ATLAS Offline Software
PunchThroughClassifier.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2024 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 
7 #include <fstream>
8 #include <memory>
9 
10 // PathResolver
12 
13 //LWTNN
14 #include "lwtnn/parse_json.hh"
15 
16 //libXML
17 #include <libxml/xmlmemory.h>
18 #include <libxml/parser.h>
19 #include <libxml/tree.h>
20 #include <libxml/xmlreader.h>
21 #include <libxml/xpath.h>
22 #include <libxml/xpathInternals.h>
23 
24 ISF::PunchThroughClassifier::PunchThroughClassifier(const std::string& type, const std::string& name, const IInterface* parent)
25  : base_class(type, name, parent) {
26 
27  declareProperty( "ScalerConfigFileName", m_scalerConfigFileName );
28  declareProperty( "NetworkConfigFileName", m_networkConfigFileName );
29  declareProperty( "CalibratorConfigFileName", m_calibratorConfigFileName );
30 }
31 
33 
34  std::map<std::string, std::map<std::string, double> > networkInputs = computeInputs(isfp, simulstate); //compute inputs
35 
36  networkInputs = scaleInputs(networkInputs); //scale inputs
37 
38  std::map<std::string, double> networkOutputs = m_graph->compute(networkInputs); //call neural network on inputs
39 
40  double calibratedOutput = calibrateOutput(networkOutputs["out_0"]); //calibrate neural network output
41 
42  return calibratedOutput;
43 }
44 
45 
47 
48  ATH_MSG_VERBOSE( "[ punchthroughclassifier ] initialize()" );
49 
50  std::string resolvedScalerFileName = PathResolverFindCalibFile (m_scalerConfigFileName);
51  if ( initializeScaler(resolvedScalerFileName) != StatusCode::SUCCESS)
52  {
53  ATH_MSG_ERROR("[ punchthroughclassifier ] unable to load punchthroughclassifier input scaler");
54  }
55 
56  std::string resolvedNetworkFileName = PathResolverFindCalibFile (m_networkConfigFileName);
57  if ( initializeNetwork(resolvedNetworkFileName) != StatusCode::SUCCESS)
58  {
59  ATH_MSG_ERROR("[ punchthroughclassifier ] unable to load punchthroughclassifier network");
60  }
61 
62  std::string resolvedCalibratorFileName = PathResolverFindCalibFile (m_calibratorConfigFileName);
63  if ( initializeCalibrator(resolvedCalibratorFileName) != StatusCode::SUCCESS)
64  {
65  ATH_MSG_ERROR("[ punchthroughclassifier ] unable to load punchthroughclassifier calibrator");
66  }
67 
68  return StatusCode::SUCCESS;
69 }
70 
71 StatusCode ISF::PunchThroughClassifier::initializeScaler(const std::string & scalerConfigFile){
72 
73  //parse xml that contains config for MinMaxScaler for each of the network inputs
74 
75  xmlDocPtr doc = xmlParseFile( scalerConfigFile.c_str() );
76 
77  ATH_MSG_INFO( "[ punchthroughclassifier ] Loading scaler: " << scalerConfigFile);
78 
79  for( xmlNodePtr nodeRoot = doc->children; nodeRoot != nullptr; nodeRoot = nodeRoot->next) {
80 
81  if (xmlStrEqual( nodeRoot->name, BAD_CAST "Transformations" )) {
82  for( xmlNodePtr nodeTransform = nodeRoot->children; nodeTransform != nullptr; nodeTransform = nodeTransform->next ) {
83 
84  //Get min and max values that we normalise values to
85  if (xmlStrEqual( nodeTransform->name, BAD_CAST "ScalerValues" )) {
86  m_scalerMin = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "min" ) );
87  m_scalerMax = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "max" ) );
88  }
89 
90  //Get values necessary to normalise each input variable
91  if (xmlStrEqual( nodeTransform->name, BAD_CAST "VarScales" )) {
92  std::string name = (const char*) xmlGetProp( nodeTransform, BAD_CAST "name" );
93  double min = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "min" ) );
94  double max = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "max" ) );
95  m_scalerMinMap.insert ( std::pair<std::string, double>(name, min) );
96  m_scalerMaxMap.insert ( std::pair<std::string, double>(name, max) );
97  }
98  }
99  }
100  }
101 
102  return StatusCode::SUCCESS;
103 }
104 
105 StatusCode ISF::PunchThroughClassifier::initializeNetwork(const std::string & networkConfigFile){
106 
107  ATH_MSG_INFO( "[ punchthroughclassifier ] Loading classifier: " << networkConfigFile);
108 
109  std::ifstream input(networkConfigFile);
110  if(!input){
111  ATH_MSG_ERROR("Could not find json file " << networkConfigFile );
112  return StatusCode::FAILURE;
113  }
114 
115  m_graph = std::make_unique<lwt::LightweightGraph>(lwt::parse_json_graph(input));
116  if(!m_graph){
117  ATH_MSG_ERROR("Could not parse graph json file " << networkConfigFile );
118  return StatusCode::FAILURE;
119  }
120 
121 
122  return StatusCode::SUCCESS;
123 }
124 
125 
126 StatusCode ISF::PunchThroughClassifier::initializeCalibrator(const std::string & calibratorConfigFile){
127 
128  //parse xml that contains config for isotonic regressor used to calibrate the network output
