|
| | LArHVGainsPredictor.parser = OptionParser(add_help_option=False) |
| | configure options
|
| | LArHVGainsPredictor.action |
| | LArHVGainsPredictor.type |
| | LArHVGainsPredictor.dest |
| | LArHVGainsPredictor.default |
| | LArHVGainsPredictor.options |
| | LArHVGainsPredictor.args |
| int | LArHVGainsPredictor.error_code = 2 |
| | LArHVGainsPredictor.hv_input_new = PlotCalibrationHV.L1CaloHVReader(options.hv_input_new) |
| | LArHVGainsPredictor.hv_input_ref = PlotCalibrationHV.L1CaloHVReader(options.hv_input_ref) |
| | LArHVGainsPredictor.geometry_convertor = PlotCalibrationGains.L1CaloGeometryConvertor() |
| | create instance of geometry convertor and load receiver-PPM map
|
| | LArHVGainsPredictor.gain_predictor = GainPredictor(geometry_convertor) |
| | create instance of gain predictor
|
| | LArHVGainsPredictor.h_orig_gains_em = PlotCalibrationGains.L1CaloMap("Em: orig. gains"," #eta bin","#phi bin") |
| | initialise histograms
|
| | LArHVGainsPredictor.h_orig_gains_had = PlotCalibrationGains.L1CaloMap("Had: orig. gains"," #eta bin","#phi bin") |
| | LArHVGainsPredictor.h_pred_gains_em = PlotCalibrationGains.L1CaloMap("Em: pred. gains"," #eta bin","#phi bin") |
| | LArHVGainsPredictor.h_pred_gains_had = PlotCalibrationGains.L1CaloMap("Had: pred. gains"," #eta bin","#phi bin") |
| | LArHVGainsPredictor.h_diff_gains_em = PlotCalibrationGains.L1CaloMap("Em: (pred. gain - orig. gain) / orig. gain","#eta bin","#phi bin") |
| | LArHVGainsPredictor.h_diff_gains_had = PlotCalibrationGains.L1CaloMap("Had: (pred. gain - orig. gain) / orig. gain","#eta bin","#phi bin") |
| | LArHVGainsPredictor.output_text = open(options.output_files+".txt","w") |
| | initialise output .txt file
|
| dict | LArHVGainsPredictor.pred_gains = {} |
| | initialise empty dictionary for predicted gains
|
| | LArHVGainsPredictor.channel_list = open(options.channel_list) |
| dict | LArHVGainsPredictor.orig_gains = {} |
| | LArHVGainsPredictor.parts = channel.split() |
| dict | LArHVGainsPredictor.receiver_list = orig_gains.keys() |
| | LArHVGainsPredictor.coolid = geometry_convertor.getPPMfromReceiver(receiver) |
| | check if channel list is empty
|
| | LArHVGainsPredictor.eta_bin = geometry_convertor.getEtaBin(coolid) |
| | LArHVGainsPredictor.phi_bin = geometry_convertor.getPhiBin(coolid) |
| tuple | LArHVGainsPredictor.num_layers = (hv_input_ref.GetNLayers())[receiver] |
| | retrieve num layers and layer names (from new or ref hv input)
|
| list | LArHVGainsPredictor.layer_names = [-1,-1,-1,-1] |
| list | LArHVGainsPredictor.layer_corr_new = [1.,1.,1.,1.] |
| | retrieve hv corrections from new hv input
|
| list | LArHVGainsPredictor.layer_corr_ref = [1.,1.,1.,1.] |
| | retrieve hv corrections from ref hv input
|
| dict | LArHVGainsPredictor.orig_gain = orig_gains[receiver] |
| | LArHVGainsPredictor.pred_gain = gain_predictor.GetGain(receiver,orig_gain,layer_corr_ref,layer_corr_new,layer_names) |
| | calculate new gain for this receiver
|
| tuple | LArHVGainsPredictor.diff_gain = ((pred_gain - orig_gain) / orig_gain) * 100.0 |
| str | LArHVGainsPredictor.layer = "EM" |
| | fill histograms
|
| | LArHVGainsPredictor.end |
| | print output to screen
|
| | LArHVGainsPredictor.file |
| | write output to text file
|
| | LArHVGainsPredictor.canvas = ROOT.TCanvas("canvas","",200,10,700,500) |
| | write output to .sqlite file
|