ATLAS Offline Software
Functions
number/trainNN.cxx File Reference
#include <TTree.h>
#include <TFile.h>
#include <TCanvas.h>
#include <TH1F.h>
#include <TLegend.h>
#include <iostream>
#include <TPad.h>
#include <string>
#include <cmath>
#include "../TJetNet.h"
#include "../doNormalization.C"
#include "Riostream.h"
#include "../TNetworkToHistoTool.h"
#include "TSystem.h"
#include "../TTrainedNetwork.h"
#include "TChain.h"
#include "TMatrixD.h"
#include "TVectorD.h"
#include "trainNN.h"
#include <vector>
#include "../files.txt"
#include "../filesOnTrack.txt"

Go to the source code of this file.

Functions

Double_t sigmoid (Double_t x)
 
bool isBadCluster (int sizeX, int nParticles)
 
bool skipSingle (int nParticles, int iClus, int dilutionFactor)
 
bool badTrackInfo (bool useTrackEstimate, double theta)
 
int main ()
 
void trainNN (TString inputfile, TString outputclass, int nIterations, int dilutionFactor, int nodesFirstLayer, int nodesSecondLayer, int restartTrainingFrom, bool useTrackEstimate, int nPatternsPerUpdate, double learningRate, double learningRateDecrease, double learningRateMomentum)
 

Function Documentation

◆ badTrackInfo()

bool badTrackInfo ( bool  useTrackEstimate,
double  theta 
)

Definition at line 82 of file number/trainNN.cxx.

82  {
83 
84  if(useTrackEstimate && theta==0){return true;}
85  return false;
86 
87 }

◆ isBadCluster()

bool isBadCluster ( int  sizeX,
int  nParticles 
)

Definition at line 37 of file number/trainNN.cxx.

37  {
38 
39 
40  if(sizeX==-100){return true;}
41  if(nParticles==0){return true;}
42  if(nParticles!=1 && nParticles!=2 && nParticles!=3){return true;}
43 
44 
45 
46  return false;
47 
48 
49 }

◆ main()

int main ( )

Definition at line 91 of file number/trainNN.cxx.

92 {
93  trainNN(
94  "../TrkValidation.root",
95  "dummy",
96  10000,
97  200,
98  10,
99  10,
100  0);
101  return 0;
102 }

◆ sigmoid()

Double_t sigmoid ( Double_t  x)

Definition at line 30 of file number/trainNN.cxx.

31 {
32  return 1./(1.+exp(-2*x));
33 }

◆ skipSingle()

bool skipSingle ( int  nParticles,
int  iClus,
int  dilutionFactor 
)

Definition at line 52 of file number/trainNN.cxx.

52  {
53 
54 
55  // this reduces the number of single particle clusters of a factor k
56  int k = 50;
57 // int k_2 = 1;
58 
59 
60  if (nParticles==1)
61  {
62  if ((iClus %(dilutionFactor*k) != 0) && (iClus % (dilutionFactor*k) != 1))
63  {
64  return true;
65  }
66  }
67 
68 // if (nParticles==2)
69 // {
70 // if ((iClus %(dilutionFactor*k2) != 0) && (iClus % (dilutionFactor*k2) != 1))
71 // {
72 // return true;
73 // }
74 // }
75 
76  return false;
77 
78 }

◆ trainNN()

void trainNN ( TString  inputfile,
TString  outputclass,
int  nIterations,
int  dilutionFactor,
int  nodesFirstLayer,
int  nodesSecondLayer,
int  restartTrainingFrom,
bool  useTrackEstimate,
int  nPatternsPerUpdate,
double  learningRate,
double  learningRateDecrease,
double  learningRateMomentum 
)

Definition at line 108 of file number/trainNN.cxx.

