ATLAS Offline Software
EnergyLossUpdator.cxx
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002-2025 CERN for the benefit of the ATLAS collaboration
3 */
4 
6 // EnergyLossUpdator.cxx, (c) ATLAS Detector software
8 
9 // Trk include
13 // Gaudi
14 #include "GaudiKernel/MsgStream.h"
15 #include "GaudiKernel/SystemOfUnits.h"
16 
17 
18 #include <cmath>
19 
20 
21 // constructor
23  const std::string& n,
24  const IInterface* p)
25  : AthAlgTool(t, n, p)
26 {
27  declareInterface<Trk::IEnergyLossUpdator>(this);
28 }
29 
30 // public interface method
31 double
33  double p,
35 {
37  return 0.;
38  }
39 
40  // preparation of kinetic constants
42  double E = std::sqrt(p * p + m * m);
43  double beta = p / E;
44  double gamma = E / m;
45 
46  // add ionization and radiation
47  double dEdX =
50 
51  // add e+e- pair production and photonuclear effect for muons at energies
52  // above 8 GeV
53  if ((particle == Trk::muon) && (E > 8000.)) {
54  if (E < 1.e6) {
55  dEdX += -0.5345 / mat.x0() + 6.803e-5 * E / mat.x0() +
56  2.278e-11 * E * E / mat.x0() -
57  9.899e-18 * E * E * E / mat.x0(); // E below 1 TeV
58  } else {
59  dEdX += -2.986 / mat.x0() + 9.253e-5 * E / mat.x0(); // E above 1 TeV
60  }
61  }
62  return dEdX;
63 }
64 
65 // public interface method
68  double p,
69  double pathcorrection,
72  bool useMPV) const
73 {
74  if (particle == Trk::undefined) {
76  "undefined ParticleHypothesis, energy loss calculation cancelled");
77  return {};
78  }
79 
80  if (useMPV) {
81  return ionizationEnergyLoss(mat, p, pathcorrection, dir, particle);
82  }
83 
84  double deltaE = 0.;
85  // preparation
86  double sign = (dir == Trk::oppositeMomentum) ? -1. : 1.;
87 
88  double pathLength = pathcorrection * mat.thicknessInX0() * mat.x0();
89 
90  double sigIoni = 0.;
91  double sigRad = 0.;
92  double kazL = 0.;
94  p, (mat.material()), particle, sigIoni, kazL);
96  p, (mat.material()), particle, sigRad);
97 
98  meanIoni = sign * pathLength * meanIoni;
99  meanRad = sign * pathLength * meanRad;
100  sigIoni = pathLength * sigIoni;
101  sigRad = pathLength * sigRad;
102  kazL = pathLength * kazL;
103 
104  //
105  // include pathlength dependence of Landau ionization
106  //
107  sigIoni = sigIoni - kazL * std::log(pathLength);
108 
109  deltaE = meanIoni + meanRad;
110 
111  double sigmaDeltaE = std::sqrt(sigIoni * sigIoni + sigRad * sigRad);
112  ATH_MSG_DEBUG(" Energy loss updator deltaE "
113  << deltaE << " meanIoni " << meanIoni << " meanRad " << meanRad
114  << " sigIoni " << sigIoni << " sigRad " << sigRad << " sign "
115  << sign << " pathLength " << pathLength);
116  return (!m_detailedEloss ? Trk::EnergyLoss(deltaE, sigmaDeltaE)
117  : Trk::EnergyLoss(deltaE, sigmaDeltaE, sigmaDeltaE,
118  sigmaDeltaE, meanIoni, sigIoni,
119  meanRad, sigRad, pathLength));
120 }
121 
122 // public interface method
123 
126  double caloEnergy,
127  double caloEnergyError,
128  double pCaloEntry,
129  double momentumError,
130  int& elossFlag) const
131 {
132  //
133  // Input: the detailed EnergyLoss object in the Calorimeter that contains the
134  // different Eloss terms and their uncertainties; caloEnergy and error; and
135  // the muon momentumError (all in MeV)
136  //
137  // For use in the MuonSystem
138  // Input: caloEnergy = 0. caloEnergyError = 0. and pCaloEntry = pMuonEntry
