ATLAS Offline Software
Functions
positions/trainNN.h File Reference
#include "TString.h"
Include dependency graph for positions/trainNN.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

void trainNN (TString inputfile, TString outputclass="JetFitterNN", int nIterations=10, int dilutionFactor=2, int nodesFirstLayer=10, int nodesSecondLayer=9, int restartTrainingFrom=0, int nParticlesTraining=2, bool useTrackEstimate=false, int nPatternsPerUpdate=200, double learningRate=0.3, double learningRateDecrease=0.99, double learningRateMomentum=0.1)
 
int main ()
 

Function Documentation

◆ main()

int main ( )

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

getCoefficientMap(label, EigenIdxList)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. EigenIdxList is user defined vector containing all eigenvector index that user interested in. output: Map of format map<string, map<string, float>> containing decomposition coefficient of the list of eigenvectors defined by EigenIdxList.

getCoefficients(label, evIdx)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light
  2. evIdx: The index of eigenvector user interested in. output value: vector of coefficient values. The order is the same as output given by getListOfOriginalNuisanceParameters()

getListOfOriginalNuisanceParameters(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light output value: List of original nuisance parameter names.

getNumEigenVectors(label)

input value:

  1. label: falvor label in std::string format, could be one of B, C, T, Light return value: number of eigen vectors used for chosen label. Return 0 if error occured.

Definition at line 18 of file hello.cxx.

18  {
19  using namespace asg::msgUserCode;
20  ANA_CHECK_SET_TYPE (int);
21 
22 
23  const string myname = "hello: ";
24  cout << myname << "Begin." << endl;
25  AsgHelloTool htool("myhello");
26  ANA_CHECK( htool.setProperty("Message", "Hello from ASG.") );
27  ANA_CHECK( htool.setProperty("OutputLevel", MSG::DEBUG) );
28  cout << myname << "Initialize" << endl;
29  ANA_CHECK( htool.initialize());
30  cout << myname << "Show properties" << endl;
31  htool.print();
32  cout << myname << "Extract property" << endl;
33  const string* message = htool.getProperty< string >( "Message" );
34  if( ! message ) {
35  cout << myname << "Couldn't extract property from the tool" << endl;
36  return 1;
37  }
38  htool.getProperty< string >( "UnknownProperty" );
39  htool.getProperty< int >( "Message" );
40  cout << myname << "The \"Message\" property of the tool: " << *message << endl;
41  cout << myname << "Run 10 times" << endl;
42  string line = "---------------------------------------------------";
43  cout << line << endl;
44  for ( int i=0; i<10; ++i ) {
45  if ( i == 3 ) {
46  ANA_CHECK( htool.setProperty("OutputLevel", MSG::INFO) );
47  }
48  htool.talk();
49  }
50  cout << line << endl;
51  cout << myname << "Check failure:" << endl;
52  ANA_CHECK( StatusCode (StatusCode::FAILURE));
53  cout << myname << "End of failure check" << endl;
54  cout << myname << "End." << endl;
55  return 0;
56 }

◆ trainNN()

void trainNN ( TString  inputfile,
TString  outputclass = "JetFitterNN",
int  nIterations = 10,
int  dilutionFactor = 2,
int  nodesFirstLayer = 10,
int  nodesSecondLayer = 9,
int  restartTrainingFrom = 0,
int  nParticlesTraining = 2,
bool  useTrackEstimate = false,
int  nPatternsPerUpdate = 200,
double  learningRate = 0.3,
double  learningRateDecrease = 0.99,
double  learningRateMomentum = 0.1 
)

Definition at line 101 of file positions/trainNN.cxx.