120 {
121 
122  double bweight=1;
123  double cweight=1.;
124  double lweight=1;
125 
126  gROOT->SetStyle("Plain");
127 
128  cout << "starting with settings: " << endl;
129  cout << " nIterations: " << nIterations << endl;
130  cout << " dilutionFactor: " << dilutionFactor << endl;
131  cout << " nodesFirstLayer: " << nodesFirstLayer << endl;
132  cout << " nodesSecondLayer: " << nodesSecondLayer << endl;
133 
134 
135 // TFile *file = TFile::Open(inputfile);
136 // TTree *simu = (TTree*)file->Get("Validation/NNinput");
137  TChain *myChain = new TChain("Validation/NNinput");
138 
139 
140 if(!useTrackEstimate){
141  #include "../files.txt"
142 }
143 
144 if(useTrackEstimate){
145  #include "../filesOnTrack.txt"
146 }
147 
148 
149 
150  TChain* simu=myChain;
151 
152  std::cout << " Training sample obtained... " << std::endl;
153 
154  vector<int> *NN_sizeX;
155  vector<int> *NN_sizeY;
156  vector<vector<float> > *NN_matrixOfToT;
157  vector<vector<float> > *NN_vectorOfPitchesY;
158  vector<int> *NN_ClusterPixLayer;
159  vector<int> *NN_ClusterPixBarrelEC;
160  vector<float> *NN_phiBS;
161  vector<float> *NN_thetaBS;
162  vector<float> *NN_etaModule;
163  vector<bool> *NN_useTrackInfo;
164  vector<int> *NN_columnWeightedPosition;
165  vector<int> *NN_rowWeightedPosition;
166  vector<vector<float> > *NN_positionX;
167  vector<vector<float> > *NN_positionY;
168  vector<vector<float> > *NN_theta;
169  vector<vector<float> > *NN_phi;
170 
171  // List of branches
172  TBranch *b_NN_sizeX;
173  TBranch *b_NN_sizeY;
174  TBranch *b_NN_matrixOfToT;
175  TBranch *b_NN_vectorOfPitchesY;
176  TBranch *b_NN_ClusterPixLayer;
177  TBranch *b_NN_ClusterPixBarrelEC;
178  TBranch *b_NN_phiBS;
179  TBranch *b_NN_thetaBS;
180  TBranch *b_NN_etaModule;
181  TBranch *b_NN_useTrackInfo;
182  TBranch *b_NN_columnWeightedPosition;
183  TBranch *b_NN_rowWeightedPosition;
184  TBranch *b_NN_positionX;
185  TBranch *b_NN_positionY;
186  TBranch *b_NN_theta;
187  TBranch *b_NN_phi;
188 
189 
190 
191  NN_sizeX = 0;
192  NN_sizeY = 0;
193  NN_matrixOfToT = 0;
194  NN_vectorOfPitchesY = 0;
195  NN_ClusterPixLayer = 0;
196  NN_ClusterPixBarrelEC = 0;
197  NN_phiBS = 0;
198  NN_thetaBS = 0;
199  NN_etaModule = 0;
200  NN_useTrackInfo = 0;
201  NN_columnWeightedPosition = 0;
202  NN_rowWeightedPosition = 0;
203  NN_positionX = 0;
204  NN_positionY = 0;
205  NN_theta = 0;
206  NN_phi = 0;
207  // Set branch addresses and branch pointers
208  // if (!tree) return 0;
209  // TTree* simu = tree;
210  // fCurrent = -1;
211  simu->SetMakeClass(1);
212 
213  simu->SetBranchAddress("NN_sizeX", &NN_sizeX, &b_NN_sizeX);
214  simu->SetBranchAddress("NN_sizeY", &NN_sizeY, &b_NN_sizeY);
215  simu->SetBranchAddress("NN_matrixOfToT", &NN_matrixOfToT, &b_NN_matrixOfToT);
216  simu->SetBranchAddress("NN_vectorOfPitchesY", &NN_vectorOfPitchesY, &b_NN_vectorOfPitchesY);
217  simu->SetBranchAddress("NN_ClusterPixLayer", &NN_ClusterPixLayer, &b_NN_ClusterPixLayer);
218  simu->SetBranchAddress("NN_ClusterPixBarrelEC", &NN_ClusterPixBarrelEC, &b_NN_ClusterPixBarrelEC);
219  simu->SetBranchAddress("NN_phiBS", &NN_phiBS, &b_NN_phiBS);
220  simu->SetBranchAddress("NN_thetaBS", &NN_thetaBS, &b_NN_thetaBS);
221  simu->SetBranchAddress("NN_etaModule", &NN_etaModule, &b_NN_etaModule);
222  simu->SetBranchAddress("NN_useTrackInfo", &NN_useTrackInfo, &b_NN_useTrackInfo);
223  simu->SetBranchAddress("NN_columnWeightedPosition", &NN_columnWeightedPosition, &b_NN_columnWeightedPosition);
224  simu->SetBranchAddress("NN_rowWeightedPosition", &NN_rowWeightedPosition, &b_NN_rowWeightedPosition);
225  simu->SetBranchAddress("NN_positionX", &NN_positionX, &b_NN_positionX);
226  simu->SetBranchAddress("NN_positionY", &NN_positionY, &b_NN_positionY);
227  simu->SetBranchAddress("NN_theta", &NN_theta, &b_NN_theta);
228  simu->SetBranchAddress("NN_phi", &NN_phi, &b_NN_phi);
229 
230 
231  cout << "Branches set..." << endl;
232 
233 
234  TString filterTrain("Entry$%");
235  filterTrain+=dilutionFactor;
236  filterTrain+="==0";
237 
238  TString filterTest("Entry$%");
239  filterTest+=dilutionFactor;
240  filterTest+="==1";
241 
242  int* nneurons;
243  int nlayer=3;
244 
245  cout << "Getting Max size " << endl;
246 
247  // simu->Print();
248 
249  simu->GetEntry(0);
250 
251  cout << "First entry..." << endl;
252 
253  Int_t sizeX=-7;
254  Int_t sizeY=-7;
255 
256 
257  // loop over the clusters loking for the first cluster properly saved
258  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
259 
260  sizeX = (*NN_sizeX)[clus];
261  sizeY = (*NN_sizeY)[clus];
262 
263  if(sizeX>0)break;
264 
265  }
266 
267  cout << "Size obtained" << endl;
268 
269 // int numberinputs=sizeX*(sizeY+1)+2;
270  int numberinputs=sizeX*(sizeY+1)+4;
271  if (!useTrackEstimate)
272  {
273 // numberinputs=sizeX*(sizeY+1)+3;
274  numberinputs=sizeX*(sizeY+1)+5;
275  }
276 
277  int numberoutputs=3;
278 
279  if (nodesSecondLayer!=0)
280  {
281  nlayer=4;
282  }
283 
284  if (nodesSecondLayer!=0)
285  {
286  nneurons=new int[4];
287  }
288  else
289  {
290  nneurons=new int[3];
291  }
292 
293  nneurons[0]=numberinputs;
294 
295  nneurons[1]=nodesFirstLayer;
296 
297  if (nodesSecondLayer!=0)
298  {
299  nneurons[2]=nodesSecondLayer;
300  nneurons[3]=3;//number of output nodes
301  }
302  else
303  {
304  nneurons[2]=3;//number of output nodes
305  }
306 
307  // float eventWeight(0);
308  float trainingError(0);
309  float testError(0);
310 
311  //setting learning parameters
312 
313  cout << " now providing training events " << endl;
314 
315  Int_t numberTrainingEvents=0;
316  Int_t numberTestingEvents=0;
317 
318  int iClus=0;
319  int part_0=0;
320  int part_1=0;
321  int part_2=0;
322  int part_3=0;
323  // Loop over entries:
324  for (Int_t i = 0; i < simu->GetEntries(); i++) {
325 
326  if (i % 100000 == 0 ) {
327  std::cout << " Counting training / testing events in sample. Looping over event " << i << std::endl;
328  }
329 
330  simu->GetEntry(i);
331  // cout << " Entry obtained with: " << NN_sizeX->size() << " clusters" << endl;
332  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
333 
334  vector<float> *matrixOfToT=0;
335  vector<float> *vectorOfPitchesY=0;
336 
337  Float_t phiBS;
338  Float_t thetaBS;
339  Float_t etaModule;
340  Int_t ClusterPixLayer;
341  Int_t ClusterPixBarrelEC;
342 
343  std::vector<float> * positionX=0;
344  std::vector<float> * positionY=0;
345  std::vector<float> * thetaTr=0;
346  std::vector<float> * phiTr=0;
347 
348  sizeX = (*NN_sizeX)[clus];
349  sizeY = (*NN_sizeY)[clus];
350 
351  positionX =&(*NN_positionX)[clus];
352 
353  thetaTr = &(*NN_theta)[clus];
354 
355  int nParticles = positionX->size();
356  if (isBadCluster(sizeX, nParticles ) )continue;
357 
358  // loop over the particles;
359  for( unsigned int P = 0; P < positionX->size(); P++){