139  // momentum at MuonEntry
140  //
141  // Output: an updated Energy loss values deltaE()
142  // that can be used in the track fit and corresponds to the Most
143  // Probable EnergyLoss value taking into account the ionization,
144  // radiation and smearing due to the errors including the
145  // momentumError (in MeV)
146  //
147  // elossFlag = false if Calorimeter Energy is NOT stored (and later
148  // fitted) on the Eloss object
149  // = true Calorimeter Energy is stored and will be fitted
150  //
151  // deltaE is used in the final fit
152  //
153 
154  elossFlag = 0;
155 
156  int isign = 1;
157  if (eLoss.deltaE() < 0) {
158  isign = -1;
159  }
160 
161  double deltaE = eLoss.deltaE();
162  double sigmaDeltaE = eLoss.sigmaDeltaE();
163  // Detailed Eloss
164  double deltaE_ioni = eLoss.meanIoni();
165  double sigmaDeltaE_ioni = 0.45 * eLoss.sigmaIoni(); // sigma Landau
166  double deltaE_rad = eLoss.meanRad();
167  double sigmaDeltaE_rad =
168  eLoss.sigmaRad(); // rms and mean of steep exponential
169  double depth = eLoss.length();
170 
171  // Eloss radiative protection
172 
173  if (eLoss.meanRad() > 100000.) {
174  deltaE_rad = 100000.;
175  sigmaDeltaE_rad = eLoss.sigmaRad() * 100000. / eLoss.meanRad();
176  }
177 
178  double sigmaPlusDeltaE = eLoss.sigmaPlusDeltaE();
179  double sigmaMinusDeltaE = eLoss.sigmaMinusDeltaE();
180 
181  double MOP = deltaE_ioni - isign * 3.59524 * sigmaDeltaE_ioni;
182 
183  //
184  // MOP shift due to ionization and radiation
185  //
186  double MOPshift =
187  isign * 50 * 10000. / pCaloEntry +
188  isign * 0.75 * std::sqrt(sigmaDeltaE_ioni * sigmaDeltaE_rad);
189  double MOPshiftNoRad = isign * 50 * 10000. / pCaloEntry;
190  //
191  // define sigmas for Landau convoluted with exponential
192  //
193  double fracErad = sigmaDeltaE_rad +
194  std::abs(deltaE_rad) * pCaloEntry / (800000. + pCaloEntry);
195  double sigmaL = sigmaDeltaE_ioni + 0.8 * fracErad / 3.59524;
196  // double sigmaLNoRad = sigmaDeltaE_ioni;
197  double sigmaMinus = 1.02 * sigmaDeltaE_ioni + 0.08 * sigmaDeltaE_rad;
198  double sigmaPlus = 4.65 * sigmaDeltaE_ioni + 1.16 * sigmaDeltaE_rad;
199  // double sigmaMinusNoRad = 1.02 * sigmaDeltaE_ioni;
200  // double sigmaPlusNoRad = 4.65 * sigmaDeltaE_ioni;
201  double xc = momentumError / (sigmaL > 0. ? sigmaL : 1.);
202  double correction =
203  (0.3849 * xc * xc + 7.76672e-03 * xc * xc * xc) /
204  (1 + 2.8631 * xc + 0.3849 * xc * xc + 7.76672e-03 * xc * xc * xc);
205 
206  //
207  // Case where the measured Calorimeter energy is not available (e.g. low pT or
208  // not isolated)
209  //
210 
211  if (caloEnergyError <= 0) {
212  //
213  // Shift of MOP due to momentum resolution
214  //
215  double MOPreso = isign * 3.59524 * sigmaL * correction;
216 
217  deltaE = MOP + MOPshift + MOPreso;
218  sigmaMinusDeltaE = sigmaMinus;
219  sigmaPlusDeltaE = sigmaPlus;
220  sigmaDeltaE = std::sqrt(0.5 * sigmaMinusDeltaE * sigmaMinusDeltaE +
221  0.5 * sigmaPlusDeltaE * sigmaPlusDeltaE);
222  //
223  if (m_optimalRadiation && std::abs(deltaE) < caloEnergy &&
224  pCaloEntry > 100000) {
225  //
226  // Calorimeter measurement can be used as veto to say there was no
227  // significant radiation
228  //
229  // In that case the Eloss is taken as the ionization Eloss
