ATLAS Offline Software
Public Member Functions | Public Attributes | List of all members
graphAlgs.Topological Class Reference
Collaboration diagram for graphAlgs.Topological:

Public Member Functions

def __init__ (self, G, roots=[])
 
def order (self)
 
def isDAG (self)
 

Public Attributes

 marked
 
 order_
 

Detailed Description

order the nodes of a digraph in topological (i.e. execution) order.

Definition at line 83 of file graphAlgs.py.

Constructor & Destructor Documentation

◆ __init__()

def graphAlgs.Topological.__init__ (   self,
  G,
  roots = [] 
)

Definition at line 86 of file graphAlgs.py.

86  def __init__(self, G, roots=[]):
87  self.marked = [False for i in range(G.V)]
88  self.order_ = []
89  cycleFinder = DirectedCycle(G)
90  if not cycleFinder.has_cycle():
91  dfs = DepthFirstOrder(G, roots)
92 
93  # if all edges were reversed, this would be
94  # self.order = dfs.reversePost();
95  self.order_ = dfs.post()
96 

Member Function Documentation

◆ isDAG()

def graphAlgs.Topological.isDAG (   self)

Definition at line 100 of file graphAlgs.py.

100  def isDAG(self):
101  return len(self.order_) != 0

◆ order()

def graphAlgs.Topological.order (   self)

Definition at line 97 of file graphAlgs.py.

97  def order(self):
98  return self.order_
99 

Member Data Documentation

◆ marked

graphAlgs.Topological.marked

Definition at line 87 of file graphAlgs.py.

◆ order_

graphAlgs.Topological.order_

Definition at line 88 of file graphAlgs.py.


The documentation for this class was generated from the following file:
mc.order
order
Configure Herwig7.
Definition: mc.Herwig7_Dijet.py:12
plotBeamSpotVxVal.range
range
Definition: plotBeamSpotVxVal.py:195
python.processes.powheg.ZZ.ZZ.__init__
def __init__(self, base_directory, **kwargs)
Constructor: all process options are set here.
Definition: ZZ.py:18