360 
361  double theta = (*thetaTr)[P];
362  if (theta!=theta) continue;
363  iClus++;
364 
365  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
366 
367  if ( skipSingle(nParticles, iClus, dilutionFactor) )continue;
368 
369 
370 
371  if (iClus%dilutionFactor==0) numberTrainingEvents+=1;
372  if (iClus%dilutionFactor==1) numberTestingEvents+=1;
373 
374  if (iClus%dilutionFactor==1 && nParticles==1 ) part_1++;
375  if (iClus%dilutionFactor==1 && nParticles==2 ) part_2++;
376  if (iClus%dilutionFactor==1 && nParticles==3 ) part_3++;
377 
378 
379 
380  }// end loop over th particles
381  }// end loop over cluster
382  }// end Loop over entries
383 
384 
385 
386  cout << " N. training events: " << numberTrainingEvents <<
387  " N. testing events: " << numberTestingEvents <<
388  " N. total events: " << iClus << endl;
389 
390 
391  cout << " 1 particle clusters: " << part_1 << " 2 particles clusters: " << part_2 << " 3 particles clusters: " << part_3 << endl;
392 
393  cout << "now start to setup the network..." << endl;
394 
395  TJetNet* jn = new TJetNet( numberTestingEvents, numberTrainingEvents, nlayer, nneurons );
396 
397  cout << " setting learning method... " << endl;
398 
399  // jn->SetMSTJN(4,12); Fletscher-Rieves (Scaled Conj Grad)
400 
401  // int nPatternsPerUpdate=200;
402  // int nPatternsPerUpdate=1;
403 
404  jn->SetPatternsPerUpdate( nPatternsPerUpdate );
405  jn->SetUpdatesPerEpoch( (int)std::floor((float)numberTrainingEvents/(float)nPatternsPerUpdate) );
406  jn->SetUpdatingProcedure( 0 );
407  jn->SetErrorMeasure( 0 );
408  jn->SetActivationFunction( 1 );
409  jn->SetLearningRate( learningRate );//0.8
410  // jn->SetLearningRate( 1 );//0.8
411  // jn->SetMomentum( 0.2 );//0.3 //is now 0.5
412  jn->SetMomentum( learningRateMomentum );//0.3 //is now 0.5
413  jn->SetInitialWeightsWidth( 1. );
414  // jn->SetLearningRateDecrease( 0.992 );
415  jn->SetLearningRateDecrease( learningRateDecrease );//0.992
416  // jn->SetLearningRateDecrease( 0.995 );//0.992
417 
418 
419  cout << " setting pattern for training events " << endl;
420 
421  int trainSampleNumber=0;
422  int testSampleNumber=1;
423 
424  cout << " copying over training events " << endl;
425  int counter=0;
426  int counter0=0;
427  int counter1=0;
428 
429  iClus=0;
430  for (Int_t i = 0; i < simu->GetEntries(); i++) {
431 
432  if (i % 100000 == 0 ) {
433  std::cout << " Copying over training events. Looping over event " << i << std::endl;
434  }
435 
436  simu->GetEntry(i);
437  // loop over clusters
438  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
439 
440  vector<float> *matrixOfToT=0;
441  vector<float> *vectorOfPitchesY=0;
442 
443  Float_t phiBS;
444  Float_t thetaBS;
445  Float_t etaModule;
446  Int_t ClusterPixLayer;
447  Int_t ClusterPixBarrelEC;
448 
449  std::vector<float> * positionX=0;
450  std::vector<float> * positionY=0;
451  std::vector<float> * thetaTr=0;
452  std::vector<float> * phiTr=0;
453 
454 
455  sizeX = (*NN_sizeX)[clus];
456  sizeY = (*NN_sizeY)[clus];
457 
458  matrixOfToT=&(*NN_matrixOfToT)[clus];
459  vectorOfPitchesY=&(*NN_vectorOfPitchesY)[clus];
460 
461  phiBS = (*NN_phiBS)[clus];
462  thetaBS =(*NN_thetaBS)[clus];
463  etaModule =(*NN_etaModule)[clus];
464 
465  ClusterPixLayer=(*NN_ClusterPixLayer)[clus];
466  ClusterPixBarrelEC = (*NN_ClusterPixBarrelEC)[clus];
467 
468  positionX =&(*NN_positionX)[clus];
469  thetaTr = &(*NN_theta)[clus];
470  phiTr = &(*NN_phi)[clus];
471 
472  int nParticles = positionX->size();
473 
474  if(isBadCluster(sizeX, nParticles ) )continue;
475 
476  for( unsigned int P = 0; P < positionX->size(); P++){
477 
478  double theta = (*thetaTr)[P];
479  double phi = (*phiTr)[P];
480 
481  if (theta!=theta) continue;
482 
483  iClus++;
484 
485  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
486  if ( skipSingle(nParticles, iClus, dilutionFactor) )continue;
487 
488 
489  if (matrixOfToT->size()!=sizeX*sizeY)
490  {
491  std::cout << " Event: " << i << " PROBLEM: size Y is: " << matrixOfToT->size() << std::endl;
492  throw std::runtime_error("Problem in number/trainNN.cxx");
493  }
494 
495  // loop over elements of matrixOfTot which is actually a vector
496  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++){
497 
498  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, ME, norm_ToT((*matrixOfToT)[ME]));
499  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, ME, norm_ToT((*matrixOfToT)[ME]));
500 
501  if (counter1 == 0) std::cout << " element: " << ME << " ToT set to: " << norm_ToT((*matrixOfToT)[ME]) << std::endl;
502 
503  }
504 
505 
506  // loop over vector of pitches
507  for (int s=0;s<sizeY;s++)
508  {
509  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
510 
511  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
512 
513  if (counter0 == 0) std::cout << " s: " << s << " pitch set to: " << norm_pitch((*vectorOfPitchesY)[s]) << std::endl;
514  }
515 
516  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
517  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
518 
519  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
520  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
521 
522 
523 
524  if (counter0 == 0) std::cout << " ClusterPixLayer " << norm_layerNumber(ClusterPixLayer) << " ClusterPixBarrelEC " << norm_layerType(ClusterPixBarrelEC) << std::endl;
525 
526  if (useTrackEstimate)
527  {
528  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phi(phi) );
529  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_theta(theta) );
530 
531  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phi(phi) );
532  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_theta(theta) );
533 
534  if (counter0==0) std::cout << " phi " << norm_phi(phi) << " theta: " << norm_theta(theta) << std::endl;
535 
536  }
537  else
538  {
539  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
540  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
541  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
542 
543  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
544  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
545  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
546 
547 
548  if (counter0==0) std::cout <<
549  " phiBS " << norm_phiBS(phiBS) <<
550  " thetaBS: " << norm_thetaBS(thetaBS) <<
551  " etaModule: " << norm_etaModule(etaModule) << std::endl;
552  }
553 
554 
555  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet( counter0, 0, (nParticles==1 ? 1 : 0) );
556  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet( counter0, 1, (nParticles==2 ? 1 : 0) );
557  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet( counter0, 2, (nParticles>=3 ? 1 : 0) );
558  if (iClus%dilutionFactor==0) jn->SetEventWeightTrainSet( counter0, 1 );
559 
560 