230  // Use MOP after correction for landau tail (MOPshiftNoRad) and momentum
231  // resolution smearing (MOPreso)
232  //
233  sigmaL = sigmaDeltaE_ioni + 0.3 * fracErad / 3.59524;
234  xc = momentumError / (sigmaL > 0. ? sigmaL : 1.);
235  correction =
236  (0.3849 * xc * xc + 7.76672e-03 * xc * xc * xc) /
237  (1 + 2.8631 * xc + 0.3849 * xc * xc + 7.76672e-03 * xc * xc * xc);
238 
239  MOPreso = isign * 3.59524 * sigmaL * correction;
240  deltaE = MOP + MOPshift + MOPreso;
241  sigmaMinusDeltaE = sigmaMinus;
242  sigmaPlusDeltaE = sigmaPlus;
243  sigmaDeltaE = std::sqrt(0.5 * sigmaMinusDeltaE * sigmaMinusDeltaE +
244  0.5 * sigmaPlusDeltaE * sigmaPlusDeltaE);
245  }
246  } else {
247  double sigmaPlusTot =
248  std::sqrt(sigmaPlus * sigmaPlus + caloEnergyError * caloEnergyError);
249  if (m_optimalRadiation) {
250  sigmaPlusTot =
251  std::sqrt(4.65 * sigmaDeltaE_ioni * 4.65 * sigmaDeltaE_ioni +
252  caloEnergyError * caloEnergyError);
253  }
254  double MOPtot = std::abs(MOP + MOPshift);
255  if (m_optimalRadiation) {
256  MOPtot = std::abs(MOP + MOPshiftNoRad);
257  }
258 
259  if (caloEnergy > MOPtot + 2 * sigmaPlusTot) {
260  //
261  // Use measured Calorimeter energy
262  //
263  //
264  // take into account the tail in the Measured Eloss
265  //
266  double MOPreso = isign * 3.59524 * sigmaL * correction;
267  deltaE = isign * caloEnergy + MOPreso;
268  sigmaMinusDeltaE = caloEnergyError + 0.08 * sigmaDeltaE_rad;
269  sigmaPlusDeltaE = caloEnergyError + 1.16 * sigmaDeltaE_rad;
270  sigmaDeltaE = std::sqrt(0.5 * sigmaMinusDeltaE * sigmaMinusDeltaE +
271  0.5 * sigmaPlusDeltaE * sigmaPlusDeltaE);
272  elossFlag = 1;
273  } else {
274  // Use MOP after corrections
275 
276  //
277  // Shift of MOP due to momentum resolution smearing
278  //
279  sigmaL = sigmaDeltaE_ioni + 0.3 * fracErad / 3.59524;
280  xc = momentumError / (sigmaL > 0. ? sigmaL : 1);
281  correction =
282  (0.3849 * xc * xc + 7.76672e-03 * xc * xc * xc) /
283  (1 + 2.8631 * xc + 0.3849 * xc * xc + 7.76672e-03 * xc * xc * xc);
284  double MOPreso = isign * 3.59524 * sigmaL * correction;
285  //
286  // Use MOP after correction for landau tail (MOPshiftNoRad) and radiation
287  // (MOPshift) and momentum resolution smearing (MOPreso)
288  //
289  deltaE = MOP + MOPshift + MOPreso;
290  sigmaMinusDeltaE = sigmaMinus;
291  sigmaPlusDeltaE = sigmaPlus;
292  sigmaDeltaE = std::sqrt(0.5 * sigmaMinusDeltaE * sigmaMinusDeltaE +
293  0.5 * sigmaPlusDeltaE * sigmaPlusDeltaE);
294  }
295  }
296 
297  return {deltaE,
298  sigmaDeltaE,
299  sigmaMinusDeltaE,
300  sigmaPlusDeltaE,
301  deltaE_ioni,
302  sigmaDeltaE_ioni,
303  deltaE_rad,
304  sigmaDeltaE_rad,
305  depth};
306 }
307 
308 // public interface method
309 void
311  double eta,
312  double phi,
313  double& X0Scale,
314  double& ElossScale) const
315 {
316  //
317  // for Calorimeter icalo = 1
318  // Muon System icalo = 0
319  // convention eta, phi is at Calorimeter Exit (or Muon Entry)
320  // eta and phi are from the position (not direction)
321  //
322  // input X0 and ElossScale = 1
323  // output updated X0Scale and ElossScale
324  //
325 
326  double X0CaloGirder[4] = {
327  -1.02877e-01, -2.74322e-02, 8.12989e-02, 9.73551e-01
328  };
329 
330  // R2012 to R2015 determined on ATLAS-R2-2015-03-01-00 to be used in rel 21