113  {
114 
115  double bweight=1;
116  double cweight=1.;
117  double lweight=1;
118 
119  gROOT->SetStyle("Plain");
120 
121  cout << "starting with settings: " << endl;
122  cout << " nIterations: " << nIterations << endl;
123  cout << " dilutionFactor: " << dilutionFactor << endl;
124  cout << " nodesFirstLayer: " << nodesFirstLayer << endl;
125  cout << " nodesSecondLayer: " << nodesSecondLayer << endl;
126 
127 // TFile *file = TFile::Open(inputfile);
128 // TTree *simu = (TTree*)file->Get("Validation/NNinput");
129 
130  TChain *myChain = new TChain("Validation/NNinput");
131 
132 
133 if(!useTrackEstimate){
134  #include "../files.txt"
135 }
136 
137 if(useTrackEstimate){
138  #include "../filesOnTrack.txt"
139 }
140  TChain* simu=myChain;
141 
142  std::cout << " Training sample obtained... " << std::endl;
143 
144  vector<int> *NN_sizeX;
145  vector<int> *NN_sizeY;
146  vector<vector<float> > *NN_matrixOfToT;
147  vector<vector<float> > *NN_vectorOfPitchesY;
148  vector<int> *NN_ClusterPixLayer;
149  vector<int> *NN_ClusterPixBarrelEC;
150  vector<float> *NN_phiBS;
151  vector<float> *NN_thetaBS;
152  vector<float> *NN_etaModule;
153  vector<bool> *NN_useTrackInfo;
154  vector<int> *NN_columnWeightedPosition;
155  vector<int> *NN_rowWeightedPosition;
156  vector<vector<float> > *NN_positionX;
157  vector<vector<float> > *NN_positionY;
158  vector<vector<float> > *NN_position_idX;
159  vector<vector<float> > *NN_position_idY;
160  vector<vector<float> > *NN_theta;
161  vector<vector<float> > *NN_phi;
162 
163  // List of branches
164  TBranch *b_NN_sizeX;
165  TBranch *b_NN_sizeY;
166  TBranch *b_NN_matrixOfToT;
167  TBranch *b_NN_vectorOfPitchesY;
168  TBranch *b_NN_ClusterPixLayer;
169  TBranch *b_NN_ClusterPixBarrelEC;
170  TBranch *b_NN_phiBS;
171  TBranch *b_NN_thetaBS;
172  TBranch *b_NN_etaModule;
173  TBranch *b_NN_useTrackInfo;
174  TBranch *b_NN_columnWeightedPosition;
175  TBranch *b_NN_rowWeightedPosition;
176  TBranch *b_NN_positionX;
177  TBranch *b_NN_positionY;
178  TBranch *b_NN_position_idX;
179  TBranch *b_NN_position_idY;
180  TBranch *b_NN_theta;
181  TBranch *b_NN_phi;
182 
183 
184 
185  NN_sizeX = 0;
186  NN_sizeY = 0;
187  NN_matrixOfToT = 0;
188  NN_vectorOfPitchesY = 0;
189  NN_ClusterPixLayer = 0;
190  NN_ClusterPixBarrelEC = 0;
191  NN_phiBS = 0;
192  NN_thetaBS = 0;
193  NN_etaModule = 0;
194  NN_useTrackInfo = 0;
195  NN_columnWeightedPosition = 0;
196  NN_rowWeightedPosition = 0;
197  NN_positionX = 0;
198  NN_positionY = 0;
199  NN_position_idX = 0;
200  NN_position_idY = 0;
201  NN_theta = 0;
202  NN_phi = 0;
203  // Set branch addresses and branch pointers
204  // if (!tree) return 0;
205  // TTree* simu = tree;
206  // fCurrent = -1;
207  simu->SetMakeClass(1);
208 
209  simu->SetBranchAddress("NN_sizeX", &NN_sizeX, &b_NN_sizeX);
210  simu->SetBranchAddress("NN_sizeY", &NN_sizeY, &b_NN_sizeY);
211  simu->SetBranchAddress("NN_matrixOfToT", &NN_matrixOfToT, &b_NN_matrixOfToT);
212  simu->SetBranchAddress("NN_vectorOfPitchesY", &NN_vectorOfPitchesY, &b_NN_vectorOfPitchesY);
213  simu->SetBranchAddress("NN_ClusterPixLayer", &NN_ClusterPixLayer, &b_NN_ClusterPixLayer);
214  simu->SetBranchAddress("NN_ClusterPixBarrelEC", &NN_ClusterPixBarrelEC, &b_NN_ClusterPixBarrelEC);
215  simu->SetBranchAddress("NN_phiBS", &NN_phiBS, &b_NN_phiBS);
216  simu->SetBranchAddress("NN_thetaBS", &NN_thetaBS, &b_NN_thetaBS);
217  simu->SetBranchAddress("NN_etaModule", &NN_etaModule, &b_NN_etaModule);
218  simu->SetBranchAddress("NN_useTrackInfo", &NN_useTrackInfo, &b_NN_useTrackInfo);
219  simu->SetBranchAddress("NN_columnWeightedPosition", &NN_columnWeightedPosition, &b_NN_columnWeightedPosition);
220  simu->SetBranchAddress("NN_rowWeightedPosition", &NN_rowWeightedPosition, &b_NN_rowWeightedPosition);
221  simu->SetBranchAddress("NN_positionX", &NN_positionX, &b_NN_positionX);
222  simu->SetBranchAddress("NN_positionY", &NN_positionY, &b_NN_positionY);
223  simu->SetBranchAddress("NN_position_idX", &NN_position_idX, &b_NN_position_idX);
224  simu->SetBranchAddress("NN_position_idY", &NN_position_idY, &b_NN_position_idY);
225  simu->SetBranchAddress("NN_theta", &NN_theta, &b_NN_theta);
226  simu->SetBranchAddress("NN_phi", &NN_phi, &b_NN_phi);
227 
228 
229  cout << "Branches set..." << endl;
230 
231  TString filterTrain("Entry$%");
232  filterTrain+=dilutionFactor;
233  filterTrain+="==0";
234 
235  TString filterTest("Entry$%");
236  filterTest+=dilutionFactor;
237  filterTest+="==1";
238 
239  int* nneurons;
240  int nlayer=3;
241 
242  simu->GetEntry(0);
243 
244 
245  cout << "First entry..." << endl;
246 
247  Int_t sizeX=-7;
248  Int_t sizeY=-7;
249 
250 
251  // loop over the clusters loking for the first cluster properly saved
252  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
253 
254  sizeX = (*NN_sizeX)[clus];
255  sizeY = (*NN_sizeY)[clus];
256 
257  if(sizeX>0)break;
258 
259  }
260 
261  cout << "Size obtained" << endl;
262 
263 
264  int numberinputs=sizeX*(sizeY+1)+4;
265  if (!useTrackEstimate)
266  {
267  numberinputs=sizeX*(sizeY+1)+5;
268  }
269 
270  int numberoutputs=2*nParticlesTraining;
271 
272  if (nodesSecondLayer!=0)
273  {
274  nlayer=4;
275  }
276 
277  if (nodesSecondLayer!=0)
278  {
279  nneurons=new int[4];
280  }
281  else
282  {
283  nneurons=new int[3];
284  }
285 
286  nneurons[0]=numberinputs;
287 
288  nneurons[1]=nodesFirstLayer;
289 
290  if (nodesSecondLayer!=0)
291  {
292  nneurons[2]=nodesSecondLayer;
293  nneurons[3]=numberoutputs;//number of output nodes
294  }
295  else
296  {
297  nneurons[2]=numberoutputs;//number of output nodes
298  }
299 
300  for (int i=0;i<nlayer;i++)
301  {
302  cout << " layer i: " << i << " number neurons: " << nneurons[i] << endl;
303  }
304 
305 
306  // float eventWeight(0);
307  float trainingError(0);
308  float testError(0);
309 
310  //setting learning parameters
311 
312  cout << " now providing training events " << endl;
313 
314  Int_t numberTrainingEvents=0;
315  Int_t numberTestingEvents=0;
316 
317  int iClus=0;
318  int part_0=0;
319  int part_1=0;
320  int part_2=0;
321  int part_3=0;
322 
323  int totalN=simu->GetEntries();
324 
325 // totalN=10000;
326 
327  // Loop over entries:
328  for (Int_t i = 0; i < totalN; i++) {
329 
330  if (i % 50000 == 0 ) {
331  std::cout << " Counting training / testing events in sample. Looping over event " << i << std::endl;
332  }
333 
334  simu->GetEntry(i);
335 
336  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
337 
338  vector<float> *matrixOfToT=0;
339  vector<float> *vectorOfPitchesY=0;
340 
341  Float_t phiBS;
342  Float_t thetaBS;
343  Float_t etaModule;
344  Int_t ClusterPixLayer;
345  Int_t ClusterPixBarrelEC;
346 
347  std::vector<float> * positionX=0;
348  std::vector<float> * positionY=0;
349  std::vector<float> * thetaTr=0;
350  std::vector<float> * phiTr=0;