561  if (iClus%dilutionFactor==1) jn->SetOutputTestSet( counter1, 0, (nParticles==1 ? 1 : 0) );
562  if (iClus%dilutionFactor==1) jn->SetOutputTestSet( counter1, 1, (nParticles==2 ? 1 : 0) );
563  if (iClus%dilutionFactor==1) jn->SetOutputTestSet( counter1, 2, (nParticles>=3 ? 1 : 0) );
564  if (iClus%dilutionFactor==1) jn->SetEventWeightTestSet( counter1, 1 );
565 
566 
567 
568  if (iClus%dilutionFactor==0){counter0+=1;}
569  if (iClus%dilutionFactor==1){counter1+=1;}
570 
571  // counter=counter0;
572 
573 
574  }// end loop over the particles
575  }// end cluster loop
576  }// end loop on entries
577  cout << counter0 << " "<< numberTrainingEvents << " "<< iClus << endl;
578 
579  if (counter0!=numberTrainingEvents)
580  {
581  cout << " counter up to: " << counter0 << " while events in training sample are " << numberTrainingEvents << endl;
582  return;
583  }
584 
585 
586  if (counter1!=numberTestingEvents)
587  {
588  cout << " counter up to: " << counter1 << " while events in training sample are " << numberTestingEvents << endl;
589  return;
590  }
591 
592  jn->Shuffle(true,false);
593 
594  if (restartTrainingFrom==0)
595  {
596  jn->Init();
597  // jn->DumpToFile("WeightsInitial.w");
598  }
599  else
600  {
601  TString name("Weights");
602  name+=restartTrainingFrom;
603  name+=".w";
604 
605  jn->ReadFromFile(name);
606  }
607 
608 
609 
610  float minimumError=1e10;
611  int epochesWithRisingError=0;
612  int epochWithMinimum=0;
613 
614  int updatesPerEpoch=jn->GetUpdatesPerEpoch();
615 
616  //prepare output stream
617 
618  TString directory("weights");
619  directory+="_nPat";
620  directory+=nPatternsPerUpdate;
621  directory+="_rate";
622  directory+=(int)(learningRate*100);
623  directory+="_rdec";
624  directory+=(int)(100*learningRateDecrease);
625  directory+="_mom";
626  directory+=(int)(100*learningRateMomentum);
627 
628  if (useTrackEstimate)
629  {
630  directory+="_withTracks";
631  }
632 
633  TString command("mkdir ");
635 
636  gSystem->Exec(command);
637 
638 
639 
640 
641  TString nameCronology=directory;
642  nameCronology+="/trainingCronology.txt";
643 
644  ofstream cronology(nameCronology,ios_base::out);//|ios_base::app);
645 
646  cronology << "-------------SETTINGS----------------" << endl;
647  cronology << "Epochs: " << jn->GetEpochs() << std::endl;
648  cronology << "Updates Per Epoch: " << jn->GetUpdatesPerEpoch() << std::endl;
649  cronology << "Updating Procedure: " << jn->GetUpdatingProcedure() << std::endl;
650  cronology << "Error Measure: " << jn->GetErrorMeasure() << std::endl;
651  cronology << "Patterns Per Update: " << jn->GetPatternsPerUpdate() << std::endl;
652  cronology << "Learning Rate: " << jn->GetLearningRate() << std::endl;
653  cronology << "Momentum: " << jn->GetMomentum() << std::endl;
654  cronology << "Initial Weights Width: " << jn->GetInitialWeightsWidth() << std::endl;
655  cronology << "Learning Rate Decrease: " << jn->GetLearningRateDecrease() << std::endl;
656  cronology << "Activation Function: " << jn->GetActivationFunction() << std::endl;
657  cronology << "-------------LAYOUT------------------" << endl;
658  cronology << "Input variables: " << jn->GetInputDim() << endl;
659  cronology << "Output variables: " << jn->GetOutputDim() << endl;
660  cronology << "Hidden layers: " << jn->GetHiddenLayerDim() << endl;
661  cronology << "Layout : ";
662  for (Int_t s=0;s<jn->GetHiddenLayerDim()+2;++s)
663  {
664  cronology << jn->GetHiddenLayerSize(s);
665  if (s<jn->GetHiddenLayerDim()+1) cronology << "-";
666  }
667  cronology << endl;
668  cronology << "--------------HISTORY-----------------" << endl;
669  cronology << "History of iterations: " << endl;
670  cronology.close();
671 
672  //prepare training histo
673  TH1F* histoTraining=new TH1F("training","training",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
674  TH1F* histoTesting=new TH1F("testing","testing",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
675 
676  double maximumTrain=0;
677  double minimumTrain=1e10;
678 
679  for(int epoch=restartTrainingFrom+1;epoch<=nIterations;++epoch)
680  {
681  if (epoch!=restartTrainingFrom+1)
682  {
683  trainingError = jn->Train();
684  }
685 
686  if (epoch%10==0 || epoch==restartTrainingFrom+1)
687  {
688 
689  cronology.open(nameCronology,ios_base::app);
690 
691  testError = jn->TestBTAG();
692 
693  if (trainingError>maximumTrain) maximumTrain=trainingError;
694  if (testError>maximumTrain) maximumTrain=testError;
695  if (trainingError<minimumTrain) minimumTrain=trainingError;
696  if (testError<minimumTrain) minimumTrain=testError;
697 
698 
699  histoTraining->Fill(epoch/10.,trainingError);
700  histoTesting->Fill(epoch/10.,testError);
701 
702  if (testError<minimumError)
703  {
704  minimumError=testError;
705  epochesWithRisingError=0;
706  epochWithMinimum=epoch;
707  }
708  else
709  {
710  epochesWithRisingError+=10;
711 //WHAT IS THIS???
712 // if (trainingError>testError)
713 // {
714 // epochWithMinimum=epoch;
715 // }
716  }
717 
718 
719  if (epochesWithRisingError>300)
720  {
721  if (trainingError<minimumError)
722  {
723  cout << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
724  cronology << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
725  break;
726  }
727  }
728 
729  cronology << "Epoch: [" << epoch <<
730  "] Error: " << trainingError <<
731  " Test: " << testError << endl;
732 
733  cout << "Epoch: [" << epoch <<
734  "] Error: " << trainingError <<
735  " Test: " << testError << endl;
736 
737  cronology.close();
738 
739 
740 
741  TString name=directory;
742  name+="/Weights";
743  name+=epoch;
744  name+=".root";
745  cout << "Writing File... " << endl;
746  TFile* file=new TFile(name,"recreate");
747  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
748  trainedNetwork->Write();
749  file->Write();
750  file->Close();
751  delete file;
752 
753  /*
754  TFile* file2=new TFile(name);
755  trainedNetwork=(TTrainedNetwork*)file2->Get("TTrainedNetwork");
756  cout <<" hid lay 1 size: " << trainedNetwork->getnHiddenLayerSize()[0] << endl;
757  file2->Close();
758  delete file2;
759  */
760 
761  // jn->DumpToFile(name);
762  }
763  }
764 
765  jn->writeNetworkInfo(1);
766  jn->writeNetworkInfo(2);
767  // jn->writeNetworkInfo(3);
768  // jn->writeNetworkInfo(4);
769  // jn->writeNetworkInfo(5);
770 
771 
772  // cout << " Now try to understand how to get the weights..." << endl;
773 
775  Int_t nInput=jn->GetInputDim();
776 
777  cout << " create Trained Network object..." << endl;
778 
779  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
780 
781 /*
782  cout << " now getting value with trained Network ";
783 
784 
785 
786 
787  double inputexample[9]={norm_nVTX(1),
788  norm_nTracksAtVtx(2),
789  norm_nSingleTracks(0),
790  norm_energyFraction(0.6),
