlgTool::initialize());
26
27 ATH_CHECK(m_layerNumberTool.retrieve());
28
29
30 ATH_CHECK(detStore()->retrieve(m_atlasId, "AtlasID"));
31
32 ATH_CHECK(detStore()->retrieve(m_pixelId, "PixelID"));
33
34 ATH_CHECK(detStore()->retrieve(m_sctId, "SCT_ID"));
35
36 std::string conn_fileName = PathResolver::find_file(m_connectionFile, "DATAPATH");
37 if (conn_fileName.empty()) {
38 ATH_MSG_FATAL("Cannot find layer connections file " << conn_fileName);
39 return StatusCode::FAILURE;
40 }
41 else {
42
43 std::ifstream ifs(conn_fileName.c_str());
44
45 m_connector = std::make_unique<GNN_FASTRACK_CONNECTOR>(ifs, m_LRTmode);
46 if (m_etaBinOverride != 0.0f) {
47 m_connector->m_etaBin = m_etaBinOverride;
48 }
49
50 ATH_MSG_INFO("Layer connections are initialized from file " << conn_fileName);
51 }
52
53 const std::vector<TrigInDetSiLayer>* pVL = m_layerNumberTool->layerGeometry();
54
55 std::copy(pVL->begin(),pVL->end(), std::back_inserter(m_layerGeometry));
56
57 m_geo = std::make_unique<TrigFTF_GNN_Geometry>(m_layerGeometry, m_connector);
58
59
60 if (m_useML) {
61 std::string lut_fileName = PathResolver::find_file(m_lutFile, "DATAPATH");
62 if (lut_fileName.empty()) {
63 ATH_MSG_FATAL("Cannot find ML predictor LUT file " << lut_fileName);
64 return StatusCode::FAILURE;
65 }
66 else {
67 m_mlLUT.reserve(100);
68 std::ifstream ifs(lut_fileName.c_str());
69 while (!ifs.eof()) {
70 float cl_width, min1, max1, min2, max2;
71 ifs >> cl_width >> min1 >> max1 >> min2 >> max2;
72 if (ifs.eof()) break;
73 std::array<float, 5> lut_line = {cl_width, min1, max1, min2, max2};
74 m_mlLUT.emplace_back(lut_line);
75 }
76 ifs.close();
77 ATH_MSG_INFO("ML predictor is initialized from file " << lut_fileName<<" LUT has "<<m_mlLUT.size()<<" entries");
78 }
79 }
80
82
83 ATH_MSG_INFO("SeedingToolBase initialized ");
84
85 ATH_MSG_DEBUG("Property useML "<< m_useML);
86 ATH_MSG_DEBUG("Property DoPhiFiltering "<<m_filter_phi);
87 ATH_MSG_DEBUG("Property pTmin "<<m_minPt);
88 ATH_MSG_DEBUG("Property LRTmode "<<m_LRTmode);
89
90 return StatusCode::SUCCESS;
91}
92
94 StatusCode sc = AthAlgTool::finalize();
95 return sc;
96}
97
98std::pair<int, int> SeedingToolBase::buildTheGraph(const IRoiDescriptor& roi, const std::unique_ptr<TrigFTF_GNN_DataStorage>& storage, std::vector<TrigFTF_GNN_Edge>& edgeStorage) const {
99
100 constexpr float M_2PI = 2.0*M_PI;
101
102 const float cut_dphi_max = m_LRTmode ? 0.07f : 0.012f;
103 const float cut_dcurv_max = m_LRTmode ? 0.015f : 0.001f;
104 const float cut_tau_ratio_max = m_LRTmode ? 0.015f : static_cast<float>(m_tau_ratio_cut);
105 const float min_z0 = m_LRTmode ? -600.0 : roi.zedMinus();
106 const float max_z0 = m_LRTmode ? 600.0 : roi.zedPlus();
107 const float min_deltaPhi = m_LRTmode ? 0.01f : 0.001f;
108 const float tau_ratio_precut = 0.009f;
109
110 const float maxOuterRadius = m_LRTmode ? 1050.0 : 550.0;
111
112 const float cut_zMinU = min_z0 + maxOuterRadius*roi.dzdrMinus();
113 const float cut_zMaxU = max_z0 + maxOuterRadius*roi.dzdrPlus();
114
115 constexpr float ptCoeff = 0.29997*1.9972/2.0;// ~0.3*B/2 - assuming nominal field of 2*T