331  constexpr double X0CaloScale[60] = {
332  1.01685, 1.02092, 1.01875, 1.01812, 1.01791, 1.01345, 1.01354,
333  1.02145, 1.01645, 1.01585, 1.0172, 1.02262, 1.01464, 0.990931,
334  0.971953, 0.99845, 1.01433, 0.982143, 0.974015, 0.978742, 0.960029,
335  0.966766, 0.980199, 0.989586, 0.997144, 1.00169, 0.994166, 0.966332,
336  0.93671, 0.935656, 0.921994, 0.901489, 0.897799, 0.89638, 0.905629,
337  0.903374, 0.925922, 0.941203, 0.956273, 0.968618, 0.976883, 0.988349,
338  0.99855, 1.00212, 1.01456, 1.01541, 1.02532, 1.03238, 1.03688,
339  1.03783, 1.02078, 1.01529, 1.0156, 1.02212, 1.02226, 1.02406,
340  1.02188, 1.00661, 1.00661, 1.00661
341  };
342 
343  // R2012 to R2015 determined on ATLAS-R2-2015-03-01-00 to be used in rel 21
344  constexpr double ElossCaloScale[30] = {
345  1.06921, 1.06828, 1.06734, 1.06092, 1.06638, 1.06335, 1.07421, 1.05885,
346  1.07351, 1.07435, 1.06902, 1.07704, 1.08782, 1.09844, 1.115, 1.07609,
347  1.08233, 1.08764, 1.08209, 1.08255, 1.08008, 1.07573, 1.077, 1.07271,
348  1.07343, 1.07769, 1.07794, 1.08377, 1.08377, 1.08377
349  };
350 
351  //
352  constexpr double X0MuonScale[60] = {
353  -0.0320612, -0.0320612, -0.0320612, -0.0320612, -0.0693796, -0.0389677,
354  -0.0860891, -0.124606, -0.0882329, -0.100014, -0.0790912, -0.0745538,
355  -0.099088, -0.0933711, -0.0618782, -0.0619762, -0.0658361, -0.109704,
356  -0.129547, -0.143364, -0.0774768, -0.0739859, -0.0417835, -0.022119,
357  0.00308797, 0.0197657, -0.0137871, -0.036848, -0.0643794, -0.0514949,
358  -0.0317105, 0.016539, 0.0308435, -0.00056883, -0.00756813, -0.00760612,
359  -0.0234571, -0.0980915, -0.101175, -0.102354, -0.0920337, -0.100337,
360  -0.0887628, 0.0660931, 0.228999, 0.260675, 0.266301, 0.267907,
361  0.281668, 0.194433, 0.132954, 0.20707, 0.220466, 0.20936,
362  0.191441, 0.191441, 0.191441, 0.191441, 0.191441, 0.191441
363  };
364 
365  int i60 = std::abs(eta) * 20.;
366 
367  if (i60 < 0) {
368  i60 = 0;
369  }
370  if (i60 > 59) {
371  i60 = 59;
372  }
373 
374  if (icalo == 1) {
375  //
376  // Girder parametrization
377  //
378  double x =
379  phi + 3.1416 - 3.1416 / 32. * int((3.1416 + phi) / (3.1416 / 32.));
380  double scale = 0.;
381  if (x > M_PI / 64.) {
382  x = M_PI / 32. - x;
383  }
384 
385  if (x < 0.005) {
386  scale =
387  X0CaloGirder[0] * (1 - x / 0.005) + X0CaloGirder[1] + X0CaloGirder[3];
388  } else if (x < 0.017) {
389  scale = X0CaloGirder[1] + X0CaloGirder[3];
390  } else if (x < 0.028) {
391  scale = X0CaloGirder[2] + X0CaloGirder[3];
392  } else {
393  scale = X0CaloGirder[3];
394  }
395 
396  if (std::abs(eta) > 1.3) {
397  scale = 1.;
398  }
399  //
400  // eta dependence of X0
401  //
402  scale *= X0CaloScale[i60];
403  X0Scale = scale;
404  //
405  // eta dependence of Eloss
406  //
407  int i30 = std::abs(eta) * 10.;
408  if (i30 < 0) {
409  i30 = 0;
410  }
411  if (i30 > 29) {
412  i30 = 29;
413  }
414 
415  double nfactor = 0.987363 / 1.05471;
416 
417  ElossScale = nfactor * ElossCaloScale[i30] * scale;
418  } else {
419  //
420  // Muon system
421  //
422  // eta dependence of X0
423  //
424  double scale = 1. + X0MuonScale[i60];
425  //
426  // Muon scale is now 1 with MuonTrackingGeometry and TrkDetDescrGeoModelCnv
427  // fixes
428  //
429  scale = 1.0;
430  X0Scale = scale;
431  ElossScale = 0.93 * scale;