791  norm_mass(2500),
792  norm_significance3d(4 ),
793  norm_IP3D(3),
794  norm_cat_pT(3),
795  norm_cat_eta(1)};
796 
797  for (Int_t i=0;i<nInput;++i)
798  {
799  jn->SetInputs(i,inputexample[i]);
800  }
801 
802  cronology.open("weights/trainingCronology.txt",ios_base::app);
803 
804  jn->Evaluate();
805 
806  cronology << "----------------CONSISTENCY CHECK-----------" << endl;
807  cout << "Result 0:" << jn->GetOutput(0);
808  cronology << "Result 0:" << jn->GetOutput(0);
809  cout << " Result 1:" << jn->GetOutput(1);
810  cronology << "Result 0:" << jn->GetOutput(1);
811  cout << " Result 2:" << jn->GetOutput(2) << endl;
812  cronology << " Result 2:" << jn->GetOutput(2) << endl;
813 
814  cout << " Reading back old network " << endl;
815  jn->readBackTrainedNetwork(trainedNetwork);
816 
817  cout <<" resetting input " << endl;
818  for (Int_t i=0;i<nInput;++i)
819  {
820  jn->SetInputs(i,inputexample[i]);
821  }
822 
823  jn->Evaluate();
824 
825  cout << "After reading back - Result 0:" << jn->GetOutput(0);
826  cronology << "After reading back - Result 0:" << jn->GetOutput(0);
827  // << " my: " << result[0] << endl;
828  cout << " After reading back - Result 1:" << jn->GetOutput(1);
829  cronology << "After reading back - Result 1:" << jn->GetOutput(1);
830  //<< " my: " << result[1] << endl;
831  cout << " After reading back - Result 2:" << jn->GetOutput(2) << endl;
832  cronology << "After reading back - Result 2:" << jn->GetOutput(2);
833  // << " my: " << result[2] << endl;
834  */
835 
836  cout << " Now getting histograms from trainingResult" << endl;
837  cronology << " Now getting histograms from trainingResult" << endl;
838 
839  TNetworkToHistoTool myHistoTool;
840 
841  cout << " From network to histo..." << endl;
842  std::vector<TH1*> myHistos=myHistoTool.fromTrainedNetworkToHisto(trainedNetwork);
843 
844  cout << " From histo to network back..." << endl;
845  TTrainedNetwork* trainedNetwork2=myHistoTool.fromHistoToTrainedNetwork(myHistos);
846 
847  cout << " reading back " << endl;
848  jn->readBackTrainedNetwork(trainedNetwork2);
849 
850 /*
851  cout <<" resetting input " << endl;
852  for (Int_t i=0;i<nInput;++i)
853  {
854  jn->SetInputs(i,inputexample[i]);
855  }
856 
857  jn->Evaluate();
858 
859  cout << "After reading back - Result 0:" << jn->GetOutput(0);
860  cronology << "After reading back - Result 0:" << jn->GetOutput(0);
861  // << " my: " << result[0] << endl;
862  cout << " After reading back - Result 1:" << jn->GetOutput(1);
863  cronology << "After reading back - Result 1:" << jn->GetOutput(1);
864  //<< " my: " << result[1] << endl;
865  cout << " After reading back - Result 2:" << jn->GetOutput(2) << endl;
866  cronology << "After reading back - Result 2:" << jn->GetOutput(2);
867  // << " my: " << result[2] << endl;
868 
869 
870  cout << " Directly from the trainedNetwork read back from HISTOS...!" << endl;
871 
872  std::vector<Double_t> inputData;
873  for (Int_t u=0;u<nInput;++u)
874  {
875  inputData.push_back(inputexample[u]);
876  }
877 
878  std::vector<Double_t> outputData=trainedNetwork2->calculateOutputValues(inputData);
879 
880  cout << "After reading back - Result 0:" << outputData[0] << endl;
881  cout << " After reading back - Result 1:" << outputData[1] << endl;
882  cout << " After reading back - Result 2:" << outputData[2] << endl;
883 */
884 
885 
886 
887 
888  if (epochWithMinimum!=0)
889  {
890  cronology << "Minimum stored from Epoch: " << epochWithMinimum << endl;
891  } else
892  {
893  cronology << "Minimum not reached" << endl;
894  }
895 
896  cronology.close();
897 
898  if (epochWithMinimum!=0)
899  {
900 
901  TString name=directory;
902  name+="/Weights";
903  name+=epochWithMinimum;
904  name+=".root";
905 
906  std::cout << " reading back from minimum " << endl;
907 
908 
909  TFile *_file0 = new TFile(name);
910  TTrainedNetwork* trainedNetwork=(TTrainedNetwork*)_file0->Get("TTrainedNetwork");
911 
912  cout << " Reading back network with minimum" << endl;
913  jn->readBackTrainedNetwork(trainedNetwork);
914 
915  TString nameFile=directory;
916  nameFile+="/weightMinimum.root";
917 
918  TFile* file=new TFile(nameFile,"recreate");
919  trainedNetwork->Write();
920  file->Write();
921  file->Close();
922  delete file;
923 
924  cout << " -------------------- " << endl;
925  cout << " Writing OUTPUT histos " << endl;
926 
927  TString histoFName=directory;
928  histoFName+="/histoWeights.root";
929 
930  TFile* fileHistos=new TFile(histoFName,"recreate");
931  TNetworkToHistoTool histoTool;
932  std::vector<TH1*> myHistos=histoTool.fromTrainedNetworkToHisto(trainedNetwork);
933  std::vector<TH1*>::const_iterator histoBegin=myHistos.begin();
934  std::vector<TH1*>::const_iterator histoEnd=myHistos.end();
935  for (std::vector<TH1*>::const_iterator histoIter=histoBegin;
936  histoIter!=histoEnd;++histoIter)
937  {
938  (*histoIter)->Write();
939  }
940  fileHistos->Write();
941  fileHistos->Close();
942  delete fileHistos;
943 
944  // " filename: " << name << endl;
945 
946  // jn->ReadFromFile(name);
947 
948  }
949  else
950  {
951  cout << " using network at last iteration (minimum not reached..." << endl;
952  }
953 
954  //here you should create the class... Still open how to deal with this...
955  // char* myname=const_cast<char*>(static_cast<const char*>(outputclass));
956  // ierr=mlpsavecf_(myname);
957 
958  TString histoTName=directory;
959  histoTName+="/trainingInfo.root";
960 
961  TFile* histoFile=new TFile(histoTName,"recreate");
962  histoTraining->Write();
963  histoTesting->Write();
964  histoFile->Write();
965  histoFile->Close();
966  delete histoFile;
967 
968  TCanvas* trainingCanvas=new TCanvas("trainingCanvas","trainingCanvas");
969  histoTraining->SetLineColor(2);
970  histoTesting->SetLineColor(4);
971 
972  histoTraining->GetYaxis()->SetRangeUser(minimumTrain,maximumTrain);
973  histoTraining->Draw("l");
974  histoTesting->Draw("lsame");
975  TString canvasName=directory;
976  canvasName+="/trainingCurve.eps";
977  trainingCanvas->SaveAs(canvasName);
978 
979 
980  TCanvas* mlpa_canvas = new TCanvas("jetnet_canvas","Network analysis");
981  mlpa_canvas->Divide(2,4);
982 
983 
984 
985 // TCanvas* mlpa_canvas_5=gDirectory->Get("mlpa_canvas_5");
986 // mlpa_canvas_5->SetLogy(kTrue);
987  gPad->SetLogy();
988 
989  // Use the NN to plot the results for each sample
990  // This will give approx. the same result as DrawNetwork.
991  // All entries are used, while DrawNetwork focuses on
992  // the test sample. Also the xaxis range is manually set.
993  TH1F *bg2 = new TH1F("bg2h", "NN output", 50, -.5, 1.5);
994  TH1F *bg = new TH1F("bgh", "NN output", 50, -.5, 1.5);
995  TH1F *sig = new TH1F("sigh", "NN output", 50, -.5, 1.5);
996 
997  //sig = 1 part; bg = 2 part; bg2 = 3 part
998 