116
117 float tripletPtMin = 0.8f*m_minPt;//correction due to limited pT resolution
118 const float pt_scale = 900.0f/m_minPt;//to re-scale original tunings done for the 900 MeV pT cut
119
120 float maxCurv = ptCoeff/tripletPtMin;
121
122 float maxKappa_high_eta = m_LRTmode ? 1.0f*maxCurv : std::sqrt(0.8f)*maxCurv;
123 float maxKappa_low_eta = m_LRTmode ? 1.0f*maxCurv : std::sqrt(0.6f)*maxCurv;
124
125 if(!m_useOldTunings && !m_LRTmode) {//new settings for curvature cuts
126 maxKappa_high_eta = 4.75e-4f*pt_scale;
127 maxKappa_low_eta = 3.75e-4f*pt_scale;
128 }
129
130 const float dphi_coeff = m_LRTmode ? 1.0f*maxCurv : 0.68f*maxCurv;
131
132 const float minDeltaRadius = 2.0;
133
134 float deltaPhi = 0.5f*m_phiSliceWidth;//the default sliding window along phi
135
136 unsigned int nConnections = 0;
137
138 edgeStorage.reserve(m_nMaxEdges);
139
140 int nEdges = 0;
141
142 for(const auto& bg : m_geo->bin_groups()) {//loop over bin groups
143
144 TrigFTF_GNN_EtaBin& B1 = storage->getEtaBin(bg.first);
145
146 if(B1.empty()) continue;
147
148 float rb1 = B1.getMinBinRadius();
149
150 const unsigned int lk1 = B1.m_layerKey;
151
152 for(const auto& b2_idx : bg.second) {
153
154 const TrigFTF_GNN_EtaBin& B2 = storage->getEtaBin(b2_idx);
155
156 if(B2.empty()) continue;
157
158 float rb2 = B2.getMaxBinRadius();
159
160 if(m_useEtaBinning) {
161 float abs_dr = std::fabs(rb2-rb1);
162 if (m_useOldTunings) {
163 deltaPhi = min_deltaPhi + dphi_coeff*abs_dr;
164 }
165 else {
166 if(abs_dr < 60.0) {
167 deltaPhi = 0.002f + 4.33e-4f*pt_scale*abs_dr;
168 } else {
169 deltaPhi = 0.015f + 2.2e-4f*pt_scale*abs_dr;
170 }
171 }
172 }
173
174 unsigned int first_it = 0;
175
176 for(unsigned int n1Idx = 0;n1Idx<B1.m_vn.size();n1Idx++) {//loop over nodes in Layer 1
177
178 std::vector<unsigned int>& v1In = B1.m_in[n1Idx];
179
180 if(v1In.size() >= MAX_SEG_PER_NODE) continue;
181
182 const std::array<float, 5>& n1pars = B1.m_params[n1Idx];
183
184 float phi1 = n1pars[2];
185 float r1 = n1pars[3];
186 float z1 = n1pars[4];
187
188 //sliding window phi1 +/- deltaPhi
189
190 float minPhi = phi1 - deltaPhi;
191 float maxPhi = phi1 + deltaPhi;
192
193 for(unsigned int n2PhiIdx = first_it; n2PhiIdx<B2.m_vPhiNodes.size();n2PhiIdx++) {//sliding window over nodes in Layer 2
194
195 float phi2 = B2.m_vPhiNodes[n2PhiIdx].first;
196
197 if(phi2 < minPhi) {
198 first_it = n2PhiIdx;
199 continue;
200 }
201 if(phi2 > maxPhi) break;
202
203 unsigned int n2Idx = B2.m_vPhiNodes[n2PhiIdx].second;
204
205 const std::vector<unsigned int>& v2In = B2.m_in[n2Idx];
206
207 if(v2In.size() >= MAX_SEG_PER_NODE) continue;
208
209 const std::array<float, 5>& n2pars = B2.m_params[n2Idx];
210
211 float r2 = n2pars[3];
212
213 float dr = r2 - r1;
214
215 if(dr < minDeltaRadius) {
216 continue;
217 }
218
219 float z2 = n2pars[4];
220
221 float dz = z2 - z1;
222 float tau = dz/dr;
223 float ftau = std::fabs(tau);
224 if (ftau > 36.0) {
225 continue;
226 }
227
228 if(ftau < n1pars[0]) continue;
229 if(ftau > n1pars[1]) continue;
230
