ATLAS Offline Software
Loading...
Searching...
No Matches
RealQuadradicEquation Struct Reference

Mathematic struct for solving real quadratic equations. More...

#include <RealQuadraticEquation.h>

Collaboration diagram for RealQuadradicEquation:

Detailed Description

Mathematic struct for solving real quadratic equations.

Mathematical motivation:
The equation is given by:
\( \alpha x^{2} + \beta x + \gamma = 0 \) and has therefore the analytical solution:
\( x_{1, 2} = - \frac{\beta \pm \sqrt{\beta^{2}-4\alpha\gamma}}{2\alpha}\)

  • case \( \beta > 0 \):
    \( x_{1} = - \frac{\beta + \sqrt{\beta^{2}-4\alpha\gamma}}{2\alpha} := \frac{q}{\alpha}\),
    so that \( q= -\frac{1}{2}(\beta+sqrt{\beta^{2}-4\alpha\gamma})\). \( x_{2} \) can now be written as: \( x_{2} = \frac{\gamma}{q} = -\frac{2\gamma}{\beta+sqrt{\beta^{2}-4\alpha\gamma}}\), since:
    \( -\frac{2\gamma}{\beta+sqrt{\beta^{2}-4\alpha\gamma}} = -\frac{2\gamma}{\beta}\frac{1}{1+\sqrt{1-4\alpha\gamma/\beta^{2}}}\), and
    \( x_{2}\frac{1}{1-\sqrt{1-4\alpha\gamma/\beta^{2}}} = -\frac{2\gamma}{\beta}\frac{1}{1-1+4\alpha\gamma/\beta^{2}}=-\frac{\beta}{2\alpha}.\)
    Hence, \(-\frac{\beta(1-\sqrt{1-4\alpha\gamma/\beta^{2}}}{2\alpha} = - \frac{\beta - \sqrt{\beta^{2}-4\alpha\gamma}}{2\alpha} \).
  • case \( \beta > 0 \) is similar.
Author
Andre.nosp@m.as.S.nosp@m.alzbu.nosp@m.rger.nosp@m.@cern.nosp@m..ch

Mathematical motivation:
The equation is given by:
\( \alpha x^{2} + \beta x + \gamma = 0 \) and has therefore the analytical solution:
\( x_{1, 2} = - \frac{\beta \pm \sqrt{\beta^{2}-4\alpha\gamma}}{2\alpha}\)

  • case \( \beta > 0 \):
    \( x_{1} = - \frac{\beta + \sqrt{\beta^{2}-4\alpha\gamma}}{2\alpha} := \frac{q}{\alpha}\),
    so that \( q= -\frac{1}{2}(\beta+sqrt{\beta^{2}-4\alpha\gamma})\). \( x_{2} \) can now be written as: \( x_{2} = \frac{\gamma}{q} = -\frac{2\gamma}{\beta+sqrt{\beta^{2}-4\alpha\gamma}}\), since:
    \( -\frac{2\gamma}{\beta+sqrt{\beta^{2}-4\alpha\gamma}} = -\frac{2\gamma}{\beta}\frac{1}{1+\sqrt{1-4\alpha\gamma/\beta^{2}}}\), and
    \( x_{2}\frac{1}{1-\sqrt{1-4\alpha\gamma/\beta^{2}}} = -\frac{2\gamma}{\beta}\frac{1}{1-1+4\alpha\gamma/\beta^{2}}=-\frac{\beta}{2\alpha}.\)
    Hence, \( -\frac{\beta(1-\sqrt{1-4\alpha\gamma/\beta^{2}}}{2\alpha} = - \frac{\beta - \sqrt{\beta^{2}-4\alpha\gamma}}{2\alpha} \).
  • case \( \beta > 0 \) is similar.
Author
Andre.nosp@m.as.S.nosp@m.alzbu.nosp@m.rger.nosp@m.@cern.nosp@m..ch

The documentation for this struct was generated from the following files: