ATLAS Offline Software
TNetworkToHistoTool.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration
3 */
4 
5 #include <TH1F.h>
6 #include <TH2F.h>
7 #include "TTrainedNetwork.h"
8 #include "TNetworkToHistoTool.h"
9 #include <cmath>
10 #include <vector>
11 #include <iostream>
12 
13 using namespace std;
14 
16 
17 std::vector<TH1*> TNetworkToHistoTool::fromTrainedNetworkToHisto(TTrainedNetwork* trainedNetwork) const
18 {
19 
20  std::vector<TH1*> outputHistos;
21 
22  if (trainedNetwork->getActivationFunction()!=1)
23  {
24  cout << "ERROR: activation function is different from one. Only one is supported..." << endl;
25  return outputHistos;
26  }
27 
28 
29  Int_t nInput=trainedNetwork->getnInput();
30  vector<Int_t> nHiddenLayerSize=trainedNetwork->getnHiddenLayerSize();
31  Int_t nHidden=nHiddenLayerSize.size();
32 
33  for (Int_t o=0;o<nHidden;++o)
34  {
35  cout << " Hidden lay: " << o << " size: " << nHiddenLayerSize[o];
36  }
37 
38  Int_t nOutput=trainedNetwork->getnOutput();
39  cout << " Output size: " << nOutput << endl;
40 
41  std::vector<TVectorD*> thresholdVectors=trainedNetwork->getThresholdVectors();
42  std::vector<TMatrixD*> weightMatrices=trainedNetwork->weightMatrices();
43 
44  //LayersInfo
45 
46  TH1F* histoLayersInfo=new TH1F("LayersInfo",
47  "LayersInfo",
48  nHidden+2,
49  0,
50  nHidden+2);
51 
52  histoLayersInfo->SetBinContent(1,nInput);
53 
54  for (Int_t i=0;i<nHidden;++i)
55  {
56  histoLayersInfo->SetBinContent(2+i,nHiddenLayerSize[i]);
57  }
58 
59  histoLayersInfo->SetBinContent(2+nHidden,nOutput);
60 
61  //underflow for linear output
62  if (trainedNetwork->getIfLinearOutput())
63  {
64  histoLayersInfo->SetBinContent(0,1);
65  }
66  //overflow for normalized output (Pott nodes)
67  if (trainedNetwork->getIfNormalizeOutput())
68  {
69  histoLayersInfo->SetBinContent(nHidden+3,1);
70  }
71 
72  outputHistos.push_back(histoLayersInfo);
73 
74 
75  //ThresholdInfo
76  for (Int_t i=0;i<nHidden+1;++i)
77  {
78  TString threName("Layer");
79  threName+=i;
80  threName+="_thresholds";
81 
82  Int_t layerSize=(i<nHidden)?nHiddenLayerSize[i]:nOutput;
83  Int_t previousLayerSize=(i==0)?nInput:nHiddenLayerSize[i-1];
84 
85  TH1F* histoThreshLayer=new TH1F(threName,
86  threName,
87  layerSize,
88  0,
89  layerSize);
90 
91  for (Int_t s=0;s<layerSize;s++)
92  {
93  histoThreshLayer->SetBinContent(s+1,thresholdVectors[i]->operator()(s));
94  }
95 
96  TString weightsName("Layer");
97  weightsName+=i;
98  weightsName+="_weights";
99 
100  outputHistos.push_back(histoThreshLayer);
101 
102  TH2F* histoWeightsLayer=new TH2F(weightsName,
103  weightsName,
104  previousLayerSize,
105  0,
106  previousLayerSize,
107  layerSize,
108  0,
109  layerSize);
110 
111  for (Int_t s=0;s<layerSize;s++)
112  {
113  for (Int_t p=0;p<previousLayerSize;++p)
114  {
115  histoWeightsLayer->SetBinContent(p+1,s+1,weightMatrices[i]->operator()(p,s));
116  }
117  }
118 
119  outputHistos.push_back(histoWeightsLayer);
120 
121  }
122 
123 
124  return outputHistos;
125 
126 }
127 
128 TH1* TNetworkToHistoTool::findHisto(TString nameOfHisto,
129  std::vector<TH1*> & inputHistos) const
130 {
131 
132  std::vector<TH1*>::const_iterator inputBegin=inputHistos.begin();
133  std::vector<TH1*>::const_iterator inputEnd=inputHistos.end();
134 
135  for ( std::vector<TH1*>::const_iterator inputIter=inputBegin;inputIter!=inputEnd;++inputIter)
136  {
137  if ((*inputIter)->GetName()==nameOfHisto)
138  {
139  return (*inputIter);
140  }
141  }
142  return 0;
143 }
144 
145 
146 
147 TTrainedNetwork* TNetworkToHistoTool::fromHistoToTrainedNetwork(std::vector<TH1*> & inputHistos) const
148 {
149 
150 
151 
152  TH1F* histoLayersInfo=dynamic_cast<TH1F*>(findHisto("LayersInfo",inputHistos));
153 
154  if (histoLayersInfo==0)
155  {
156  cout << " Could not find LayersInfo histogram... Aborting " << endl;
157  return 0;
158  }
159 
160  bool linearOutput=false;
161  bool normalizeOutput=false;
162 
163 
164  Int_t nHidden=histoLayersInfo->GetNbinsX()-2;
165  Int_t nInput=(Int_t)std::floor(histoLayersInfo->GetBinContent(1)+0.5);
166 
167  vector<Int_t> nHiddenLayerSize;
168  for (Int_t i=0;i<nHidden;++i)
169  {
170  nHiddenLayerSize.push_back( (Int_t)std::floor(histoLayersInfo->GetBinContent(2+i)+0.5));
171  }
172 
173  for (Int_t o=0;o<nHidden;++o)
174  {