129  ATH_MSG_INFO( "[ punchthroughclassifier ] Loading calibrator: " << calibratorConfigFile);
130 
131  xmlDocPtr doc = xmlParseFile( calibratorConfigFile.c_str() );
132 
133  for( xmlNodePtr nodeRoot = doc->children; nodeRoot != nullptr; nodeRoot = nodeRoot->next) {
134 
135  if (xmlStrEqual( nodeRoot->name, BAD_CAST "Transformations" )) {
136  for( xmlNodePtr nodeTransform = nodeRoot->children; nodeTransform != nullptr; nodeTransform = nodeTransform->next ) {
137 
138  //get lower and upper bounds of isotonic regressor
139  if (xmlStrEqual( nodeTransform->name, BAD_CAST "LimitValues" )) {
140  m_calibrationMin = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "min" ) );
141  m_calibrationMax = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "max" ) );
142  }
143 
144  //get defined points where isotonic regressor knows transform
145  if (xmlStrEqual( nodeTransform->name, BAD_CAST "LinearNorm" )) {
146  double orig = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "orig" ) );
147  double norm = atof( (const char*) xmlGetProp( nodeTransform, BAD_CAST "norm" ) );
148  m_calibrationMap.insert ( std::pair<double,double>(orig, norm) );
149  }
150  }
151  }
152  }
153 
154  return StatusCode::SUCCESS;
155 }
156 
157 std::map<std::string, std::map<std::string, double> > ISF::PunchThroughClassifier::computeInputs(const ISF::ISFParticle &isfp, const TFCSSimulationState& simulstate) {
158 
159  //calculate inputs for NN
160 
161  std::map<std::string, std::map<std::string, double> > networkInputs;
162 
163  //add initial particle and total energy variables
164  networkInputs["node_0"] = {
165  {"variable_0", isfp.momentum().mag() },
166  {"variable_1", std::abs(isfp.position().eta()) },
167  {"variable_2", isfp.position().phi() },
168  {"variable_3", simulstate.E()},
169  };
170 
171  //add energy fraction variables
172  for (unsigned int i = 0; i < 24; i++){
173  networkInputs["node_0"].insert({"variable_" + std::to_string(i + 4), simulstate.Efrac(i)});
174  }
175 
176  return networkInputs;
177 }
178 
179 std::map<std::string, std::map<std::string, double> > ISF::PunchThroughClassifier::scaleInputs(std::map<std::string, std::map<std::string, double> >& inputs) const{
180 
181  //apply MinMaxScaler to network inputs
182 
183  for (auto& var : inputs["node_0"]) {
184 
185  double x_std;
186  if(m_scalerMaxMap.at(var.first) != m_scalerMinMap.at(var.first)){
187  x_std = (var.second - m_scalerMinMap.at(var.first)) / (m_scalerMaxMap.at(var.first) - m_scalerMinMap.at(var.first));
188  }
189  else{
190  x_std = (var.second - m_scalerMinMap.at(var.first));
191  }
192  var.second = x_std * (m_scalerMax - m_scalerMin) + m_scalerMin;
193  }
194 
195  return inputs;
196 }
197 
198 double ISF::PunchThroughClassifier::calibrateOutput(double& networkOutput) const {
199 
200  //calibrate output of network using isotonic regressor model
201 
202  //if network output is outside of the range of isotonic regressor then return min and max values
203  if (networkOutput < m_calibrationMin){
204  return m_calibrationMin;
205  }
206  else if (networkOutput > m_calibrationMax){
207  return m_calibrationMax;
208  }
209 
210  //otherwise find neighbouring points in isotonic regressor
211  auto upper = m_calibrationMap.upper_bound(networkOutput);
212  auto lower = upper--;
213 
214  //Perform linear interpolation between points
215  double m = (upper->second - lower->second)/(upper->first - lower->first);
216  double c = lower->second - m * lower->first;
217  double calibrated = m * networkOutput + c;
218 
219  return calibrated;
220 }
beamspotnt.var
var
Definition: bin/beamspotnt.py:1394
PlotCalibFromCool.norm
norm
Definition: PlotCalibFromCool.py:100
python.SystemOfUnits.m
int m
Definition: SystemOfUnits.py:91
max
#define max(a, b)
Definition: cfImp.cxx:41
ATH_MSG_INFO
#define ATH_MSG_INFO(x)
Definition: AthMsgStreamMacros.h:31
ISF::PunchThroughClassifier::calibrateOutput
double calibrateOutput(double &networkOutput) const
calibrate NN output using isotonic regressor
Definition: PunchThroughClassifier.cxx:198
TFCSSimulationState::Efrac
double Efrac(int sample) const
Definition: TFCSSimulationState.h:44
ISF::ISFParticle
Definition: ISFParticle.h:42
upper
int upper(int c)
Definition: LArBadChannelParser.cxx:49
ISF::PunchThroughClassifier::initializeScaler
StatusCode initializeScaler(const std::string &scalerConfigFile)
input variable MinMaxScaler initialize method
Definition: PunchThroughClassifier.cxx:71
ATH_MSG_VERBOSE
#define ATH_MSG_VERBOSE(x)
Definition: AthMsgStreamMacros.h:28
postInclude.inputs
inputs
Definition: postInclude.SortInput.py:15
ISF::ISFParticle::position
const Amg::Vector3D & position() const
The current position of the ISFParticle.