999  TH1F *bg2test = new TH1F("bg2htest", "NN output", 50, -.5, 1.5);
1000  TH1F *bgtest = new TH1F("bghtest", "NN output", 50, -.5, 1.5);
1001  TH1F *sigtest = new TH1F("sightest", "NN output", 50, -.5, 1.5);
1002 
1003  int weight=1;
1004  iClus=0;
1005  for (Int_t i = 0; i < simu->GetEntries(); i++) {
1006 
1007  if (i % 100000 == 0 ) {
1008  std::cout << " First plot. Looping over event " << i << std::endl;
1009  }
1010 
1011  // if (iClus%dilutionFactor!=0&&iClus%dilutionFactor!=1) continue;
1012 
1013  simu->GetEntry(i);
1014 
1015 
1016  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
1017  vector<float> *matrixOfToT=0;
1018  vector<float> *vectorOfPitchesY=0;
1019 
1020  Float_t phiBS;
1021  Float_t thetaBS;
1022  Float_t etaModule;
1023  Int_t ClusterPixLayer;
1024  Int_t ClusterPixBarrelEC;
1025 
1026  std::vector<float> * positionX=0;
1027  std::vector<float> * positionY=0;
1028  std::vector<float> * thetaTr=0;
1029  std::vector<float> * phiTr=0;
1030 
1031 
1032 
1033  sizeX = (*NN_sizeX)[clus];
1034  sizeY = (*NN_sizeY)[clus];
1035 
1036  matrixOfToT=&(*NN_matrixOfToT)[clus];
1037  vectorOfPitchesY=&(*NN_vectorOfPitchesY)[clus];
1038 
1039  phiBS = (*NN_phiBS)[clus];
1040  thetaBS =(*NN_thetaBS)[clus];
1041  etaModule =(*NN_etaModule)[clus];
1042 
1043  ClusterPixLayer=(*NN_ClusterPixLayer)[clus];
1044  ClusterPixBarrelEC = (*NN_ClusterPixBarrelEC)[clus];
1045 
1046  positionX =&(*NN_positionX)[clus];
1047 
1048  int nParticles = positionX->size();
1049  //if(nParticles==0)continue;
1050 
1051  thetaTr = &(*NN_theta)[clus];
1052  phiTr = &(*NN_phi)[clus];
1053 
1054  if(isBadCluster(sizeX, nParticles ) )continue;
1055 
1056 
1057  for( unsigned int P = 0; P < positionX->size(); P++){
1058 
1059  iClus++;
1060  double theta = (*thetaTr)[P];
1061  double phi = (*phiTr)[P];
1062  if (ClusterPixBarrelEC==2)
1063  {
1064  theta=-theta;
1065  phi=-phi;
1066  }
1067 
1068 
1069  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
1070  if ( skipSingle(nParticles, iClus, dilutionFactor) )continue;
1071 
1072 
1073  if (iClus%dilutionFactor==0||iClus%dilutionFactor==1){
1074 
1075 
1076  // loop over elements of matrixOfTot which is actually a vector
1077  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++)
1078  {
1079  jn->SetInputs( ME, norm_ToT((*matrixOfToT)[ME]));
1080  }
1081 
1082  for (int s=0;s<sizeY;s++)
1083  {
1084  jn->SetInputs( sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
1085  }
1086 
1087 
1088  jn->SetInputs( (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
1089  jn->SetInputs( (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
1090 
1091  if (useTrackEstimate)
1092  {
1093  jn->SetInputs( (sizeX+1)*sizeY+2, norm_phi(phi) );
1094  jn->SetInputs( (sizeX+1)*sizeY+3, norm_theta(theta) );
1095  // jn->SetInputs( (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
1096  }
1097  else
1098  {
1099  jn->SetInputs( (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
1100  jn->SetInputs( (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
1101  jn->SetInputs( (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
1102  }
1103 
1104  jn->Evaluate();
1105 
1106  float p1=jn->GetOutput(0);
1107  float p2=jn->GetOutput(1);
1108  float p3=jn->GetOutput(2);
1109 
1110  if (nParticles==1)
1111  {
1112  if (iClus%dilutionFactor==0)
1113  {
1114  sig->Fill(p1/(p1+p2+p3),weight);
1115  }
1116  else if (iClus%dilutionFactor==1)
1117  {
1118  sigtest->Fill(p1/(p1+p2+p3),weight);
1119  }
1120  }
1121  if (nParticles==2)
1122  {
1123  if (iClus%dilutionFactor==0)
1124  {
1125  bg->Fill(p1/(p1+p2+p3),weight);
1126  }
1127  else if (iClus%dilutionFactor==1)
1128  {
1129  bgtest->Fill(p1/(p1+p2+p3),weight);
1130  }
1131  }
1132  if (nParticles>=3)
1133  {
1134  if (iClus%dilutionFactor==0)
1135  {
1136  bg2->Fill(p1/(p1+p2+p3),weight);
1137  }
1138  else if (iClus%dilutionFactor==1)
1139  {
1140  bg2test->Fill(p1/(p1+p2+p3),weight);
1141  }
1142 
1143 
1144  }
1145 
1146  }
1147 
1148 
1149  }// end loop over particles
1150  }// end loop over clusters
1151  }// end loop over entries
1152 
1153  //now you need the maximum
1154  float maximum=1;
1155  for (Int_t a=0;a<bg->GetNbinsX();a++)
1156  {
1157  if (bg->GetBinContent(a)>maximum)
1158  {
1159  maximum=1.2*bg->GetBinContent(a);
1160  }
1161  }
1162 
1163 
1164  bg2->SetLineColor(kYellow);
1165  bg2->SetFillStyle(3008); bg2->SetFillColor(kYellow);
1166  bg->SetLineColor(kBlue);
1167  bg->SetFillStyle(3008); bg->SetFillColor(kBlue);
1168  sig->SetLineColor(kRed);
1169  sig->SetFillStyle(3003); sig->SetFillColor(kRed);
1170  bg2->SetStats(0);
1171  bg->SetStats(0);
1172  sig->SetStats(0);
1173 
1174 
1175  bg2test->SetLineColor(kYellow);
1176  bg2test->SetFillStyle(3008); bg2test->SetFillColor(kYellow);
1177  bgtest->SetLineColor(kBlue);
1178  bgtest->SetFillStyle(3008); bgtest->SetFillColor(kBlue);
1179  sigtest->SetLineColor(kRed);
1180  sigtest->SetFillStyle(3003); sigtest->SetFillColor(kRed);
1181  bg2test->SetStats(0);
1182  bgtest->SetStats(0);
1183  sigtest->SetStats(0);
1184 
1185  mlpa_canvas->cd(1);
1186  gPad->SetLogy();
1187 
1188  bg->GetYaxis()->SetRangeUser(1,maximum);
1189  bgtest->GetYaxis()->SetRangeUser(1,maximum);
1190 
1191  mlpa_canvas->cd(1);
1192  bg->Draw();
1193  bg2->Draw("same");
1194  sig->Draw("same");
1195 
1196  TLegend *legend = new TLegend(.75, .80, .95, .95);
1197  legend->AddEntry(bg2, "particles >=3");
1198  legend->AddEntry(bg, "particles = 2");
1199  legend->AddEntry(sig, "particles = 1");
1200  legend->Draw();
1201 
1202  mlpa_canvas->cd(2);
1203  gPad->SetLogy();
1204 
1205  bgtest->Draw();
1206  bg2test->Draw("same");
1207  sigtest->Draw("same");
1208 
1209  TLegend *legendtest = new TLegend(.75, .80, .95, .95);
1210  legendtest->AddEntry(bg2test, "particles >=3");
1211  legendtest->AddEntry(bgtest, "particles = 2");
1212  legendtest->AddEntry(sigtest, "particles = 1");
1213  legendtest->Draw();
1214 
1215  mlpa_canvas->cd(5);
1216  gPad->SetLogy();
1217  bg->DrawNormalized();
1218  bg2->DrawNormalized("same");
1219  sig->DrawNormalized("same");
1220  legend->Draw();
1221 
1222  mlpa_canvas->cd(6);
1223  gPad->SetLogy();
1224  bgtest->DrawNormalized();
1225  bg2test->DrawNormalized("same");
1226  sigtest->DrawNormalized("same");
1227  legendtest->Draw();
1228 
1229 
1230 
1231  mlpa_canvas->cd(3);
1232  gPad->SetLogy();
1233 
1234  // Use the NN to plot the results for each sample
1235  // This will give approx. the same result as DrawNetwork.
1236  // All entries are used, while DrawNetwork focuses on
1237  // the test sample. Also the xaxis range is manually set.
1238  TH1F *c_bg2 = new TH1F("c_bg2h", "NN output", 50, -.5, 1.5);
1239  TH1F *c_bg = new TH1F("c_bgh", "NN output", 50, -.5, 1.5);
1240  TH1F *c_sig = new TH1F("c_sigh", "NN output", 50, -.5, 1.5);
1241 