231 if(ftau < n2pars[0]) continue;
232 if(ftau > n2pars[1]) continue;
233
234 if (m_doubletFilterRZ) {
235
236 float z0 = z1 - r1*tau;
237
238 if(z0 < min_z0 || z0 > max_z0) continue;
239
240 float zouter = z0 + maxOuterRadius*tau;
241
242 if(zouter < cut_zMinU || zouter > cut_zMaxU) continue;
243 }
244
245 float curv = (phi2-phi1)/dr;
246 float abs_curv = std::abs(curv);
247
248 if(ftau < 4.0) {//eta = 2.1
249 if(abs_curv > maxKappa_low_eta) {
250 continue;
251 }
252 }
253 else {
254 if(abs_curv > maxKappa_high_eta) {
255 continue;
256 }
257 }
258
259 float exp_eta = std::sqrt(1.f+tau*tau)-tau;
260
261 if (m_matchBeforeCreate && (lk1 == 80000 || lk1 == 81000) ) {//match edge candidate against edges incoming to n2
262
263 bool isGood = v2In.size() <= 2;//we must have enough incoming edges to decide
264
265 if(!isGood) {
266
267 float uat_1 = 1.0f/exp_eta;
268
269 for(const auto& n2_in_idx : v2In) {
270
271 float tau2 = edgeStorage.at(n2_in_idx).m_p[0];
272 float tau_ratio = tau2*uat_1 - 1.0f;
273
274 if(std::fabs(tau_ratio) > tau_ratio_precut){//bad match
275 continue;
276 }
277 isGood = true;//good match found
278 break;
279 }
280 }
281
282 if(!isGood) {//no match found, skip creating [n1 <- n2] edge
283 continue;
284 }
285 }
286
287 float dPhi2 = curv*r2;
288 float dPhi1 = curv*r1;
289
290 if(nEdges < m_nMaxEdges) {
291
292 edgeStorage.emplace_back(B1.m_vn[n1Idx], B2.m_vn[n2Idx], exp_eta, curv, phi1 + dPhi1);
293
294 if(v1In.size() < MAX_SEG_PER_NODE) v1In.push_back(nEdges);
295
296 int outEdgeIdx = nEdges;
297
298 float uat_2 = 1.f/exp_eta;
299 float Phi2 = phi2 + dPhi2;
300 float curv2 = curv;
301
302 for(const auto& inEdgeIdx : v2In) {//looking for neighbours of the new edge
303
304 TrigFTF_GNN_Edge* pS = &(edgeStorage.at(inEdgeIdx));
305
306 if(pS->m_nNei >= N_SEG_CONNS) continue;
307
308 float tau_ratio = pS->m_p[0]*uat_2 - 1.0f;
309
310 if(std::abs(tau_ratio) > cut_tau_ratio_max){//bad match
311 continue;
312 }
313
314 float dPhi = Phi2 - pS->m_p[2];
315
316 if(dPhi<-M_PI) dPhi += M_2PI;
317 else if(dPhi>M_PI) dPhi -= M_2PI;
318
319 if(std::abs(dPhi) > cut_dphi_max) {
320 continue;
321 }
322
323 float dcurv = curv2 - pS->m_p[1];
324
325 if(dcurv < -cut_dcurv_max || dcurv > cut_dcurv_max) {
326 continue;
327 }
328
329 pS->m_vNei[pS->m_nNei++] = outEdgeIdx;
330
331 nConnections++;
332
333 }
334 nEdges++;
335 }
336 } //loop over n2 (outer) nodes
337 } //loop over n1 (inner) nodes
338 } //loop over bins in Layer 2
339 } //loop over bin groups
340
341 if(nEdges >= m_nMaxEdges) {
342 ATH_MSG_WARNING("Maximum number of graph edges exceeded - possible efficiency loss "<< nEdges);
343 }
344
345 return std::make_pair(nEdges, nConnections);
346}
347
348int SeedingToolBase::runCCA(int nEdges, std::vector<TrigFTF_GNN_Edge>& edgeStorage) const {
349
350 constexpr int maxIter = 15;
351
352 int maxLevel = 0;
353
354 int iter = 0;
355
356 std::vector<TrigFTF_GNN_Edge*> v_old;
357
358 for(int edgeIndex=0;edgeIndex<nEdges;edgeIndex++) {
359
360 TrigFTF_GNN_Edge* pS = &(edgeStorage[edgeIndex]);
361 if(pS->m_nNei == 0) continue;