175  cout << " Hidden lay: " << o << " size: " << nHiddenLayerSize[o];
176  }
177 
178  Int_t nOutput=(Int_t)std::floor(histoLayersInfo->GetBinContent(2+nHidden)+0.5);
179  cout << " Output size: " << nOutput << endl;
180 
181  if (histoLayersInfo->GetBinContent(0)>0.5)
182  {
183  linearOutput=true;
184  }
185  if (histoLayersInfo->GetBinContent(nHidden+3)>0.5)
186  {
187  normalizeOutput=true;
188  }
189 
190  std::vector<TVectorD*> thresholdVectors;
191  std::vector<TMatrixD*> weightMatrices;
192 
193 
194  //Reconstruct thresholdInfo
195  for (Int_t i=0;i<nHidden+1;++i)
196  {
197  TString threName("Layer");
198  threName+=i;
199  threName+="_thresholds";
200 
201  Int_t layerSize=(i<nHidden)?nHiddenLayerSize[i]:nOutput;
202  Int_t previousLayerSize=(i==0)?nInput:nHiddenLayerSize[i-1];
203 
204  TVectorD* thresholdVector=new TVectorD(layerSize);
205  TMatrixD* weightMatrix=new TMatrixD(previousLayerSize,layerSize);
206 
207  TH1F* histoThreshLayer=dynamic_cast<TH1F*>(findHisto(threName,inputHistos));
208  if (histoThreshLayer==0)
209  {
210  cout << " Could not find " << threName << " histogram... Aborting (mem leak also...)" << endl;
211  return 0;
212  }
213 
214 
215  for (Int_t s=0;s<layerSize;s++)
216  {
217  thresholdVector->operator()(s)=histoThreshLayer->GetBinContent(s+1);
218  }
219 
220  TString weightsName("Layer");
221  weightsName+=i;
222  weightsName+="_weights";
223 
224  TH2F* histoWeightsLayer=dynamic_cast<TH2F*>(findHisto(weightsName,inputHistos));
225  if (histoWeightsLayer==0)
226  {
227  cout << " Could not find " << weightsName << " histogram... Aborting (mem leak also...)" << endl;
228  return 0;
229  }
230 
231  for (Int_t s=0;s<layerSize;s++)
232  {
233  for (Int_t p=0;p<previousLayerSize;++p)
234  {
235  weightMatrix->operator()(p,s)=histoWeightsLayer->GetBinContent(p+1,s+1);
236  }
237  }
238 
239  thresholdVectors.push_back(thresholdVector);
240  weightMatrices.push_back(weightMatrix);
241 
242  }
243 
244 
245  TTrainedNetwork* trainedNetwork=new TTrainedNetwork(nInput,
246  nHidden,
247  nOutput,
248  nHiddenLayerSize,
249  thresholdVectors,
250  weightMatrices,
251  1,
252  linearOutput,
253  normalizeOutput);
254  return trainedNetwork;
255 
256 }
257 
258 
259 
TTrainedNetwork::getnInput
Int_t getnInput() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:46
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
TTrainedNetwork::getActivationFunction
Int_t getActivationFunction() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:54
TNetworkToHistoTool
Definition: TNetworkToHistoTool.h:18
TTrainedNetwork::getnHiddenLayerSize
const std::vector< Int_t > & getnHiddenLayerSize() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:52
TTrainedNetwork::getIfNormalizeOutput
bool getIfNormalizeOutput() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:64
python.TrigEgammaMonitorHelper.TH2F
def TH2F(name, title, nxbins, bins_par2, bins_par3, bins_par4, bins_par5=None, bins_par6=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:45
TNetworkToHistoTool::findHisto
TH1 * findHisto(TString nameOfHisto, std::vector< TH1 * > &inputHistos) const
TTrainedNetwork::weightMatrices
const std::vector< TMatrixD * > & weightMatrices() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:58
ClassImp
ClassImp(xAOD::TFileChecker) namespace xAOD
Definition: TFileChecker.cxx:28
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
TNetworkToHistoTool::fromHistoToTrainedNetwork
TTrainedNetwork * fromHistoToTrainedNetwork(std::vector< TH1 * > &) const
TNetworkToHistoTool::fromTrainedNetworkToHisto
std::vector< TH1 * > fromTrainedNetworkToHisto(TTrainedNetwork *) const
lumiFormat.i
int i
Definition: lumiFormat.py:85
TTrainedNetwork::getThresholdVectors
const std::vector< TVectorD * > & getThresholdVectors() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:56
TTrainedNetwork
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:21
TTrainedNetwork.h
TNetworkToHistoTool.h
TTrainedNetwork::getIfLinearOutput
bool getIfLinearOutput() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:62
TTrainedNetwork::getnOutput
Int_t getnOutput() const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:50
python.TrigEgammaMonitorHelper.TH1F
def TH1F(name, title, nxbins, bins_par2, bins_par3=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:24