1242  TH1F *c_bg2test = new TH1F("c_bg2htest", "NN output", 50, -.5, 1.5);
1243  TH1F *c_bgtest = new TH1F("c_bghtest", "NN output", 50, -.5, 1.5);
1244  TH1F *c_sigtest = new TH1F("c_sightest", "NN output", 50, -.5, 1.5);
1245 
1246 
1247  iClus=0;
1248  for (Int_t i = 0; i < simu->GetEntries(); i++) {
1249 
1250  if (i % 100000 == 0 ) {
1251  std::cout << " Second plot. Looping over event " << i << std::endl;
1252  }
1253 
1254 
1255  simu->GetEntry(i);
1256 
1257  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
1258 
1259  vector<float> *matrixOfToT=0;
1260  vector<float> *vectorOfPitchesY=0;
1261 
1262  Float_t phiBS;
1263  Float_t thetaBS;
1264  Float_t etaModule;
1265  Int_t ClusterPixLayer;
1266  Int_t ClusterPixBarrelEC;
1267 
1268  std::vector<float> * positionX=0;
1269  std::vector<float> * positionY=0;
1270  std::vector<float> * thetaTr=0;
1271  std::vector<float> * phiTr=0;
1272 
1273 
1274  sizeX = (*NN_sizeX)[clus];
1275  sizeY = (*NN_sizeY)[clus];
1276 
1277  if(sizeX==-100)continue;
1278 
1279  matrixOfToT=&(*NN_matrixOfToT)[clus];
1280  vectorOfPitchesY=&(*NN_vectorOfPitchesY)[clus];
1281 
1282  phiBS = (*NN_phiBS)[clus];
1283  thetaBS =(*NN_thetaBS)[clus];
1284  etaModule =(*NN_etaModule)[clus];
1285 
1286  ClusterPixLayer=(*NN_ClusterPixLayer)[clus];
1287  ClusterPixBarrelEC = (*NN_ClusterPixBarrelEC)[clus];
1288 
1289  positionX =&(*NN_positionX)[clus];
1290 
1291  int nParticles = positionX->size();
1292  if(nParticles==0)continue;
1293 
1294  thetaTr = &(*NN_theta)[clus];
1295  phiTr = &(*NN_phi)[clus];
1296 
1297 
1298  if(isBadCluster(sizeX, nParticles ) )continue;
1299 
1300 
1301 
1302  for( unsigned int P = 0; P < positionX->size(); P++){
1303 
1304  iClus++;
1305  double theta = (*thetaTr)[P];
1306  double phi = (*phiTr)[P];
1307  if (ClusterPixBarrelEC==2)
1308  {
1309  theta=-theta;
1310  phi=-phi;
1311  }
1312 
1313 
1314  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
1315  if ( skipSingle(nParticles, iClus, dilutionFactor) )continue;
1316 
1317 
1318 
1319  if (iClus%dilutionFactor==0||iClus%dilutionFactor==1){//continue;
1320 
1321 
1322  // loop over elements of matrixOfTot which is actually a vector
1323  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++)
1324  {
1325  jn->SetInputs( ME, norm_ToT((*matrixOfToT)[ME]));
1326  }
1327 
1328 
1329 
1330 
1331  for (int s=0;s<sizeY;s++)
1332  {
1333  jn->SetInputs( sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
1334  }
1335 
1336  jn->SetInputs( (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
1337  jn->SetInputs( (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
1338 
1339  if (useTrackEstimate)
1340  {
1341  jn->SetInputs( (sizeX+1)*sizeY+2, norm_phi(phi) );
1342  jn->SetInputs( (sizeX+1)*sizeY+3, norm_theta(theta) );
1343  // jn->SetInputs( (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
1344  }
1345  else
1346  {
1347  jn->SetInputs( (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
1348  jn->SetInputs( (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
1349  jn->SetInputs( (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
1350  }
1351 
1352 
1353  jn->Evaluate();
1354 
1355  float p1=jn->GetOutput(0);
1356  float p2=jn->GetOutput(1);
1357  float p3=jn->GetOutput(2);
1358 
1359  float discr=(p1+p2)/(p1+p2+p3);
1360 
1361  if (nParticles==1)
1362  {
1363  if (iClus%dilutionFactor==0)
1364  {
1365  c_sig->Fill(discr,weight);
1366  }
1367  else if (iClus%dilutionFactor==1)
1368  {
1369  c_sigtest->Fill(discr,weight);
1370  }
1371  }
1372  if (nParticles==2)
1373  {
1374  if (iClus%dilutionFactor==0)
1375  {
1376  c_bg->Fill(discr,weight);
1377  }
1378  else if (iClus%dilutionFactor==1)
1379  {
1380  c_bgtest->Fill(discr,weight);
1381  }
1382  }
1383  if (nParticles>=3)
1384  {
1385  if (iClus%dilutionFactor==0)
1386  {
1387  c_bg2->Fill(discr,weight);
1388  }
1389  else if (iClus%dilutionFactor==1)
1390  {
1391  c_bg2test->Fill(discr,weight);
1392  }
1393  }
1394 
1395  }
1396  iClus++;
1397  }// end loop over particles
1398  }// end loop over cluster
1399  }// end loop over entries
1400 
1401  //now you need the maximum
1402  maximum=1;
1403  for (Int_t a=0;a<c_bg->GetNbinsX();a++)
1404  {
1405  if (c_bg->GetBinContent(a)>maximum)
1406  {
1407  maximum=1.2*c_bg->GetBinContent(a);
1408  }
1409  }
1410  c_bg2->SetLineColor(kYellow);
1411  c_bg2->SetFillStyle(3008); c_bg2->SetFillColor(kYellow);
1412  c_bg->SetLineColor(kBlue);
1413  c_bg->SetFillStyle(3008); c_bg->SetFillColor(kBlue);
1414  c_sig->SetLineColor(kRed);
1415  c_sig->SetFillStyle(3003); c_sig->SetFillColor(kRed);
1416  c_bg2->SetStats(0);
1417  c_bg->SetStats(0);
1418  c_sig->SetStats(0);
1419 
1420  c_bg2test->SetLineColor(kYellow);
1421  c_bg2test->SetFillStyle(3008); c_bg2test->SetFillColor(kYellow);
1422  c_bgtest->SetLineColor(kBlue);
1423  c_bgtest->SetFillStyle(3008); c_bgtest->SetFillColor(kBlue);
1424  c_sigtest->SetLineColor(kRed);
1425  c_sigtest->SetFillStyle(3003); c_sigtest->SetFillColor(kRed);
1426  c_bg2test->SetStats(0);
1427  c_bgtest->SetStats(0);
1428  c_sigtest->SetStats(0);
1429 
1430  mlpa_canvas->cd(3);
1431  gPad->SetLogy();
1432 
1433 
1434  c_bg->GetYaxis()->SetRangeUser(1,maximum);
1435  c_bgtest->GetYaxis()->SetRangeUser(1,maximum);
1436 
1437  c_bg->Draw();
1438  c_bg2->Draw("same");
1439  c_sig->Draw("same");
1440 
1441  TLegend *legend2 = new TLegend(.75, .80, .95, .95);
1442  legend2->AddEntry(c_bg2, "particles >=3");
1443  legend2->AddEntry(c_bg, "particles = 2");
1444  legend2->AddEntry(c_sig, "particles = 1");
1445  legend2->Draw();
1446 
1447  mlpa_canvas->cd(4);
1448  gPad->SetLogy();
1449 
1450  c_bgtest->Draw();
1451  c_bg2test->Draw("same");
1452  c_sigtest->Draw("same");
1453 
1454  TLegend *legend2test = new TLegend(.75, .80, .95, .95);
1455  legend2test->AddEntry(c_bg2test, "particles >=3");
1456  legend2test->AddEntry(c_bgtest, "particles = 2");
1457  legend2test->AddEntry(c_sigtest, "particles = 1");
1458  legend2test->Draw();
1459 
1460  mlpa_canvas->cd(7);
1461  gPad->SetLogy();
1462  c_bg->DrawNormalized();
1463  c_bg2->DrawNormalized("same");
1464  c_sig->DrawNormalized("same");
1465  legend2->Draw();
1466 
1467  mlpa_canvas->cd(8);
1468  gPad->SetLogy();
1469  c_bgtest->DrawNormalized();
1470  c_bg2test->DrawNormalized("same");
1471  c_sigtest->DrawNormalized("same");
1472  legend2test->Draw();
1473 
1474 
1475  mlpa_canvas->cd(0);
1476 
1477  TString resultName=directory;
1478  resultName+="/result.eps";
1479  mlpa_canvas->SaveAs(resultName);
1480 
1481 
1482 }
norm_etaModule
double norm_etaModule(const double input)
Definition: NnNormalization.cxx:101
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
TJetNet::GetErrorMeasure
Int_t GetErrorMeasure(void)
Definition: TJetNet.cxx:1156
phi
Scalar phi() const
phi method
Definition: AmgMatrixBasePlugin.h:67