362
363 v_old.push_back(pS);//TO-DO: increment level for segments as they already have at least one neighbour
364 }
365
366 std::vector<TrigFTF_GNN_Edge*> v_new;
367 v_new.reserve(v_old.size());
368
369 for(;iter<maxIter;iter++) {
370
371 //generate proposals
372 v_new.clear();
373
374 for(auto pS : v_old) {
375
376 int next_level = pS->m_level;
377
378 for(int nIdx=0;nIdx<pS->m_nNei;nIdx++) {
379
380 unsigned int nextEdgeIdx = pS->m_vNei[nIdx];
381
382 TrigFTF_GNN_Edge* pN = &(edgeStorage[nextEdgeIdx]);
383
384 if(pS->m_level == pN->m_level) {
385 next_level = pS->m_level + 1;
386 v_new.push_back(pS);
387 break;
388 }
389 }
390
391 pS->m_next = next_level;//proposal
392 }
393
394 //update
395
396 int nChanges = 0;
397
398 for(auto pS : v_new) {
399 if(pS->m_next != pS->m_level) {
400 nChanges++;
401 pS->m_level = pS->m_next;
402 if(maxLevel < pS->m_level) maxLevel = pS->m_level;
403 }
404 }
405
406 if(nChanges == 0) break;
407
408
409 v_old.swap(v_new);
410 v_new.clear();
411 }
412
413 return maxLevel;
414}
415
416void SeedingToolBase::extractSeedsFromTheGraph(int maxLevel, int nEdges, int nHits, std::vector<GNN_Edge>& edgeStorage, std::vector<std::tuple<float, int, std::vector<unsigned int> > >& vSeedCandidates) const {
417
418 const float edge_mask_min_eta = 1.5;
419 const float hit_share_threshold = 0.49;
420
421 vSeedCandidates.clear();
422
423 int minLevel = 3;//a triplet + 2 confirmation
424
425 if(m_LRTmode) {
426 minLevel = 2;//a triplet + 1 confirmation
427 }
428
429 if(maxLevel < minLevel) return;
430
431 std::vector<GNN_Edge*> vSeeds;
432
433 vSeeds.reserve(nEdges/2);
434
435 for(int edgeIndex = 0; edgeIndex < nEdges; edgeIndex++) {
436
437 GNN_Edge* pS = &(edgeStorage.at(edgeIndex));
438
439 if(pS->m_level < minLevel) continue;
440
441 vSeeds.push_back(pS);
442 }
443
444 if(vSeeds.empty()) return;
445
446 std::sort(vSeeds.begin(), vSeeds.end(), GNN_Edge::CompareLevel());
447
448 //backtracking
449
450 vSeedCandidates.reserve(vSeeds.size());
451
452 auto tFilter = std::make_unique<TrigFTF_GNN_TrackingFilter>(m_layerGeometry, edgeStorage);
453
454 for(auto pS : vSeeds) {
455
456 if(pS->m_level == -1) continue;
457
459
460 tFilter->followTrack(pS, rs);
461
462 if(!rs.m_initialized) {
463 continue;
464 }
465
466 if(static_cast<int>(rs.m_vs.size()) < minLevel) continue;
467
468 float seed_eta = std::abs(-std::log(pS->m_p[0]));
469
470 std::vector<const GNN_Node*> vN;
471
472 for(std::vector<GNN_Edge*>::reverse_iterator sIt=rs.m_vs.rbegin();sIt!=rs.m_vs.rend();++sIt) {
473
474 if (seed_eta > edge_mask_min_eta) {
475 (*sIt)->m_level = -1;//mark as collected
476 }
477
478 if(sIt == rs.m_vs.rbegin()) {
479 vN.push_back((*sIt)->m_n1);
480 }
481
482 vN.push_back((*sIt)->m_n2);
483
484 }
485
486 if(vN.size()<3) continue;
487
488 std::vector<unsigned int> vSpIdx;
489
490 vSpIdx.resize(vN.size());
491
492 for(unsigned int k = 0; k < vN.size(); k++) {
493 vSpIdx[k] = vN[k]->sp_idx();
494 }
495
496 vSeedCandidates.emplace_back(-rs.m_J/vN.size(), 0, vSpIdx);
497
498 }
499
500 //clone removal code goes below ...