351 
352  std::vector<float> positionX_reorder;
353  std::vector<float> positionY_reorder;
354 
355 
356  sizeX = (*NN_sizeX)[clus];
357  positionX =&(*NN_positionX)[clus];
358  int nParticles = positionX->size();
359 
360  thetaTr = &(*NN_theta)[clus];
361  phiTr = &(*NN_phi)[clus];
362 
363  if (nParticlesTraining!=nParticles)
364  {
365  continue;
366  }
367  if (isBadCluster(sizeX, nParticles ) )continue;
368 
369  // loop over the particles;
370  for( unsigned int P = 0; P < positionX->size(); P++){
371  double theta = (*thetaTr)[P];
372  if (theta!=theta) continue;
373 
374  iClus++;
375 
376  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
377 
378 
379 
380  if (iClus%dilutionFactor==0) numberTrainingEvents+=1;
381  if (iClus%dilutionFactor==1) numberTestingEvents+=1;
382 
383  if (iClus%dilutionFactor==1 && nParticles==1 ) part_1++;
384  if (iClus%dilutionFactor==1 && nParticles==2 ) part_2++;
385  if (iClus%dilutionFactor==1 && nParticles==3 ) part_3++;
386 
387 
388 
389  }// end loop over th particles
390  }// end loop over cluster
391  }// end Loop over entries
392 
393 
394 
395  cout << " N. training events: " << numberTrainingEvents <<
396  " N. testing events: " << numberTestingEvents << endl;
397 
398  // if(numberTrainingEvents!=numberTestingEvents)return;
399 
400  cout << "now start to setup the network..." << endl;
401 
402  TJetNet* jn = new TJetNet( numberTestingEvents, numberTrainingEvents, nlayer, nneurons );
403  // return;
404  cout << " setting learning method... " << endl;
405 
406  // jn->SetMSTJN(4,12); Fletscher-Rieves (Scaled Conj Grad)
407 
408 
409 // int nPatternsPerUpdate=1;
410 
411  jn->SetPatternsPerUpdate( nPatternsPerUpdate );
412  jn->SetUpdatesPerEpoch( (int)std::floor((float)numberTrainingEvents/(float)nPatternsPerUpdate) );
413  jn->SetUpdatingProcedure( 0 );
414  jn->SetErrorMeasure( 0 );
415  jn->SetActivationFunction( 1 );
416 
417  jn->SetLearningRate( learningRate );//0.8
418 // jn->SetLearningRate( 1 );//0.8
419 // jn->SetMomentum( 0.2 );//0.3 //is now 0.5
420  jn->SetMomentum( learningRateMomentum );//0.3 //is now 0.5
421  jn->SetInitialWeightsWidth( 1. );
422  // jn->SetLearningRateDecrease( 0.992 );
423 
424  jn->SetLearningRateDecrease( learningRateDecrease );//0.992
425 // jn->SetLearningRateDecrease( 0.995 );//0.992
426  jn->SetActivationFunction(4,nlayer-1-1);
427 
428 
429 
430  cout << " setting pattern for training events " << endl;
431 
432  int trainSampleNumber=0;
433  int testSampleNumber=1;
434 
435  cout << " copying over training events " << endl;
436 
437  int counter=0;
438  int counter0=0;
439  int counter1=0;
440 
441  //input and output of first event
442  vector<double> inputVar;
443  vector<double> outputVar;
444 
445 
446  iClus=0;
447  for (Int_t i = 0; i < totalN; i++) {
448 
449  if (i % 100000 == 0 ) {
450  std::cout << " Copying over training events. Looping over event " << i << std::endl;
451  }
452 
453 
454  simu->GetEntry(i);
455 
456  for( unsigned int clus =0; clus<NN_sizeX->size(); clus++ ){
457 
458  vector<float> *matrixOfToT=0;
459  vector<float> *vectorOfPitchesY=0;
460 
461  Float_t phiBS;
462  Float_t thetaBS;
463  Float_t etaModule;
464  Int_t ClusterPixLayer;
465  Int_t ClusterPixBarrelEC;
466 
467  std::vector<float> * position_idX=0;
468  std::vector<float> * position_idY=0;
469  std::vector<float> * thetaTr=0;
470  std::vector<float> * phiTr=0;
471 
472 
473  sizeX = (*NN_sizeX)[clus];
474 
475  sizeY = (*NN_sizeY)[clus];
476  matrixOfToT=&(*NN_matrixOfToT)[clus];
477  vectorOfPitchesY=&(*NN_vectorOfPitchesY)[clus];
478 
479  phiBS = (*NN_phiBS)[clus];
480  thetaBS =(*NN_thetaBS)[clus];
481  etaModule =(*NN_etaModule)[clus];
482 
483  ClusterPixLayer=(*NN_ClusterPixLayer)[clus];
484  ClusterPixBarrelEC = (*NN_ClusterPixBarrelEC)[clus];
485 
486  position_idX =&(*NN_position_idX)[clus];
487  position_idY =&(*NN_position_idY)[clus];
488 
489  int nParticles = position_idX->size();
490 
491  if (nParticlesTraining!=nParticles)
492  {
493  continue;
494  }
495 
496  thetaTr = &(*NN_theta)[clus];
497  phiTr = &(*NN_phi)[clus];
498 
499 
500  if(isBadCluster(sizeX, nParticles ) )continue;
501 
502  for( unsigned int P = 0; P < position_idX->size(); P++){
503 
504  double theta = (*thetaTr)[P];
505  double phi = (*phiTr)[P];
506  if (theta!=theta) continue;
507 
508  if (ClusterPixBarrelEC==2)
509  {
510  theta=-theta;
511  phi=-phi;
512  }
513 
514  iClus++;
515 
516 
517 
518  if ( badTrackInfo(useTrackEstimate, theta ) )continue;
519 
520 
521 
522  if (matrixOfToT->size()!=sizeX*sizeY)
523  {
524  std::cout << " Event: " << i << " PROBLEM: size Y is: " << matrixOfToT->size() << std::endl;
525  throw std::runtime_error("Error in positions/trainNN.cxx");
526  }
527 
528  // loop over elements of matrixOfTot which is actually a vector
529  for(unsigned int ME =0; ME < matrixOfToT->size(); ME++){
530 
531  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, ME, norm_ToT((*matrixOfToT)[ME]));
532  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, ME, norm_ToT((*matrixOfToT)[ME]));
533 
534  if ((*matrixOfToT)[ME] != (*matrixOfToT)[ME])
535  {
536  cout << "ME n. " << ME << " is: " << (*matrixOfToT)[ME] << endl;
537  throw std::runtime_error("Error in positions/trainNN.cxx");
538  }
539 
540  if (counter0 == 0) std::cout << " element: " << ME << " ToT set to: " << norm_ToT((*matrixOfToT)[ME]) << std::endl;
541  if (iClus%dilutionFactor==1&&counter1==0) inputVar.push_back(norm_ToT((*matrixOfToT)[ME]));
542 
543  }
544 
545 
546  // loop over vector of pitches
547  for (int s=0;s<sizeY;s++)
548  {
549  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
550  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
551 
552  if ((*vectorOfPitchesY)[s]!=(*vectorOfPitchesY)[s])
553  {
554  cout << " pitchY: " << (*vectorOfPitchesY)[s] << endl;
555  throw std::runtime_error("Error in positions/trainNN.cxx");;
556  }
557  if (counter0 == 0) std::cout << " s: " << s << " pitch set to: " << norm_pitch((*vectorOfPitchesY)[s]) << std::endl;
558 
559  if (iClus%dilutionFactor==1&&counter1==0) inputVar.push_back(norm_pitch((*vectorOfPitchesY)[s]));
560  }
561 
562  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
563  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
564 
565  if (ClusterPixLayer!=ClusterPixLayer || ClusterPixBarrelEC!=ClusterPixBarrelEC)
566  {
567  cout << " ClusterPixLayer: " << ClusterPixLayer << " ClusterPixBarrelEC " << ClusterPixBarrelEC << endl;
568  throw std::runtime_error("Error in positions/trainNN.cxx");
569  }
570 
571  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY, norm_layerNumber(ClusterPixLayer));
572  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+1, norm_layerType(ClusterPixBarrelEC));
573 
574  if (iClus%dilutionFactor==1&&counter1==0) {