ISF::PunchThroughClassifier::initialize
virtual StatusCode initialize() override final
AlgTool initialize method.
Definition: PunchThroughClassifier.cxx:46
PunchThroughClassifier.h
ATH_MSG_ERROR
#define ATH_MSG_ERROR(x)
Definition: AthMsgStreamMacros.h:33
ISF::PunchThroughClassifier::computeInputs
static std::map< std::string, std::map< std::string, double > > computeInputs(const ISF::ISFParticle &isfp, const TFCSSimulationState &simulstate)
calcalate NN inputs based on isfp and simulstate
Definition: PunchThroughClassifier.cxx:157
ISF::PunchThroughClassifier::scaleInputs
std::map< std::string, std::map< std::string, double > > scaleInputs(std::map< std::string, std::map< std::string, double > > &inputs) const
scale NN inputs using MinMaxScaler
Definition: PunchThroughClassifier.cxx:179
lumiFormat.i
int i
Definition: lumiFormat.py:85
EL::StatusCode
::StatusCode StatusCode
StatusCode definition for legacy code.
Definition: PhysicsAnalysis/D3PDTools/EventLoop/EventLoop/StatusCode.h:22
PlotPulseshapeFromCool.input
input
Definition: PlotPulseshapeFromCool.py:106
test_pyathena.parent
parent
Definition: test_pyathena.py:15
ISF::PunchThroughClassifier::initializeNetwork
StatusCode initializeNetwork(const std::string &networkConfigFile)
neural network initialize method
Definition: PunchThroughClassifier.cxx:105
CxxUtils::atof
double atof(std::string_view str)
Converts a string into a double / float.
Definition: Control/CxxUtils/Root/StringUtils.cxx:91
min
#define min(a, b)
Definition: cfImp.cxx:40
ISF::PunchThroughClassifier::m_calibratorConfigFileName
std::string m_calibratorConfigFileName
Definition: PunchThroughClassifier.h:78
ISF::PunchThroughClassifier::computePunchThroughProbability
virtual double computePunchThroughProbability(const ISF::ISFParticle &isfp, const TFCSSimulationState &simulstate) const override
interface method to return probability prediction of punch through
Definition: PunchThroughClassifier.cxx:32
PathResolver.h
merge_scale_histograms.doc
string doc
Definition: merge_scale_histograms.py:9
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:221
ActsTrk::to_string
std::string to_string(const DetectorType &type)
Definition: GeometryDefs.h:34
ISF::ISFParticle::momentum
const Amg::Vector3D & momentum() const
The current momentum vector of the ISFParticle.
ISF::PunchThroughClassifier::initializeCalibrator
StatusCode initializeCalibrator(const std::string &calibratorConfigFile)
isotonic regressor calibrator initialize method
Definition: PunchThroughClassifier.cxx:126
PathResolverFindCalibFile
std::string PathResolverFindCalibFile(const std::string &logical_file_name)
Definition: PathResolver.cxx:431
lwtDev::parse_json_graph
GraphConfig parse_json_graph(std::istream &json)
Definition: parse_json.cxx:71
python.CaloScaleNoiseConfig.type
type
Definition: CaloScaleNoiseConfig.py:78
TFCSSimulationState::E
double E() const
Definition: TFCSSimulationState.h:42
ISF::PunchThroughClassifier::m_scalerConfigFileName
std::string m_scalerConfigFileName
Definition: PunchThroughClassifier.h:77
ISF::PunchThroughClassifier::PunchThroughClassifier
PunchThroughClassifier(const std::string &, const std::string &, const IInterface *)
Constructor.
Definition: PunchThroughClassifier.cxx:24
python.compressB64.c
def c
Definition: compressB64.py:93
TFCSSimulationState
Definition: TFCSSimulationState.h:32
ISF::PunchThroughClassifier::m_networkConfigFileName
std::string m_networkConfigFileName
Definition: PunchThroughClassifier.h:76