432  }
433 }
434 
437  double p,
438  double pathcorrection,
441 {
442  // preparation
443  double sign = (dir == Trk::oppositeMomentum) ? -1. : 1.;
444  double pathLength = pathcorrection * mat.thicknessInX0() * mat.x0();
445 
446  double sigIoni = 0.;
447  double kazL = 0.;
448 
449  double meanIoni =
451  p, (mat.material()), particle, sigIoni, kazL, pathLength);
452 
453  return (!m_detailedEloss
454  ? Trk::EnergyLoss(meanIoni, sigIoni)
455  : Trk::EnergyLoss(meanIoni,
456  sigIoni,
457  sigIoni,
458  sigIoni,
459  meanIoni,
460  sigIoni,
461  0.,
462  0.,
463  pathLength));
464 }
AllowedVariables::e
e
Definition: AsgElectronSelectorTool.cxx:37
Trk::EnergyLoss::sigmaMinusDeltaE
double sigmaMinusDeltaE() const
returns the negative side
EnergyLoss.h
Trk::MaterialInteraction::dEdl_ionization
static double dEdl_ionization(double p, const Material &mat, ParticleHypothesis particle, double &sigma, double &kazL)
dE/dl ionization energy loss per path unit
Definition: MaterialInteraction.cxx:117
Trk::ParticleSwitcher::particle
constexpr ParticleHypothesis particle[PARTICLEHYPOTHESES]
the array of masses
Definition: ParticleHypothesis.h:79
egammaParameters::depth
@ depth
pointing depth of the shower as calculated in egammaqgcld
Definition: egammaParamDefs.h:276
Trk::EnergyLossUpdator::dEdX
virtual double dEdX(const MaterialProperties &mat, double p, ParticleHypothesis particle=pion) const override final
dEdX calculation when providing MaterialProperties, a momentum, a pathlength, and a ParicleHypothesis...
Definition: EnergyLossUpdator.cxx:32
MaterialProperties.h
Trk::oppositeMomentum
@ oppositeMomentum
Definition: PropDirection.h:21
Trk::MaterialInteraction::dE_MPV_ionization
static double dE_MPV_ionization(double p, const Trk::Material &mat, Trk::ParticleHypothesis particle, double &sigma, double &kazL, double path)
Most Propable dE ionization energly loss.
Definition: MaterialInteraction.cxx:205
mat
GeoMaterial * mat
Definition: LArDetectorConstructionTBEC.cxx:55
Trk::EnergyLoss::sigmaDeltaE
double sigmaDeltaE() const
returns the symmatric error
M_PI
#define M_PI
Definition: ActiveFraction.h:11
Trk::EnergyLossUpdator::energyLoss
virtual EnergyLoss energyLoss(const MaterialProperties &mat, double p, double pathcorrection, PropDirection dir=alongMomentum, ParticleHypothesis particle=pion, bool useMPV=false) const override final
deltaE calculation using dEdX and integrating along pathlength, assuming constant dEdX during for the...
Definition: EnergyLossUpdator.cxx:67
Trk::EnergyLoss::sigmaRad
double sigmaRad() const
Trk::undefined
@ undefined
Definition: ParticleHypothesis.h:41
read_hist_ntuple.t
t
Definition: read_hist_ntuple.py:5
Trk::EnergyLoss::meanIoni
double meanIoni() const
yodamerge_tmp.scale
scale
Definition: yodamerge_tmp.py:138
Trk::ParticleHypothesis
ParticleHypothesis
Definition: ParticleHypothesis.h:28
tools.zlumi_mc_cf.correction
def correction(mu, runmode, campaign, run=None)
Definition: zlumi_mc_cf.py:4
Trk::EnergyLoss::length
double length() const
Trk::PropDirection
PropDirection
Definition: PropDirection.h:19
python.utils.AtlRunQueryDQUtils.p
p
Definition: AtlRunQueryDQUtils.py:209
Trk::EnergyLossUpdator::EnergyLossUpdator
EnergyLossUpdator(const std::string &, const std::string &, const IInterface *)
AlgTool like constructor.