575  inputVar.push_back(norm_layerNumber(ClusterPixLayer));
576  inputVar.push_back(norm_layerType(ClusterPixBarrelEC));
577  }
578 
579 
580  if (counter0 == 0) std::cout << " ClusterPixLayer " << norm_layerNumber(ClusterPixLayer) << " ClusterPixBarrelEC " << norm_layerType(ClusterPixBarrelEC) << std::endl;
581 
582  if (useTrackEstimate)
583  {
584  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phi(phi) );
585  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_theta(theta) );
586 
587  if (phi!=phi) {
588  cout << " phi: " << phi << endl;
589  throw std::runtime_error("Error in positions/trainNN.cxx");
590  }
591 
592  if (theta!=theta) {
593  cout << " theta: " << theta << endl;
594  throw std::runtime_error("Error in positions/trainNN.cxx");
595  }
596 
597 
598 
599  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phi(phi) );
600  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_theta(theta) );
601 
602  if (counter0==0) std::cout << " phi " << norm_phi(phi) << " theta: " << norm_theta(theta) << std::endl;
603 
604  if (iClus%dilutionFactor==1&&counter1==0) {
605  inputVar.push_back(norm_phi(phi));
606  inputVar.push_back(norm_theta(theta));
607  }
608  }
609  else
610  {
611  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
612  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
613  if (iClus%dilutionFactor==0) jn->SetInputTrainSet( counter0, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
614 
615  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+2, norm_phiBS(phiBS) );
616  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+3, norm_thetaBS(thetaBS) );
617  if (iClus%dilutionFactor==1) jn->SetInputTestSet( counter1, (sizeX+1)*sizeY+4, norm_etaModule(etaModule) );
618 
619 
620  if (iClus%dilutionFactor==1&&counter1==0) {
621  inputVar.push_back(norm_phiBS(phiBS));
622  inputVar.push_back(norm_thetaBS(thetaBS));
623  inputVar.push_back(norm_etaModule(etaModule) );
624  }
625 
626  if (counter0==0) std::cout <<
627  " phiBS " << norm_phiBS(phiBS) <<
628  " thetaBS: " << norm_thetaBS(thetaBS) <<
629  " etaModule: " << norm_etaModule(etaModule) << std::endl;
630  }
631 
632 
633  vector<float> xPositions = *position_idX;
634 
635  // for (int e=0;e<nParticles;e++)
636  // {
637  // xPositions.push_back((*positionsX)[e]);
638  // }
639 
640  std::sort(xPositions.begin(),xPositions.end());
641 
642  for (int o=0;o<xPositions.size();o++)
643  {
644 
645  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet(counter0, 2*o, norm_posX(xPositions[o]));
646  if (iClus%dilutionFactor==1) jn->SetOutputTestSet(counter1, 2*o, norm_posX(xPositions[o]));
647 
648  if (xPositions[o]!=xPositions[o])
649  {
650  cout << "pos: " << xPositions[o] << endl;
651  throw std::runtime_error("Error in positions/trainNN.cxx");
652  }
653 
654  if (counter0==0) std::cout << " output node: " << 2*o << " set to: " << norm_posX(xPositions[o]) << endl;
655 
656  if (iClus%dilutionFactor==1&&counter1==0) { outputVar.push_back(norm_posX(xPositions[o]));}
657 
658  double corry=-1000;
659 
660  for (int e=0;e<nParticles;e++)
661  {
662  if (fabs((*position_idX)[e]-xPositions[o])<1e-10)
663  {
664  if (fabs(corry+1000)>1e-6)
665  {
666  cout << " Value find more than once! " << endl;
667  for (int p=0;p<xPositions.size();p++)
668  {
669  cout << " X n. : " << p << " is: " << xPositions[p] << endl;
670  }
671  }
672  corry=(*position_idY)[e];
673  }
674  }
675 
676  if (fabs(corry+1000)<1e-6) {
677  cout << " could not find original X pos. " << endl;
678  throw std::runtime_error("Error in positions/trainNN.cxx");
679  }
680 
681  if (iClus%dilutionFactor==0) jn->SetOutputTrainSet(counter0, 2*o+1, norm_posY(corry));
682  if (iClus%dilutionFactor==1) jn->SetOutputTestSet(counter1, 2*o+1, norm_posY(corry));
683 
684  if (corry!=corry) {
685  cout << " posY " << corry << endl;
686  throw std::runtime_error("Error in positions/trainNN.cxx");
687  }
688 
689 
690  if (counter0==0) std::cout << " output node: " << 2*o+1 << " set to: " << norm_posY(corry) << endl;
691  if (iClus%dilutionFactor==1&&counter1==0) { outputVar.push_back(norm_posY(corry));}
692 
693  }
694 
695  if (iClus%dilutionFactor==0) jn->SetEventWeightTrainSet( counter0, 1 );
696  if (iClus%dilutionFactor==1) jn->SetEventWeightTestSet( counter1, 1 );
697 
698 
699  if (iClus%dilutionFactor==0){counter0+=1;}
700  if (iClus%dilutionFactor==1){counter1+=1;}
701 
702 
703 
704  }
705  }
706  }
707 
708  if (counter0!=numberTrainingEvents)
709  {
710  cout << " counter up to: " << counter0 << " while events in training sample are " << numberTrainingEvents << endl;
711  return;
712  }
713 
714  if (counter1!=numberTestingEvents)
715  {
716  cout << " counter up to: " << counter1 << " while events in testing sample are " << numberTestingEvents << endl;
717  return;
718  }
719 
720  // return;
721 
722  jn->Shuffle(true,false);
723 
724  if (restartTrainingFrom==0)
725  {
726  jn->Init();
727  // jn->DumpToFile("WeightsInitial.w");
728  }
729  else
730  {
731  TString name("Weights");
732  name+=restartTrainingFrom;
733  name+=".w";
734 
735  jn->ReadFromFile(name);
736  }
737 
738 
739 
740  float minimumError=1e10;
741  int epochesWithRisingError=0;
742  int epochWithMinimum=0;
743 
744  int updatesPerEpoch=jn->GetUpdatesPerEpoch();
745 
746  //prepare output stream
747 
748  TString directory("weights");
749  directory+="_nPat";
750  directory+=nPatternsPerUpdate;
751  directory+="_rate";
752  directory+=(int)(learningRate*100);
753  directory+="_rdec";
754  directory+=(int)(100*learningRateDecrease);
755  directory+="_mom";
756  directory+=(int)(100*learningRateMomentum);
757  directory+="_";
758  directory+=nParticlesTraining;
759  if (useTrackEstimate)
760  {
761  directory+="_withTracks";
762  }
763 
764  TString command("mkdir ");
766 
767  gSystem->Exec(command);
768 
769  TString nameCronology=directory;
770 
771  nameCronology+="/trainingCronology.txt";
772 
773  ofstream cronology(nameCronology,ios_base::out);//|ios_base::app);
774 
775  cronology << "-------------SETTINGS----------------" << endl;
776  cronology << "Epochs: " << jn->GetEpochs() << std::endl;
777  cronology << "Updates Per Epoch: " << jn->GetUpdatesPerEpoch() << std::endl;
778  cronology << "Updating Procedure: " << jn->GetUpdatingProcedure() << std::endl;
779  cronology << "Error Measure: " << jn->GetErrorMeasure() << std::endl;
780  cronology << "Patterns Per Update: " << jn->GetPatternsPerUpdate() << std::endl;
781  cronology << "Learning Rate: " << jn->GetLearningRate() << std::endl;
782  cronology << "Momentum: " << jn->GetMomentum() << std::endl;
783  cronology << "Initial Weights Width: " << jn->GetInitialWeightsWidth() << std::endl;
784  cronology << "Learning Rate Decrease: " << jn->GetLearningRateDecrease() << std::endl;
785  cronology << "Activation Function: " << jn->GetActivationFunction() << std::endl;
