ATLAS Offline Software
LArAutoCorr.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration
3 */
4 
5 /********************************************************************
6 
7  NAME: LArAutoCorr.cxx
8  PACKAGE: offline/LArCalorimeter/LArRawEvent
9 
10  AUTHORS: F.Tarrade
11  CREATED: Jan. 22th 2009
12 
13  PURPOSE: Intermediate object used to handle data
14  to be used for calculation of autocorrelation
15  elements.
16 
17 ********************************************************************/
18 // Include files
20 
21 //----------------------------------------------------------------------------
22 void LArAutoCorr::set_min(const short min)
23 //----------------------------------------------------------------------------
24 {
25  m_min = min;
26 }
27 
28 //----------------------------------------------------------------------------
29 void LArAutoCorr::set_max(const short max)
30 //----------------------------------------------------------------------------
31 {
32  m_max = max;
33 }
34 
35 //----------------------------------------------------------------------------
37 //----------------------------------------------------------------------------
38 {
39  return m_nped;
40 }
41 
42 
43 //----------------------------------------------------------------------------
44 const short & LArAutoCorr::get_min() const
45 //----------------------------------------------------------------------------
46 {
47  return m_min;
48 }
49 
50 //----------------------------------------------------------------------------
51 const short & LArAutoCorr::get_max() const
52 //----------------------------------------------------------------------------
53 {
54  return m_max;
55 }
56 
57 
58 //----------------------------------------------------------------------------
60 //----------------------------------------------------------------------------
61 {
62  double mean = 0;
63 
64  int nsamples = m_sum.size();
65  for(int i=0; i<nsamples; i++)
66  mean += m_sum[i];
67  mean /= ((double)(nsamples*m_nped));
68 
69  return mean;
70 }
71 
72 
73 //----------------------------------------------------------------------------
74 const std::vector<double> & LArAutoCorr::get_cov(int normalize, int phys)
75 //----------------------------------------------------------------------------
76 {
77  int nsamples = m_sum.size();
78  int k =0;
79  if (m_nped==0) return m_cov;
80  for(int i=0;i<nsamples;i++){
81  for(int j=i;j<nsamples;j++,k++)
82  m_cov_temp[k]= (double)((m_matrix[k]/(m_nped)) - ((m_sum[i]*m_sum[j])/(m_nped*m_nped)));
83  }
84 
85  //MGV normalize covariance elements if required
86  if (normalize == 1 && phys == 0 ){
87  k=0;
88  int si,sj;
89  si=0;
90  for(int i=0;i<nsamples;i++){
91  sj=si;
92  for(int j=i;j<nsamples;j++,k++) {
93  if (m_sum[i]!=.0 && m_sum[j]!=.0)
95  sj+=nsamples-j;
96  }
97  si+=nsamples-i;
98  }
99  }
100  //MGV
101 
102  if (phys==0) {
103  double sum;
104  int s;
105  for(int diag =1;diag<nsamples;diag++)
106  {
107  sum =0;
108  s = 0;
109  for(int i=0; i < nsamples-diag;i++)
110  {
111  sum += m_cov_temp[s + diag];
112  s += nsamples - i;
113  }
114  sum = sum/(nsamples-diag);
115  m_cov[diag-1]= sum;
116  }
117  return m_cov;
118  }
119  else
120  return m_cov_temp;
121 }
122 
123 //----------------------------------------------------------------------------
125 //----------------------------------------------------------------------------
126 {
127  double x=0, y=0;
128  int k = 0;
129  int nsamples = m_sum.size();
130 
131  for(int i=0; i<nsamples; i++)
132  {
133  x += m_sum[i];
134  y += m_matrix[k];
135  k += nsamples - i;// Index of diagonal element
136  }
137 
138  x/= (double) (nsamples*m_nped);
139  y/=(double) (nsamples*m_nped);
140 
141  double noise = sqrt(y- x*x);
142 
143  return noise;
144 }
145 
146 //----------------------------------------------------------------------------
147 void LArAutoCorr::add(const std::vector<short>& samples, size_t maxnsamples)