Definition: EnergyLossUpdator.cxx:22
TrigVtx::gamma
@ gamma
Definition: TrigParticleTable.h:27
beamspotman.n
n
Definition: beamspotman.py:729
ATH_MSG_DEBUG
#define ATH_MSG_DEBUG(x)
Definition: AthMsgStreamMacros.h:29
pdg_comparison.kazL
kazL
Definition: pdg_comparison.py:325
Trk::EnergyLoss::deltaE
double deltaE() const
returns the
sign
int sign(int a)
Definition: TRT_StrawNeighbourSvc.h:107
Trk::muon
@ muon
Definition: ParticleHypothesis.h:31
Trk::EnergyLoss::meanRad
double meanRad() const
beamspotman.dir
string dir
Definition: beamspotman.py:621
Trk::MaterialInteraction::dEdl_radiation
static double dEdl_radiation(double p, const Material &mat, ParticleHypothesis particle, double &sigma)
dE/dl radiation energy loss per path unit
Definition: MaterialInteraction.cxx:229
Trk::ParticleMasses::mass
constexpr double mass[PARTICLEHYPOTHESES]
the array of masses
Definition: ParticleHypothesis.h:56
Trk::EnergyLossUpdator::updateEnergyLoss
virtual EnergyLoss updateEnergyLoss(EnergyLoss &eLoss, double caloEnergy, double caloEnergyError, double pCaloEntry, double momentumError, int &elossFlag) const override final
Method to recalculate Eloss values for the fit setting an elossFlag using as an input the detailed El...
Definition: EnergyLossUpdator.cxx:125
VP1PartSpect::E
@ E
Definition: VP1PartSpectFlags.h:21
Trk::nonInteracting
@ nonInteracting
Definition: ParticleHypothesis.h:28
Trk::EnergyLoss
This class describes energy loss material effects in the ATLAS tracking EDM.
Definition: EnergyLoss.h:34
Trk::MaterialProperties
Definition: MaterialProperties.h:40
python.CaloAddPedShiftConfig.int
int
Definition: CaloAddPedShiftConfig.py:45
EnergyLossUpdator.h
ATH_MSG_WARNING
#define ATH_MSG_WARNING(x)
Definition: AthMsgStreamMacros.h:32
python.CaloCondTools.log
log
Definition: CaloCondTools.py:20
Trk::MaterialInteraction::dEdXBetheBloch
static double dEdXBetheBloch(const Trk::MaterialProperties &mat, double beta, double gamma, Trk::ParticleHypothesis particle)
dE/dl ionization energy loss per path unit
Definition: MaterialInteraction.cxx:165
Trk::phi
@ phi
Definition: ParamDefs.h:75
Trk::MaterialInteraction::dEdXBetheHeitler
static double dEdXBetheHeitler(const Trk::MaterialProperties &mat, double initialE, Trk::ParticleHypothesis particle)
Definition: MaterialInteraction.cxx:266
AthAlgTool
Definition: AthAlgTool.h:26
Trk::x
@ x
Definition: ParamDefs.h:55
MuonParameters::beta
@ beta
Definition: MuonParamDefs.h:144
Trk::EnergyLossUpdator::ionizationEnergyLoss
Trk::EnergyLoss ionizationEnergyLoss(const MaterialProperties &mat, double p, double pathcorrection, PropDirection dir=alongMomentum, ParticleHypothesis particle=pion) const
Definition: EnergyLossUpdator.cxx:436
Trk::EnergyLoss::sigmaPlusDeltaE
double sigmaPlusDeltaE() const
returns the positive side
Trk::EnergyLossUpdator::getX0ElossScales
virtual void getX0ElossScales(int icalo, double eta, double phi, double &X0Scale, double &ElossScale) const override final
Routine to calculate X0 and Eloss scale factors for the Calorimeter and Muon System.
Definition: EnergyLossUpdator.cxx:310
python.SystemOfUnits.m
float m
Definition: SystemOfUnits.py:106
Trk::EnergyLoss::sigmaIoni
double sigmaIoni() const