786  cronology << "-------------LAYOUT------------------" << endl;
787  cronology << "Input variables: " << jn->GetInputDim() << endl;
788  cronology << "Output variables: " << jn->GetOutputDim() << endl;
789  cronology << "Hidden layers: " << jn->GetHiddenLayerDim() << endl;
790  cronology << "Layout : ";
791  for (Int_t s=0;s<jn->GetHiddenLayerDim()+2;++s)
792  {
793  cronology << jn->GetHiddenLayerSize(s);
794  if (s<jn->GetHiddenLayerDim()+1) cronology << "-";
795  }
796  cronology << endl;
797  cronology << "--------------HISTORY-----------------" << endl;
798  cronology << "History of iterations: " << endl;
799  cronology.close();
800 
801  //prepare training histo
802  TH1F* histoTraining=new TH1F("training","training",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
803  TH1F* histoTesting=new TH1F("testing","testing",(int)std::floor((float)nIterations/10.+0.5),1,std::floor((float)nIterations/10.+1.5));
804 
805  double maximumTrain=0;
806  double minimumTrain=1e10;
807 
808  for(int epoch=restartTrainingFrom+1;epoch<=nIterations;++epoch)
809  {
810  if (epoch!=restartTrainingFrom+1)
811  {
812  trainingError = jn->Train();
813  }
814 
815  if (epoch%10==0 || epoch==restartTrainingFrom+1)
816  {
817 
818  cronology.open(nameCronology,ios_base::app);
819 
820  testError = jn->Test();
821 
822  if (trainingError>maximumTrain) maximumTrain=trainingError;
823  if (testError>maximumTrain) maximumTrain=testError;
824  if (trainingError<minimumTrain) minimumTrain=trainingError;
825  if (testError<minimumTrain) minimumTrain=testError;
826 
827 
828  histoTraining->Fill(epoch/10.,trainingError);
829  histoTesting->Fill(epoch/10.,testError);
830 
831  if (testError<minimumError)
832  {
833  minimumError=testError;
834  epochesWithRisingError=0;
835  epochWithMinimum=epoch;
836  }
837  else
838  {
839  epochesWithRisingError+=10;
840 
841  }
842 
843 
844  if (epochesWithRisingError>300)
845  {
846  if (trainingError<minimumError)
847  {
848  cout << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
849  cronology << " End of training. Minimum already on epoch: " << epochWithMinimum << endl;
850  break;
851  }
852  }
853 
854  cronology << "Epoch: [" << epoch <<
855  "] Error: " << trainingError <<
856  " Test: " << testError << endl;
857 
858  cout << "Epoch: [" << epoch <<
859  "] Error: " << trainingError <<
860  " Test: " << testError << endl;
861 
862  cronology.close();
863 
864  TString name=directory;
865  name+="/Weights";
866  name+=epoch;
867  name+=".root";
868 
869  TFile* file=new TFile(name,"recreate");
870  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
871 
872 
873  jn->Evaluate( 0 ); //evaluate the first test pattern
874  for (int z=0;z<nParticlesTraining;z++)
875  {
876  std::cout << "output "<<z<<" x: " << jn->GetOutput(2*z) << " y: " << jn->GetOutput(2*z+1) << endl;
877  }
878 
879  std::vector<double> myTestOutput=trainedNetwork->calculateOutputValues(inputVar);
880  for (int z=0;z<nParticlesTraining;z++)
881  {
882  std::cout << "output TTNet "<<z<<" x: " << myTestOutput[2*z] <<
883  " y: " << myTestOutput[2*z+1] << endl;
884  }
885  for (int z=0;z<nParticlesTraining;z++)
886  {
887  std::cout << "should be " << z << "x: " << outputVar[2*z] << " y: " << outputVar[2*z+1] << endl;
888  }
889 
890  trainedNetwork->Write();
891  file->Write();
892  file->Close();
893  delete file;
894 
895  /*
896  TFile* file2=new TFile(name);
897  trainedNetwork=(TTrainedNetwork*)file2->Get("TTrainedNetwork");
898  cout <<" hid lay 1 size: " << trainedNetwork->getnHiddenLayerSize()[0] << endl;
899  file2->Close();
900  delete file2;
901  */
902 
903  // jn->DumpToFile(name);
904  }
905  }
906 
907  jn->writeNetworkInfo(1);
908  jn->writeNetworkInfo(2);
909  // jn->writeNetworkInfo(3);
910  // jn->writeNetworkInfo(4);
911  // jn->writeNetworkInfo(5);
912 
913 
914  // cout << " Now try to understand how to get the weights..." << endl;
915 
917  Int_t nInput=jn->GetInputDim();
918 
919  cout << " create Trained Network object..." << endl;
920 
921  TTrainedNetwork* trainedNetwork=jn->createTrainedNetwork();
922 
923 /*
924  cout << " now getting value with trained Network ";
925 
926 
927 
928 
929  double inputexample[9]={norm_nVTX(1),
930  norm_nTracksAtVtx(2),
931  norm_nSingleTracks(0),
932  norm_energyFraction(0.6),
933  norm_mass(2500),
934  norm_significance3d(4 ),
935  norm_IP3D(3),
936  norm_cat_pT(3),
937  norm_cat_eta(1)};
938 
939  for (Int_t i=0;i<nInput;++i)
940  {
941  jn->SetInputs(i,inputexample[i]);
942  }
943 
944  cronology.open("weights/trainingCronology.txt",ios_base::app);
945 
946  jn->Evaluate();
947 
948  cronology << "----------------CONSISTENCY CHECK-----------" << endl;
949  cout << "Result 0:" << jn->GetOutput(0);
950  cronology << "Result 0:" << jn->GetOutput(0);
951  cout << " Result 1:" << jn->GetOutput(1);
952  cronology << "Result 0:" << jn->GetOutput(1);
953  cout << " Result 2:" << jn->GetOutput(2) << endl;
954  cronology << " Result 2:" << jn->GetOutput(2) << endl;
955 
956  cout << " Reading back old network " << endl;
957  jn->readBackTrainedNetwork(trainedNetwork);
958 
959  cout <<" resetting input " << endl;
960  for (Int_t i=0;i<nInput;++i)
961  {
962  jn->SetInputs(i,inputexample[i]);
963  }
964 
965  jn->Evaluate();
966 
967  cout << "After reading back - Result 0:" << jn->GetOutput(0);
968  cronology << "After reading back - Result 0:" << jn->GetOutput(0);
969  // << " my: " << result[0] << endl;
970  cout << " After reading back - Result 1:" << jn->GetOutput(1);
971  cronology << "After reading back - Result 1:" << jn->GetOutput(1);
972  //<< " my: " << result[1] << endl;
973  cout << " After reading back - Result 2:" << jn->GetOutput(2) << endl;
974  cronology << "After reading back - Result 2:" << jn->GetOutput(2);
975  // << " my: " << result[2] << endl;
976  */
977 
978  cout << " Now getting histograms from trainingResult" << endl;
979  cronology << " Now getting histograms from trainingResult" << endl;
980 
981  TNetworkToHistoTool myHistoTool;
982 
983  cout << " From network to histo..." << endl;
984  std::vector<TH1*> myHistos=myHistoTool.fromTrainedNetworkToHisto(trainedNetwork);
985 
986  cout << " From histo to network back..." << endl;
987  TTrainedNetwork* trainedNetwork2=myHistoTool.fromHistoToTrainedNetwork(myHistos);
988 
989  cout << " reading back " << endl;
990  jn->readBackTrainedNetwork(trainedNetwork2);
991 
992 /*
993  cout <<" resetting input " << endl;
994  for (Int_t i=0;i<nInput;++i)
995  {
996  jn->SetInputs(i,inputexample[i]);
997  }
998 
999  jn->Evaluate();
1000 
1001  cout << "After reading back - Result 0:" << jn->GetOutput(0);
1002  cronology << "After reading back - Result 0:" << jn->GetOutput(0);
1003  // << " my: " << result[0] << endl;
1004  cout << " After reading back - Result 1:" << jn->GetOutput(1);