148 //----------------------------------------------------------------------------
149 {
150  unsigned int nsamples = std::min(samples.size(),maxnsamples);
151  int k=0;
152 
153  if(m_sum.size()<nsamples)
154  {
155 
156  m_cov.resize(nsamples - 1);
157  m_cov_temp.resize((nsamples*(nsamples+1))/2);
158  m_sum.resize(nsamples);
159  m_matrix.resize((nsamples*(nsamples+1))/2);
160  }
161 
162  for(unsigned int i=0; i<nsamples; i++)
163  {
164  for(unsigned int j=i; j<nsamples; j++,k++)
165  m_matrix[k] += ((double)(samples[j]*samples[i]));
166 
167  m_sum[i] += ((double) samples[i]);
168  }
169  m_nped++;
170 }
171 
172 //----------------------------------------------------------------------------
174 //----------------------------------------------------------------------------
175 {
176  int j =0;
177  int nsamples = m_sum.size();
178  for(int l=0; l<nsamples; l++)
179  {
180  for(int k=l; k<nsamples; k++,j++)
181  m_matrix[j] = 0;
182  m_sum[l]=0;
183  }
184  m_nped=0;
185 }
python.SystemOfUnits.s
int s
Definition: SystemOfUnits.py:131
mean
void mean(std::vector< double > &bins, std::vector< double > &values, const std::vector< std::string > &files, const std::string &histname, const std::string &tplotname, const std::string &label="")
Definition: dependence.cxx:254
LArAutoCorr::correl_zero
void correl_zero()
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:248
max
constexpr double max()
Definition: ap_fixedTest.cxx:33
min
constexpr double min()
Definition: ap_fixedTest.cxx:26
UploadAMITag.l
list l
Definition: UploadAMITag.larcaf.py:158
LArAutoCorr::m_cov_temp
std::vector< double > m_cov_temp
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:56
const
bool const RAWDATA *ch2 const
Definition: LArRodBlockPhysicsV0.cxx:560
LArAutoCorr::get_max
const short & get_max() const
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:126
x
#define x
LArAutoCorr::m_sum
std::vector< double > m_sum
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:49
LArAutoCorr::get_cov
const std::vector< double > & get_cov(int m_normalize, int m_phys)
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:149
normalize
Double_t normalize(TF1 *func, Double_t *rampl=NULL, Double_t from=0., Double_t to=0., Double_t step=1.)
Definition: LArPhysWaveHECTool.cxx:825
LArAutoCorr::set_max
void set_max(const short max)
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:104
LArAutoCorr::m_cov
std::vector< double > m_cov
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:55
convertTimingResiduals.sum
sum
Definition: convertTimingResiduals.py:55
lumiFormat.i
int i
Definition: lumiFormat.py:85
LArAutoCorr.h
LArAutoCorr::set_min
void set_min(const short min)
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:97
LArAutoCorr::add
void add(const std::vector< short > &samples, size_t maxnsamples)
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:222
xAOD::double
double
Definition: CompositeParticle_v1.cxx:159
LArAutoCorr::get_nentries
int get_nentries() const
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:111
LArAutoCorr::get_mean
double get_mean() const
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:134
LArAutoCorr::m_max
short m_max
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:46
LArAutoCorr::get_min
const short & get_min() const
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:119
ReadOfcFromCool.nsamples
nsamples
Definition: ReadOfcFromCool.py:115
LArAutoCorr::m_matrix
std::vector< double > m_matrix
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:52
y
#define y
LArAutoCorr::m_min
short m_min
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:43
LArAutoCorr::get_rms
double get_rms() const
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:199
LArAutoCorr::m_nped
int m_nped
Definition: LArCalibUtils/LArCalibUtils/LArAutoCorr.h:59
WriteCellNoiseToCool.noise
noise
Definition: WriteCellNoiseToCool.py:380
fitman.k
k
Definition: fitman.py:528