501
502 std::sort(vSeedCandidates.begin(), vSeedCandidates.end());
503
504 std::vector<int> vTrackIds(vSeedCandidates.size());
505
506 // fills the vector from 1 to N
507
508 std::iota(vTrackIds.begin(), vTrackIds.end(), 1);
509
510 std::vector<int> H2T(nHits + 1, 0);//hit to track associations
511
512 int seedIdx = 0;
513
514 for(const auto& seed : vSeedCandidates) {
515
516 for(const auto& h : std::get<2>(seed) ) {//loop over spacepoints indices
517
518 unsigned int hit_id = h + 1;
519
520 int tid = H2T[hit_id];
521 int trackId = vTrackIds[seedIdx];
522
523 if(tid == 0 || tid > trackId) {//un-used hit or used by a lesser track
524
525 H2T[hit_id] = trackId;//overwrite
526
527 }
528 }
529
530 seedIdx++;
531
532 }
533
534 for(unsigned int trackIdx = 0; trackIdx < vSeedCandidates.size(); trackIdx++) {
535
536 int nTotal = std::get<2>(vSeedCandidates[trackIdx]).size();
537 int nOther = 0;
538
539 int trackId = vTrackIds[trackIdx];
540
541 for(const auto& h : std::get<2>(vSeedCandidates[trackIdx]) ) {
542
543 unsigned int hit_id = h + 1;
544
545 int tid = H2T[hit_id];
546
547 if(tid != trackId) {//taken by a better candidate
548 nOther++;
549 }
550 }
551
552 if (nOther > hit_share_threshold*nTotal) {
553 std::get<1>(vSeedCandidates[trackIdx]) = -1;//reject
554 }
555
556 }
557}
#define M_PI
Scalar deltaPhi(const MatrixBase< Derived > &vec) const
#define ATH_CHECK
Evaluate an expression and check for errors.
#define ATH_MSG_FATAL(x)
#define ATH_MSG_INFO(x)
#define ATH_MSG_WARNING(x)
#define ATH_MSG_DEBUG(x)
This class provides an interface to generate or decode an identifier for the upper levels of the dete...
#define M_2PI
#define MAX_SEG_PER_NODE
#define N_SEG_CONNS
static Double_t rs
static Double_t sc
static const uint32_t nHits
This is an Identifier helper class for the Pixel subdetector.
This is an Identifier helper class for the SCT subdetector.
const ServiceHandle< StoreGateSvc > & detStore() const
Header file for AthHistogramAlgorithm.
Describes the API of the Region of Ineterest geometry.
virtual double zedPlus() const =0
the zed and eta values at the most forward and most rear ends of the RoI
virtual double dzdrMinus() const =0
return the gradients
virtual double zedMinus() const =0
virtual double dzdrPlus() const =0
static std::string find_file(const std::string &logical_file_name, const std::string &search_path)
int runCCA(int, std::vector< GNN_Edge > &) const
ToolHandle< ITrigL2LayerNumberTool > m_layerNumberTool
std::vector< std::array< float, 5 > > m_mlLUT
std::vector< TrigInDetSiLayer > m_layerGeometry
std::pair< int, int > buildTheGraph(const IRoiDescriptor &, const std::unique_ptr< GNN_DataStorage > &, std::vector< GNN_Edge > &) const
std::unique_ptr< GNN_FasTrackConnector > m_connector
void extractSeedsFromTheGraph(int, int, int, std::vector< GNN_Edge > &, std::vector< std::tuple< float, int, std::vector< unsigned int > > > &) const
std::unique_ptr< const TrigFTF_GNN_Geometry > m_geo
unsigned int m_vNei[N_SEG_CONNS]
unsigned char m_nNei
std::vector< const TrigFTF_GNN_Node * > m_vn
float getMinBinRadius() const
float getMaxBinRadius() const
std::vector< std::vector< unsigned int > > m_in
std::vector< std::pair< float, unsigned int > > m_vPhiNodes
std::vector< std::array< float, 5 > > m_params
unsigned int m_layerKey
void sort(typename DataModel_detail::iterator< DVL > beg, typename DataModel_detail::iterator< DVL > end)
Specialization of sort for DataVector/List.