1005  cronology << "After reading back - Result 1:" << jn->GetOutput(1);
1006  //<< " my: " << result[1] << endl;
1007  cout << " After reading back - Result 2:" << jn->GetOutput(2) << endl;
1008  cronology << "After reading back - Result 2:" << jn->GetOutput(2);
1009  // << " my: " << result[2] << endl;
1010 
1011 
1012  cout << " Directly from the trainedNetwork read back from HISTOS...!" << endl;
1013 
1014  std::vector<Double_t> inputData;
1015  for (Int_t u=0;u<nInput;++u)
1016  {
1017  inputData.push_back(inputexample[u]);
1018  }
1019 
1020  std::vector<Double_t> outputData=trainedNetwork2->calculateOutputValues(inputData);
1021 
1022  cout << "After reading back - Result 0:" << outputData[0] << endl;
1023  cout << " After reading back - Result 1:" << outputData[1] << endl;
1024  cout << " After reading back - Result 2:" << outputData[2] << endl;
1025 */
1026 
1027 
1028 
1029 
1030  if (epochWithMinimum!=0)
1031  {
1032  cronology << "Minimum stored from Epoch: " << epochWithMinimum << endl;
1033  } else
1034  {
1035  cronology << "Minimum not reached" << endl;
1036  }
1037 
1038  cronology.close();
1039 
1040  if (epochWithMinimum!=0)
1041  {
1042 
1043  TString name=directory;
1044  name+="/Weights";
1045  name+=epochWithMinimum;
1046  name+=".root";
1047  std::cout << " reading back from minimum " << endl;
1048 
1049 
1050  TFile *_file0 = new TFile(name);
1051  TTrainedNetwork* trainedNetwork=(TTrainedNetwork*)_file0->Get("TTrainedNetwork");
1052 
1053  cout << " Reading back network with minimum" << endl;
1054  jn->readBackTrainedNetwork(trainedNetwork);
1055 
1056  TString nameFile=directory;
1057  nameFile+="/weightMinimum.root";
1058 
1059  TFile* file=new TFile(nameFile,"recreate");
1060  trainedNetwork->Write();
1061  file->Write();
1062  file->Close();
1063  delete file;
1064 
1065  cout << " -------------------- " << endl;
1066  cout << " Writing OUTPUT histos " << endl;
1067  TString histoFName=directory;
1068  histoFName+="/histoWeights.root";
1069 
1070  TFile* fileHistos=new TFile(histoFName,"recreate");
1071  TNetworkToHistoTool histoTool;
1072  std::vector<TH1*> myHistos=histoTool.fromTrainedNetworkToHisto(trainedNetwork);
1073  std::vector<TH1*>::const_iterator histoBegin=myHistos.begin();
1074  std::vector<TH1*>::const_iterator histoEnd=myHistos.end();
1075  for (std::vector<TH1*>::const_iterator histoIter=histoBegin;
1076  histoIter!=histoEnd;++histoIter)
1077  {
1078  (*histoIter)->Write();
1079  }
1080  fileHistos->Write();
1081  fileHistos->Close();
1082  delete fileHistos;
1083 
1084  // " filename: " << name << endl;
1085 
1086  // jn->ReadFromFile(name);
1087 
1088  }
1089  else
1090  {
1091  cout << " using network at last iteration (minimum not reached..." << endl;
1092  }
1093 
1094  //here you should create the class... Still open how to deal with this...
1095  // char* myname=const_cast<char*>(static_cast<const char*>(outputclass));
1096  // ierr=mlpsavecf_(myname);
1097 
1098  TString histoTName=directory;
1099  histoTName+="/trainingInfo.root";
1100 
1101  TFile* histoFile=new TFile(histoTName,"recreate");
1102  histoTraining->Write();
1103  histoTesting->Write();
1104  histoFile->Write();
1105  histoFile->Close();
1106  delete histoFile;
1107 
1108  TCanvas* trainingCanvas=new TCanvas("trainingCanvas","trainingCanvas");
1109  histoTraining->SetLineColor(2);
1110  histoTesting->SetLineColor(4);
1111 
1112  histoTraining->GetYaxis()->SetRangeUser(minimumTrain,maximumTrain);
1113  histoTraining->Draw("l");
1114  histoTesting->Draw("lsame");
1115  TString canvasName=directory;
1116  canvasName+="/trainingCurve.eps";
1117  trainingCanvas->SaveAs(canvasName);
1118 
1119 
1120  TCanvas* mlpa_canvas = new TCanvas("jetnet_canvas","Network analysis");
1121  mlpa_canvas->Divide(2,4);
1122 
1123 /*
1124 
1125 // TCanvas* mlpa_canvas_5=gDirectory->Get("mlpa_canvas_5");
1126 // mlpa_canvas_5->SetLogy(kTrue);
1127  gPad->SetLogy();
1128 
1129  // Use the NN to plot the results for each sample
1130  // This will give approx. the same result as DrawNetwork.
1131  // All entries are used, while DrawNetwork focuses on
1132  // the test sample. Also the xaxis range is manually set.
1133  TH1F *bg2 = new TH1F("bg2h", "NN output", 50, -.5, 1.5);
1134  TH1F *bg = new TH1F("bgh", "NN output", 50, -.5, 1.5);
1135  TH1F *sig = new TH1F("sigh", "NN output", 50, -.5, 1.5);
1136 
1137  //sig = 1 part; bg = 2 part; bg2 = 3 part
1138 
1139  TH1F *bg2test = new TH1F("bg2htest", "NN output", 50, -.5, 1.5);
1140  TH1F *bgtest = new TH1F("bghtest", "NN output", 50, -.5, 1.5);
1141  TH1F *sigtest = new TH1F("sightest", "NN output", 50, -.5, 1.5);
1142 
1143  int weight=1;
1144 
1145  for (Int_t i = 0; i < totalN; i++) {
1146 
1147  if (i % 100000 == 0 ) {
1148  std::cout << " First plot. Looping over event " << i << std::endl;
1149  }
1150 
1151  if (i%dilutionFactor!=0&&i%dilutionFactor!=1) continue;
1152 
1153  simu->GetEntry(i);
1154 
1155  for (int u=0;u<sizeX;u++)
1156  {
1157  for (int s=0;s<sizeY;s++)
1158  {
1159  jn->SetInputs( s+u*sizeY, norm_ToT((*matrixOfToT)[u][s]));
1160  }
1161  }
1162  for (int s=0;s<sizeY;s++)
1163  {
1164  jn->SetInputs( sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
1165  }
1166 
1167  jn->SetInputs( (sizeX+1)*sizeY, norm_phi(phi) );
1168  jn->SetInputs( (sizeX+1)*sizeY+1, norm_theta(theta) );
1169 
1170  jn->Evaluate();
1171 
1172  float p1=jn->GetOutput(0);
1173  float p2=jn->GetOutput(1);
1174  float p3=jn->GetOutput(2);
1175 
1176  if (nParticles==1)
1177  {
1178  if (i%dilutionFactor==0)
1179  {
1180  sig->Fill(p1/(p1+p2+p3),weight);
1181  }
1182  else if (i%dilutionFactor==1)
1183  {
1184  sigtest->Fill(p1/(p1+p2+p3),weight);
1185  }
1186  }
1187  if (nParticles==2)
1188  {
1189  if (i%dilutionFactor==0)
1190  {
1191  bg->Fill(p1/(p1+p2+p3),weight);
1192  }
1193  else if (i%dilutionFactor==1)
1194  {
1195  bgtest->Fill(p1/(p1+p2+p3),weight);
1196  }
1197  }
1198  if (nParticles>=3)
1199  {
1200  if (i%dilutionFactor==0)
1201  {
1202  bg2->Fill(p1/(p1+p2+p3),weight);
1203  }
1204  else if (i%dilutionFactor==1)
1205  {
1206  bg2test->Fill(p1/(p1+p2+p3),weight);
1207  }
1208  }
1209  }
1210 
1211  //now you need the maximum
1212  float maximum=1;
1213  for (Int_t a=0;a<bg->GetNbinsX();a++)
1214  {
1215  if (bg->GetBinContent(a)>maximum)
1216  {
1217  maximum=1.2*bg->GetBinContent(a);
1218  }
1219  }
1220 
1221 
1222  bg2->SetLineColor(kYellow);
1223  bg2->SetFillStyle(3008); bg2->SetFillColor(kYellow);
1224  bg->SetLineColor(kBlue);
1225  bg->SetFillStyle(3008); bg->SetFillColor(kBlue);
1226  sig->SetLineColor(kRed);
1227  sig->SetFillStyle(3003); sig->SetFillColor(kRed);
1228  bg2->SetStats(0);
1229  bg->SetStats(0);
1230  sig->SetStats(0);
1231 
1232 
1233  bg2test->SetLineColor(kYellow);
1234  bg2test->SetFillStyle(3008); bg2test->SetFillColor(kYellow);