StandaloneBunchgroupHandler.bg
bg
Definition: StandaloneBunchgroupHandler.py:243
TJetNet::GetLearningRate
Double_t GetLearningRate(void)
Definition: TJetNet.cxx:1177
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
TJetNet::SetPatternsPerUpdate
void SetPatternsPerUpdate(Int_t aValue)
Definition: TJetNet.cxx:1105
DMTest::P
P_v1 P
Definition: P.h:23
extractSporadic.nameFile
string nameFile
Definition: extractSporadic.py:84
TJetNet::readBackTrainedNetwork
void readBackTrainedNetwork(const TTrainedNetwork *)
Definition: TJetNet.cxx:207
TJetNet::writeNetworkInfo
void writeNetworkInfo(Int_t typeOfInfo=0)
Definition: TJetNet.cxx:664
norm_pitch
double norm_pitch(const double input, bool addIBL=false)
Definition: NnNormalization.cxx:32
theta
Scalar theta() const
theta method
Definition: AmgMatrixBasePlugin.h:75
TRTCalib_cfilter.p1
p1
Definition: TRTCalib_cfilter.py:130
TJetNet::GetMomentum
Double_t GetMomentum(void)
Definition: TJetNet.cxx:1182
TJetNet::GetOutput
Double_t GetOutput(Int_t aIndex=0)
Definition: TJetNet.cxx:948
TJetNet::Init
void Init(void)
Definition: TJetNet.cxx:670
python.AthDsoLogger.out
out
Definition: AthDsoLogger.py:71
TJetNet::SetOutputTestSet
void SetOutputTestSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.h:196
TJetNet::GetLearningRateDecrease
Double_t GetLearningRateDecrease(void)
Definition: TJetNet.cxx:1192
norm_phi
double norm_phi(const double input)
Definition: NnNormalization.cxx:71
TJetNet::SetUpdatingProcedure
void SetUpdatingProcedure(Int_t aValue)
Definition: TJetNet.cxx:1078
TNetworkToHistoTool
Definition: TNetworkToHistoTool.h:18
trainNN
void trainNN(TString inputfile, TString outputclass, int nIterations, int dilutionFactor, int nodesFirstLayer, int nodesSecondLayer, int restartTrainingFrom, bool useTrackEstimate, int nPatternsPerUpdate, double learningRate, double learningRateDecrease, double learningRateMomentum)
Definition: number/trainNN.cxx:108
drawFromPickle.exp
exp
Definition: drawFromPickle.py:36
norm_theta
double norm_theta(const double input)
Definition: NnNormalization.cxx:79
x
#define x
TJetNet::GetUpdatesPerEpoch
Int_t GetUpdatesPerEpoch(void)
Definition: TJetNet.cxx:1146
TJetNet::SetInputTestSet
void SetInputTestSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:740
TJetNet::SetEventWeightTrainSet
void SetEventWeightTrainSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:752
TJetNet::SetMomentum
void SetMomentum(Double_t aValue)
Definition: TJetNet.cxx:1118
dqt_zlumi_pandas.weight
int weight
Definition: dqt_zlumi_pandas.py:189
TJetNet::Shuffle
void Shuffle(Bool_t aShuffleTrainSet=true, Bool_t aShuffleTestSet=true)
Definition: TJetNet.cxx:1222
TRTCalib_cfilter.p2
p2
Definition: TRTCalib_cfilter.py:131
norm_layerNumber
double norm_layerNumber(const double input)
Definition: NnNormalization.cxx:57
TNetworkToHistoTool::fromHistoToTrainedNetwork
TTrainedNetwork * fromHistoToTrainedNetwork(std::vector< TH1 * > &) const
TNetworkToHistoTool::fromTrainedNetworkToHisto
std::vector< TH1 * > fromTrainedNetworkToHisto(TTrainedNetwork *) const
DeMoScan.directory
string directory
Definition: DeMoScan.py:80
lumiFormat.i
int i
Definition: lumiFormat.py:85
TJetNet
Definition: TJetNet.h:41
TJetNet::TestBTAG
Double_t TestBTAG(void)
Definition: TJetNet.cxx:362
TJetNet::ReadFromFile
void ReadFromFile(TString aFileName="fort.8")
Definition: TJetNet.cxx:962
norm_ToT
double norm_ToT(const double input)
Definition: NnNormalization.cxx:24
python.BuildSignatureFlags.sig
sig
Definition: BuildSignatureFlags.py:218
file
TFile * file
Definition: tile_monitor.h:29
TJetNet::SetOutputTrainSet
void SetOutputTrainSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.cxx:734
norm_layerType
double norm_layerType(const double input)
Definition: NnNormalization.cxx:64
TJetNet::SetInputTrainSet
void SetInputTrainSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:728
TJetNet::Evaluate
void Evaluate(Int_t aPattern)
Definition: TJetNet.cxx:932
TJetNet::GetPatternsPerUpdate
Int_t GetPatternsPerUpdate(void)
Definition: TJetNet.cxx:1172
TTrainedNetwork
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:21
TJetNet::GetEpochs
Int_t GetEpochs(void)
Definition: TJetNet.h:78
norm_phiBS
double norm_phiBS(const double input)
Definition: NnNormalization.cxx:86
TJetNet::GetActivationFunction
Int_t GetActivationFunction(void) const
Definition: TJetNet.cxx:1161
TJetNet::SetErrorMeasure
void SetErrorMeasure(Int_t aValue)
Definition: TJetNet.cxx:1085
TJetNet::SetLearningRate
void SetLearningRate(Double_t aValue)
Definition: TJetNet.cxx:1111
plotBeamSpotVxVal.legend
legend
Definition: plotBeamSpotVxVal.py:98
TJetNet::GetOutputDim
Int_t GetOutputDim(void) const
Definition: TJetNet.h:57
TJetNet::SetLearningRateDecrease
void SetLearningRateDecrease(Double_t aValue)
Definition: TJetNet.cxx:1130
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:228
TJetNet::GetInitialWeightsWidth
Double_t GetInitialWeightsWidth(void)
Definition: TJetNet.cxx:1187
TJetNet::SetUpdatesPerEpoch
void SetUpdatesPerEpoch(Int_t aValue)
Definition: TJetNet.cxx:1071
TJetNet::SetInitialWeightsWidth
void SetInitialWeightsWidth(Double_t aValue)
Definition: TJetNet.cxx:1124
badTrackInfo
bool badTrackInfo(bool useTrackEstimate, double theta)
Definition: number/trainNN.cxx:82
a
TList * a
Definition: liststreamerinfos.cxx:10
TJetNet::SetActivationFunction
void SetActivationFunction(Int_t aValue)
Definition: TJetNet.cxx:1091
skipSingle
bool skipSingle(int nParticles, int iClus, int dilutionFactor)
Definition: number/trainNN.cxx:52
TJetNet::GetInputDim
Int_t GetInputDim(void) const
Definition: TJetNet.h:54
isBadCluster
bool isBadCluster(int sizeX, int nParticles)
Definition: number/trainNN.cxx:37
TJetNet::GetHiddenLayerSize
Int_t GetHiddenLayerSize(Int_t number) const
Definition: TJetNet.h:56
TJetNet::createTrainedNetwork
TTrainedNetwork * createTrainedNetwork() const
Definition: TJetNet.cxx:104
python.TrigEgammaMonitorHelper.TH1F
def TH1F(name, title, nxbins, bins_par2, bins_par3=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:24
TRTCalib_cfilter.p3
p3
Definition: TRTCalib_cfilter.py:132
test_pyathena.counter
counter
Definition: test_pyathena.py:15
TJetNet::SetEventWeightTestSet
void SetEventWeightTestSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:758
get_generator_info.command
string command
Definition: get_generator_info.py:38
norm_thetaBS
double norm_thetaBS(const double input)
Definition: NnNormalization.cxx:94
TJetNet::SetInputs
void SetInputs(Int_t aIndex=0, Double_t aValue=0.0)
Definition: TJetNet.cxx:942
MCP::TrackType::ME
@ ME
TJetNet::Train
Double_t Train(void)
Definition: TJetNet.cxx:618
fitman.k
k
Definition: fitman.py:528
TJetNet::GetUpdatingProcedure
Int_t GetUpdatingProcedure(void)
Definition: TJetNet.cxx:1151
TJetNet::GetHiddenLayerDim
Int_t GetHiddenLayerDim(void) const
Definition: TJetNet.h:55