1235  bgtest->SetLineColor(kBlue);
1236  bgtest->SetFillStyle(3008); bgtest->SetFillColor(kBlue);
1237  sigtest->SetLineColor(kRed);
1238  sigtest->SetFillStyle(3003); sigtest->SetFillColor(kRed);
1239  bg2test->SetStats(0);
1240  bgtest->SetStats(0);
1241  sigtest->SetStats(0);
1242 
1243  mlpa_canvas->cd(1);
1244  gPad->SetLogy();
1245 
1246  bg->GetYaxis()->SetRangeUser(1,maximum);
1247  bgtest->GetYaxis()->SetRangeUser(1,maximum);
1248 
1249  mlpa_canvas->cd(1);
1250  bg->Draw();
1251  bg2->Draw("same");
1252  sig->Draw("same");
1253 
1254  TLegend *legend = new TLegend(.75, .80, .95, .95);
1255  legend->AddEntry(bg2, "particles >=3");
1256  legend->AddEntry(bg, "particles = 2");
1257  legend->AddEntry(sig, "particles = 1");
1258  legend->Draw();
1259 
1260  mlpa_canvas->cd(2);
1261  gPad->SetLogy();
1262 
1263  bgtest->Draw();
1264  bg2test->Draw("same");
1265  sigtest->Draw("same");
1266 
1267  TLegend *legendtest = new TLegend(.75, .80, .95, .95);
1268  legendtest->AddEntry(bg2test, "particles >=3");
1269  legendtest->AddEntry(bgtest, "particles = 2");
1270  legendtest->AddEntry(sigtest, "particles = 1");
1271  legendtest->Draw();
1272 
1273  mlpa_canvas->cd(5);
1274  gPad->SetLogy();
1275  bg->DrawNormalized();
1276  bg2->DrawNormalized("same");
1277  sig->DrawNormalized("same");
1278  legend->Draw();
1279 
1280  mlpa_canvas->cd(6);
1281  gPad->SetLogy();
1282  bgtest->DrawNormalized();
1283  bg2test->DrawNormalized("same");
1284  sigtest->DrawNormalized("same");
1285  legendtest->Draw();
1286 
1287 
1288 
1289  mlpa_canvas->cd(3);
1290  gPad->SetLogy();
1291 
1292  // Use the NN to plot the results for each sample
1293  // This will give approx. the same result as DrawNetwork.
1294  // All entries are used, while DrawNetwork focuses on
1295  // the test sample. Also the xaxis range is manually set.
1296  TH1F *c_bg2 = new TH1F("c_bg2h", "NN output", 50, -.5, 1.5);
1297  TH1F *c_bg = new TH1F("c_bgh", "NN output", 50, -.5, 1.5);
1298  TH1F *c_sig = new TH1F("c_sigh", "NN output", 50, -.5, 1.5);
1299 
1300  TH1F *c_bg2test = new TH1F("c_bg2htest", "NN output", 50, -.5, 1.5);
1301  TH1F *c_bgtest = new TH1F("c_bghtest", "NN output", 50, -.5, 1.5);
1302  TH1F *c_sigtest = new TH1F("c_sightest", "NN output", 50, -.5, 1.5);
1303 
1304  for (Int_t i = 0; i < totalN; i++) {
1305 
1306  if (i % 100000 == 0 ) {
1307  std::cout << " Second plot. Looping over event " << i << std::endl;
1308  }
1309 
1310  if (i%dilutionFactor!=0&&i%dilutionFactor!=1) continue;
1311 
1312  simu->GetEntry(i);
1313 
1314  for (int u=0;u<sizeX;u++)
1315  {
1316  for (int s=0;s<sizeY;s++)
1317  {
1318  jn->SetInputs( s+u*sizeY, norm_ToT((*matrixOfToT)[u][s]));
1319  }
1320  }
1321  for (int s=0;s<sizeY;s++)
1322  {
1323  jn->SetInputs( sizeX*sizeY+s, norm_pitch((*vectorOfPitchesY)[s]));
1324  }
1325 
1326  jn->SetInputs( (sizeX+1)*sizeY, norm_phi(phi) );
1327  jn->SetInputs( (sizeX+1)*sizeY+1, norm_theta(theta) );
1328 
1329  jn->Evaluate();
1330 
1331  float p1=jn->GetOutput(0);
1332  float p2=jn->GetOutput(1);
1333  float p3=jn->GetOutput(2);
1334 
1335  float discr=(p1+p2)/(p1+p2+p3);
1336 
1337  if (nParticles==1)
1338  {
1339  if (i%dilutionFactor==0)
1340  {
1341  c_sig->Fill(discr,weight);
1342  }
1343  else if (i%dilutionFactor==1)
1344  {
1345  c_sigtest->Fill(discr,weight);
1346  }
1347  }
1348  if (nParticles==2)
1349  {
1350  if (i%dilutionFactor==0)
1351  {
1352  c_bg->Fill(discr,weight);
1353  }
1354  else if (i%dilutionFactor==1)
1355  {
1356  c_bgtest->Fill(discr,weight);
1357  }
1358  }
1359  if (nParticles>=3)
1360  {
1361  if (i%dilutionFactor==0)
1362  {
1363  c_bg2->Fill(discr,weight);
1364  }
1365  else if (i%dilutionFactor==1)
1366  {
1367  c_bg2test->Fill(discr,weight);
1368  }
1369  }
1370  }
1371 
1372  //now you need the maximum
1373  maximum=1;
1374  for (Int_t a=0;a<c_bg->GetNbinsX();a++)
1375  {
1376  if (c_bg->GetBinContent(a)>maximum)
1377  {
1378  maximum=1.2*c_bg->GetBinContent(a);
1379  }
1380  }
1381 
1382  c_bg2->SetLineColor(kYellow);
1383  c_bg2->SetFillStyle(3008); c_bg2->SetFillColor(kYellow);
1384  c_bg->SetLineColor(kBlue);
1385  c_bg->SetFillStyle(3008); c_bg->SetFillColor(kBlue);
1386  c_sig->SetLineColor(kRed);
1387  c_sig->SetFillStyle(3003); c_sig->SetFillColor(kRed);
1388  c_bg2->SetStats(0);
1389  c_bg->SetStats(0);
1390  c_sig->SetStats(0);
1391 
1392  c_bg2test->SetLineColor(kYellow);
1393  c_bg2test->SetFillStyle(3008); c_bg2test->SetFillColor(kYellow);
1394  c_bgtest->SetLineColor(kBlue);
1395  c_bgtest->SetFillStyle(3008); c_bgtest->SetFillColor(kBlue);
1396  c_sigtest->SetLineColor(kRed);
1397  c_sigtest->SetFillStyle(3003); c_sigtest->SetFillColor(kRed);
1398  c_bg2test->SetStats(0);
1399  c_bgtest->SetStats(0);
1400  c_sigtest->SetStats(0);
1401 
1402  mlpa_canvas->cd(3);
1403  gPad->SetLogy();
1404 
1405 
1406  c_bg->GetYaxis()->SetRangeUser(1,maximum);
1407  c_bgtest->GetYaxis()->SetRangeUser(1,maximum);
1408 
1409  c_bg->Draw();
1410  c_bg2->Draw("same");
1411  c_sig->Draw("same");
1412 
1413  TLegend *legend2 = new TLegend(.75, .80, .95, .95);
1414  legend2->AddEntry(c_bg2, "particles >=3");
1415  legend2->AddEntry(c_bg, "particles = 2");
1416  legend2->AddEntry(c_sig, "particles = 1");
1417  legend2->Draw();
1418 
1419  mlpa_canvas->cd(4);
1420  gPad->SetLogy();
1421 
1422  c_bgtest->Draw();
1423  c_bg2test->Draw("same");
1424  c_sigtest->Draw("same");
1425 
1426  TLegend *legend2test = new TLegend(.75, .80, .95, .95);
1427  legend2test->AddEntry(c_bg2test, "particles >=3");
1428  legend2test->AddEntry(c_bgtest, "particles = 2");
1429  legend2test->AddEntry(c_sigtest, "particles = 1");
1430  legend2test->Draw();
1431 
1432  mlpa_canvas->cd(7);
1433  gPad->SetLogy();
1434  c_bg->DrawNormalized();
1435  c_bg2->DrawNormalized("same");
1436  c_sig->DrawNormalized("same");
1437  legend2->Draw();
1438 
1439  mlpa_canvas->cd(8);
1440  gPad->SetLogy();
1441  c_bgtest->DrawNormalized();
1442  c_bg2test->DrawNormalized("same");
1443  c_sigtest->DrawNormalized("same");
1444  legend2test->Draw();
1445 
1446 
1447  mlpa_canvas->cd(0);
1448 
1449 
1450  mlpa_canvas->SaveAs("weights/result.eps");
1451 
1452 */
1453 }
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
norm_etaModule
double norm_etaModule(const double input)
Definition: NnNormalization.cxx:101
TTrainedNetwork::calculateOutputValues
std::vector< Double_t > calculateOutputValues(std::vector< Double_t > &input) const
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.cxx:99
checkFileSG.line
line
Definition: checkFileSG.py:75
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
TJetNet::GetErrorMeasure
Int_t GetErrorMeasure(void)
Definition: TJetNet.cxx:1156
phi
Scalar phi() const
phi method
Definition: AmgMatrixBasePlugin.h:67
TJetNet::GetLearningRate
Double_t GetLearningRate(void)
Definition: TJetNet.cxx:1177
CaloCellPos2Ntuple.int
int
Definition: CaloCellPos2Ntuple.py:24
TJetNet::SetPatternsPerUpdate
void SetPatternsPerUpdate(Int_t aValue)
Definition: TJetNet.cxx:1105
DMTest::P
P_v1 P
Definition: P.h:23
extractSporadic.nameFile
string nameFile
Definition: extractSporadic.py:84
TJetNet::readBackTrainedNetwork
void readBackTrainedNetwork(const TTrainedNetwork *)
Definition: TJetNet.cxx:207
TJetNet::writeNetworkInfo
void writeNetworkInfo(Int_t typeOfInfo=0)
Definition: TJetNet.cxx:664
norm_pitch
double norm_pitch(const double input, bool addIBL=false)
Definition: NnNormalization.cxx:32
theta
Scalar theta() const
theta method
Definition: AmgMatrixBasePlugin.h:75
TJetNet::GetMomentum
Double_t GetMomentum(void)
Definition: TJetNet.cxx:1182
TJetNet::GetOutput
Double_t GetOutput(Int_t aIndex=0)
Definition: TJetNet.cxx:948
TJetNet::Init
void Init(void)
Definition: TJetNet.cxx:670
python.AthDsoLogger.out
out
Definition: AthDsoLogger.py:71
TJetNet::SetOutputTestSet
void SetOutputTestSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.h:196
TJetNet::GetLearningRateDecrease
Double_t GetLearningRateDecrease(void)
Definition: TJetNet.cxx:1192
norm_phi
double norm_phi(const double input)
Definition: NnNormalization.cxx:71
TJetNet::SetUpdatingProcedure
void SetUpdatingProcedure(Int_t aValue)
Definition: TJetNet.cxx:1078
ANA_CHECK
#define ANA_CHECK(EXP)
check whether the given expression was successful
Definition: Control/AthToolSupport/AsgMessaging/AsgMessaging/MessageCheck.h:324
badTrackInfo
bool badTrackInfo(bool useTrackEstimate, double theta)
Definition: positions/trainNN.cxx:77
TNetworkToHistoTool
Definition: TNetworkToHistoTool.h:18
norm_theta
double norm_theta(const double input)
Definition: NnNormalization.cxx:79
TJetNet::GetUpdatesPerEpoch
Int_t GetUpdatesPerEpoch(void)
Definition: TJetNet.cxx:1146
ReweightUtils.message
message
Definition: ReweightUtils.py:15
TJetNet::SetInputTestSet
void SetInputTestSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:740
TJetNet::SetEventWeightTrainSet
void SetEventWeightTrainSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:752
TJetNet::SetMomentum
void SetMomentum(Double_t aValue)
Definition: TJetNet.cxx:1118
TJetNet::Shuffle
void Shuffle(Bool_t aShuffleTrainSet=true, Bool_t aShuffleTestSet=true)
Definition: TJetNet.cxx:1222
norm_posY
double norm_posY(const double input)
Definition: NnNormalization.cxx:118
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:210
norm_layerNumber
double norm_layerNumber(const double input)
Definition: NnNormalization.cxx:57
TNetworkToHistoTool::fromHistoToTrainedNetwork
TTrainedNetwork * fromHistoToTrainedNetwork(std::vector< TH1 * > &) const
TNetworkToHistoTool::fromTrainedNetworkToHisto
std::vector< TH1 * > fromTrainedNetworkToHisto(TTrainedNetwork *) const
DeMoScan.directory
string directory
Definition: DeMoScan.py:80
lumiFormat.i
int i
Definition: lumiFormat.py:85
TJetNet
Definition: TJetNet.h:41
z
#define z
EL::StatusCode
::StatusCode StatusCode
StatusCode definition for legacy code.
Definition: PhysicsAnalysis/D3PDTools/EventLoop/EventLoop/StatusCode.h:22
TJetNet::ReadFromFile
void ReadFromFile(TString aFileName="fort.8")
Definition: TJetNet.cxx:962
norm_ToT
double norm_ToT(const double input)
Definition: NnNormalization.cxx:24
file
TFile * file
Definition: tile_monitor.h:29
TJetNet::SetOutputTrainSet
void SetOutputTrainSet(Int_t aPatternInd, Int_t aOutputInd, Double_t aValue)
Definition: TJetNet.cxx:734
norm_layerType
double norm_layerType(const double input)
Definition: NnNormalization.cxx:64
TJetNet::SetInputTrainSet
void SetInputTrainSet(Int_t aPatternInd, Int_t aInputInd, Double_t aValue)
Definition: TJetNet.cxx:728
TJetNet::Evaluate
void Evaluate(Int_t aPattern)
Definition: TJetNet.cxx:932
TJetNet::GetPatternsPerUpdate
Int_t GetPatternsPerUpdate(void)
Definition: TJetNet.cxx:1172
TTrainedNetwork
Definition: InnerDetector/InDetCalibAlgs/PixelCalibAlgs/NNClusteringCalibration_RunI/TTrainedNetwork.h:21
TJetNet::GetEpochs
Int_t GetEpochs(void)
Definition: TJetNet.h:78
norm_phiBS
double norm_phiBS(const double input)
Definition: NnNormalization.cxx:86
TJetNet::GetActivationFunction
Int_t GetActivationFunction(void) const
Definition: TJetNet.cxx:1161
TJetNet::SetErrorMeasure
void SetErrorMeasure(Int_t aValue)
Definition: TJetNet.cxx:1085
TJetNet::SetLearningRate
void SetLearningRate(Double_t aValue)
Definition: TJetNet.cxx:1111
TJetNet::GetOutputDim
Int_t GetOutputDim(void) const
Definition: TJetNet.h:57
TJetNet::SetLearningRateDecrease
void SetLearningRateDecrease(Double_t aValue)
Definition: TJetNet.cxx:1130
name
std::string name
Definition: Control/AthContainers/Root/debug.cxx:221
TJetNet::GetInitialWeightsWidth
Double_t GetInitialWeightsWidth(void)
Definition: TJetNet.cxx:1187
TJetNet::SetUpdatesPerEpoch
void SetUpdatesPerEpoch(Int_t aValue)
Definition: TJetNet.cxx:1071
TJetNet::SetInitialWeightsWidth
void SetInitialWeightsWidth(Double_t aValue)
Definition: TJetNet.cxx:1124
norm_posX
double norm_posX(const double input, const bool recenter=false)
Definition: NnNormalization.cxx:108
TJetNet::SetActivationFunction
void SetActivationFunction(Int_t aValue)
Definition: TJetNet.cxx:1091
std::sort
void sort(typename std::reverse_iterator< DataModel_detail::iterator< DVL > > beg, typename std::reverse_iterator< DataModel_detail::iterator< DVL > > end, const Compare &comp)
Specialization of sort for DataVector/List.
Definition: DVL_algorithms.h:623
ANA_CHECK_SET_TYPE
#define ANA_CHECK_SET_TYPE(TYPE)
set the type for ANA_CHECK to report failures
Definition: Control/AthToolSupport/AsgMessaging/AsgMessaging/MessageCheck.h:314
TJetNet::GetInputDim
Int_t GetInputDim(void) const
Definition: TJetNet.h:54
DEBUG
#define DEBUG
Definition: page_access.h:11
TJetNet::GetHiddenLayerSize
Int_t GetHiddenLayerSize(Int_t number) const
Definition: TJetNet.h:56
TJetNet::createTrainedNetwork
TTrainedNetwork * createTrainedNetwork() const
Definition: TJetNet.cxx:104
python.TrigEgammaMonitorHelper.TH1F
def TH1F(name, title, nxbins, bins_par2, bins_par3=None, path='', **kwargs)
Definition: TrigEgammaMonitorHelper.py:24
TJetNet::Test
Double_t Test(void)
Definition: TJetNet.cxx:320
isBadCluster
bool isBadCluster(int sizeX, int nParticles)
Definition: positions/trainNN.cxx:41
test_pyathena.counter
counter
Definition: test_pyathena.py:15
TJetNet::SetEventWeightTestSet
void SetEventWeightTestSet(Int_t aPatternInd, Double_t aValue)
Definition: TJetNet.cxx:758
get_generator_info.command
string command
Definition: get_generator_info.py:38
norm_thetaBS
double norm_thetaBS(const double input)
Definition: NnNormalization.cxx:94
MCP::TrackType::ME
@ ME
TJetNet::Train
Double_t Train(void)
Definition: TJetNet.cxx:618
TJetNet::GetUpdatingProcedure
Int_t GetUpdatingProcedure(void)
Definition: TJetNet.cxx:1151
TJetNet::GetHiddenLayerDim
Int_t GetHiddenLayerDim(void) const
Definition: TJetNet.h:55